JP3365811B2 - Method for producing hydraulic molded product - Google Patents

Method for producing hydraulic molded product

Info

Publication number
JP3365811B2
JP3365811B2 JP8023193A JP8023193A JP3365811B2 JP 3365811 B2 JP3365811 B2 JP 3365811B2 JP 8023193 A JP8023193 A JP 8023193A JP 8023193 A JP8023193 A JP 8023193A JP 3365811 B2 JP3365811 B2 JP 3365811B2
Authority
JP
Japan
Prior art keywords
hydraulic
pva
molded product
weight
curing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8023193A
Other languages
Japanese (ja)
Other versions
JPH06271368A (en
Inventor
辰昭 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP8023193A priority Critical patent/JP3365811B2/en
Publication of JPH06271368A publication Critical patent/JPH06271368A/en
Application granted granted Critical
Publication of JP3365811B2 publication Critical patent/JP3365811B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0082Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability making use of a rise in temperature, e.g. caused by an exothermic reaction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、セメント、石膏、水滓
スラグなどの水硬性材料よりなる成形物の製造方法に関
する。詳細には、本発明は成形物中に空隙を有していて
軽量であり、しかも強度にも優れた水硬性成形物を製造
する方法に関する。 【0002】 【従来の技術】セメント、石膏、水滓スラグなどの水硬
性物質からなる成形物の機械的物性、耐凍害性、寸法安
定性等の向上、表面状態の改良、成形性の改善などのた
めに、水硬性物質中にポリビニルアルコール(以下「P
VA」ということがある)を添加して成形を行うことが
従来から行われている。例えば、特開昭49−4593
4号公報にはパルプセメント板中にPVAを配合してそ
の曲げ強度および衝撃強度を向上させることが、また特
開昭61−77655号公報および特開昭61−209
950号公報にはスラグ石膏板の曲げ強度、衝撃強度、
寸法安定性の向上、クラック防止のためにPVAを使用
することが記載されている。 【0003】また、特開昭49−50017号公報、特
開昭60−239377号公報、特開昭51−1377
19号公報等にもセメント成形物または軽量コンクリー
トの強度向上、表面状態の改良、亀裂防止などのため
に、PVAを用いることが開示されている。更に、特開
平3−97644号公報および特開平3−193651
号公報には、PVAを粉末状で水硬性材料中に添加して
成形・養生を行って、水硬性成形物の強度、耐凍害性な
どを向上させることが記載されている。 【0004】PVAが水硬性成形物に対して上記したよ
うな効果を有する理由は、PVAが一般に水硬性物質中
のアルカリ性領域において安定であり、且つ水硬性物質
の水和反応を阻害せず、水に溶解してセメント等の水硬
性物質のマトリックス中に均一に分散して水硬性物質等
の粒子間の結合作用を果たし、更に強力な皮膜を形成す
ることによるとされている。 【0005】そして、上記した従来技術においては、P
VAを使用することによって強度の向上やその他の点で
かなりの効果を奏することができるが、未だ改良の余地
があり、特に水硬性成形物の軽量化の点では充分満足の
ゆくものではない。 【0006】一方、水硬性成形物の軽量化のためにパー
ライトやポリスチレンビーズなどの軽量骨材を配合する
ことが従来から行われており、その際にPVAを併用す
ることも知られている。しかしそのような従来技術で
は、水硬性成形物の軽量化は達成できるものの、得られ
る成形物の強度が軽量骨材の添加によって大幅に低下す
る傾向があり、軽量で且つ強度に優れた水硬性成形物が
得られないというのが現状である。 【0007】 【発明が解決しようとする課題】本発明の課題は、軽量
でしかも強度やその他の物性においても優れている水硬
性成形物を得ることである。 【0008】 【課題を解決するための手段】上記の課題を解決するた
めに本発明者は研究を続けてきた。その結果、PVAと
ゲル化剤を水硬性物質に配合して常温でそのまま成形し
次いで養生する代わりに、PVAとゲル化剤を配合した
水硬性物質を少なくとも養生に至るまでの段階、すなわ
養生前の任意の段階で、特定の温度に加熱して水硬性
組成物中に含まれているPVA粉末を膨潤した吸水ゲル
化粒体の形態にし、そのようなPVAの吸水ゲル粒体を
含む成形物を養生すると、得られる成形物中に多数の空
隙が形成されて成形物の軽量化を図ることができるこ
と、しかも空隙が存在するにも拘わらず成形物の強度が
優れていることを見出して本発明を完成した。 【0009】 すなわち、本発明は、水硬性物質、ポリ
ビニルアルコール系重合体(以下「PVA系重合体」と
いう)粉末およびPVA系重合体粉末用のゲル化剤を含
む水硬性組成物を成形した後、養生して水硬性成形物を
製造する方法であって、水硬性組成物の調製段階、水硬
性組成物の調製後で且つ成形前の段階および成形途中の
段階のうちの少なくとも1つの段階で、水硬性組成物を
30〜80℃の温度に10〜120分加熱して、水硬性
組成物中に含まれているポリビニルアルコール系重合体
粉末を吸水ゲル粒体の形態にした後に、養生を行うこと
を特徴とする水硬性成形物の製造方法である。 【0010】本発明において、水硬性物質としては水と
反応して硬化する無機物質のいずれもが使用でき特に限
定されず、例えば各種ポルトランドセメント、高炉セメ
ント、アルミナセメント、石膏、水滓スラグ、水酸化カ
ルシウム、珪石粉などを挙げることができる。水硬性物
質は1種類のみを使用してもまたは2種以上を組み合わ
せて使用してもよい。 【0011】また、PVA系重合体粉末としては、水硬
性組成物中にそのまま溶解せずに組成物中に含まれる水
を吸収して膨潤し、しかもゲル化のための加熱処理時に
ゲル化剤と反応して吸水ゲル粒体の形態になって水硬性
組成物または成形物中に存在し得るものであればいずれ
でもよく、変性されていない通常のPVAおよび変性さ
れたPVAのいずれであってもよい。変性されたPVA
の例としては、イタコン酸、マレイン酸などの不飽和カ
ルボン酸成分を共重合させたカルボキシル変性PVA、
硫酸基やリン酸基を導入したイオン変性PVA、アセト
アセチル基やシリル基を導入したPVAなどを挙げるこ
とができる。変性PVAを使用する場合は、上記したカ
ルボキシル変性PVAを使用するのが好ましい。PVA
系重合体は1種類のみを使用しても、または2種以上を
併用してもよい。 【0012】また、PVA系重合体の重合度は特に制限
されないが、500以上であるのが好ましく、1500
以上であるのがより好ましい。500以上の重合度を有
するPVA系重合体を使用すると、得られる水硬性成形
物の強度をより高くすることができる。更に、PVA系
重合体のケン化度も特に限定されないが、80モル%以
上であるのが好ましく、90モル%以上であるがより好
ましく、95モル%以上であるのが一層好ましい。 【0013】そして、PVA系重合体粉末の粒径は、粒
径が小さい方が水硬性組成物中に均一に分散させること
ができ、しかも水硬性組成物や水硬性成形物中で吸水ゲ
ル粒体を形成し易く、その上PVA系重合体粉末の単位
重量当たりの吸水ゲル粒体の形成数が多くなり軽量化の
促進につながるので好ましい。そのような点から、PV
A系重合体粉末としては、限定されるものではないが、
一般に100メッシュ篩を通過する微粉の含有割合が7
0重量%以上のものを使用するのが好ましく、100メ
ッシュ篩を通過する微粉の含有割合が95重量%以上の
ものを使用するのがより好ましい。 【0014】また、PVA系重合体粉末の配合割合は、
水硬性物質の重量に基づいて、0.2〜10重量%の範
囲とするのがよく、0.5〜5重量%であるのがより好
ましい。PVA系重合体粉末の配合割合が0.2重量%
未満であると水硬性成形物の軽量化および強度の向上が
困難になり、一方10重量%を越えると耐水性および難
燃性が低下し易くなる。 【0015】更に、本発明では、上記したPVA系重合
体粉末と共にPVA系重合体用のゲル化剤を使用するこ
とが必要である。ゲル化剤としては硼酸、硼砂、硼酸ア
ンモニウム、2価および3価の各種鉄塩、鉛塩、ジルコ
ニウム塩、銀塩、アルミニウム塩、クロム酸塩、過マン
ガン酸塩などを挙げることができ、それらのうちでも特
に硼酸、硼砂が水硬性成形物に適した吸水ゲル粒体形成
の点で好ましい。上記したゲル化剤は1種類のみを使用
しても、または互いに悪影響を及ぼさない場合は2種以
上を併用してもよい。 【0016】ゲル化剤の種類などによってその使用量は
種々異なり得るが、一般にPVA系重合体粉末の重量に
基づいて、ゲル化剤を1〜30重量%の範囲で使用する
のが好ましく、5〜20重量%がより好ましい。ゲル化
剤は、それ自身は水硬性組成物中に含まれる水に溶解
し、組成物中に併存するPVA系重合体粉末をゲル化さ
せて、PVA系重合体粉末が溶解されずに膨潤した吸水
ゲル粒体の形態で水硬性組成物中または養生前の水硬性
成形物中に存在するための剤として働く。 【0017】本発明で使用する水硬性組成物は、上記し
た水硬性物質、PVA系重合体粉末およびゲル化剤の3
成分からなり、更に水硬性成形物の製造において使用さ
れ得ることが知られている種々の他の成分や材などを必
要に応じて含有していてもよい。そのような他の成分や
材としては、例えばビニロン、アクリル繊維、ポリプロ
ピレン繊維、ポリエステル繊維、ポリアミド繊維等の合
成繊維、ガラスなどの無機繊維、合成パルプ、木材パル
プなどのパルプ類、シラスバルーン、パーレイト、ポリ
スチレンビーズなどの軽量骨材、シリカヒューム、微細
珪石粉などを挙げることができ、これら他の成分や材は
1種類のみを使用しても2種以上を用いてもよい。水硬
性組成物中のそのような他の成分や材を配合する場合に
は、それらの種類や水硬性物質の用途などに応じてその
配合量を適宜選択することができるが、一般に水硬性物
質の重量に基づいて、1〜50重量%の割合で配合する
のが好ましく、2〜20重量%がより好ましい。 【0018】そして、上記した水硬性物質、PVA系重
合体粉末、PVA系重合体用ゲル化剤および必要に応じ
て他の成分や材を水と共に混合して水硬性組成物を調製
する。その場合の固形分濃度は特に制限されないが、一
般に、5〜90重量%が好ましく、15〜85重量%が
より好ましい。水硬性組成物を調製する際の混合方法お
よび混合手段は特に限定されず、例えばコンクリートミ
キサー、スクリュー型混練装置、ペラー型混練装置など
によって混合することができる。その際の混合条件とし
ては、PVA系重合体粉末が溶解することなく膨潤した
吸水ゲル粒体になるよう条件を採用することが必要であ
る。 【0019】上記により調製した水硬性組成物を次いで
成形する。成形法は特に制限されず、水硬性成形物の製
造に使用されている方法のいずれもが採用でき、例えば
型枠成形法、押出成形法、抄造成形法、フローオン法、
乾式法などを挙げることができる。 【0020】 ここで重要なことは、本発明において
は、水硬性物質、PVA系重合体粉末およびゲル化剤を
必須成分として含む水硬性組成物を、養生前の任意の段
階で30〜80℃の温度で10〜120分加熱して、そ
こに含まれているPVA粉末を膨潤した吸水ゲル化粒体
にすることを必須にしている点である(なお、養生前の
かかる加熱処理を以下「ゲル化用加熱」という)。とこ
ろで、本発明において、上記の「養生前の任意の段階」
とは、水硬性組成物を調製する段階、水硬性組成物の調
製後で且つ成形前の段階および/または成形の途中の
階をいう。したがって本発明ではそれらの段階であれば
ゲル化用加熱の時期はいずれであってもよく、場合によ
ってはそれらの複数の段階にまたがって行ってもよい。 【0021】ゲル化用加熱は上記のように30〜80℃
の温度で行うことが必要であり、40〜70℃がより好
ましい。ゲル化用加熱時の温度が30℃よりも低いとP
VA系重合体粉末の膨潤・吸水ゲルが充分に行われなく
なり、一方80℃よりも高いと折角形成された吸水ゲル
粒体が養生前に溶解等によって消失してしまって、水硬
性成形物中に空隙が形成されなくなる。また、ゲル化用
加熱の時間は10〜120分とするのが好ましく、20
〜90分がより好ましい。加熱時間が短か過ぎるとPV
A系重合体粉末から膨潤した吸水ゲル粒体が形成にくく
なり、一方長すぎると折角形成された吸水ゲル粒体がや
はり養生前に消失し易くなる。 【0022】また、PVA系重合体粉末からの吸水ゲル
粒体の形成をPVA系重合体粉末の膨潤度の点から見る
と、水硬性組成物中に配合されたPVA系重合体粉末
が、水硬性組成物または水硬性成形物中で、配合前のP
VA系重合体粉末の重量の約5〜15倍、好ましくは7
〜12倍に膨潤した状態で吸水ゲル粒体を形成するよう
にして、上記したゲル化用加熱を施すとよい。 【0023】本発明では、上記のゲル化用加熱を採用す
ることによって、PVA系重合体粉末を膨潤した吸水ゲ
ル粒体状で成形物中に多数分散存在させることができ、
その吸水ゲル粒体が成形物の養生後に多数の独立した空
隙(独立気泡)となって水硬性成形物中に存在するよう
になり、成形物を軽量なものとする。 【0024】次いで、上記により得られたPVA系重合
体の膨潤した吸水ゲル粒体を分散含有する成形物を養生
することによって最終的な水硬性成形物を製造する。そ
の際の養生法は特に制限されず、水硬性成形物の既知の
養生法のいずれもが採用でき、例えばオートクレーブ養
生、スチーム養生、自然養生などを挙げることができ
る。そのうちでも、加熱を伴うオートクレーブ養生およ
びスチーム養生が好ましく、オートクレーブ養生がより
好ましい。限定されるものではないが、オートクレーブ
養生を採用する場合は、約120〜180℃の飽和蒸気
圧下で5〜20時間養生を行うのが好ましい。 【0025】そして、上記のような養生の結果、最終的
な水硬性成形物が得られる。得られた水硬性成形物中に
は多数の独立した空隙(独立気泡)が形成されていて、
これが成形物を軽量なものとしており、しかも多数の空
隙の存在にも拘わらず得られる水硬性成形物は強度に優
れている。本発明の方法で得られる水硬性成形物が多数
の独立気泡を有し且つ強度に優れる理由は明確ではない
が、養生前の成形物中に形成されていた膨潤したPVA
系重合体の吸水ゲル粒体が最後の養生工程において溶解
等によって消失すると同時に水硬性成形物のマトリック
ス中に浸透して補強作用を果たすと共に、吸水ゲル粒体
が存在していた部分に独立した空隙が残留して成形物の
軽量化を果たすものと考えられる。 【0026】本発明で製造される水硬性成形物は、建
築、土木、船舶などの種々の分野で広く使用することが
でき、特にその優れた軽量性と強度により、屋根、外
壁、内壁、床材、門扉、道路用ブロック、護岸用ブロッ
クなどの建材として極めて有効に使用できる。 【0027】 【実施例】以下に本発明を実施例などにより具体的に説
明するが、本発明はそれにより限定されない。以下の例
中、得られた成形物のかさ比重、曲げ強度および長さ変
化率(寸法安定性)は次のようにして求めた。 【0028】かさ比重:JIS A5413に準拠し
て、試験片を熱風乾燥器に入れて105℃±5℃で24
時間乾燥し、その時の重量/体積の値として求めた。曲げ強度(曲げたわみ) :JIS A1408「建築ボ
ード類の曲げ試験法」に準拠して、スパン長5cmで測
定した。長さ変化率(寸法安定性) :JIS A5416に準拠
して、60℃で一昼夜乾燥したものを基準とし、20℃
で一昼夜水に浸漬した時の長さを測定してその変化率を
求めた。 【0029】 《実施例1〜2および比較例1〜2》 (1) ポルトランドセメント50重量部、珪石粉30
重量部、木材パルプ5重量部、PVA粉末[(株)クラ
レ製;重合度1750;ケン化度合98.5モル%;1
00メッシュパス品]3重量部および下記の表1に示す
割合の硼酸を混合した後、水を加えて固形分濃度30重
量%の水性スラリーを形成した。 (2) 上記(1)で得られた水性スラリーを、実施例
1〜2では温度45℃で30分間加熱処理した。また、
比較例1〜2では加熱処理を施さなかった。 【0030】(3) 上記(2)の加熱処理スラリーま
たは未加熱スラリーを型枠に流し込んだ後、固形分濃度
が60〜70重量%になるようにプレスして搾液し、厚
さ8mmの板材を作製した。 (4) 上記(3)で得られた板材を160℃の飽和蒸
気圧下に10時間オートクレーブ養生し、得られた板材
から試験片を採り、そのかさ比重、曲げ強度、長さ変化
率を上記した方法により求めた。その結果を表1に示
す。 【0031】《参考例1〜2》 上記実施例1において、水性スラリーに加熱処理を施す
代わりに、その(3)の工程により得られた搾液後の板
材をその養生前に下記の表1に示した温度で30分間加
熱処理した以外は実施例1と同様にして板材を製造し、
それから試験片を採って、そのかさ比重、曲げ強度、長
さ変化率を上記した方法により求めた。その結果を表1
に示す。 【0032】《参考例3》 硼酸の配合量を表1に示すように変えた以外は参考例2
と同様に行った。その結果を表1に示す。 【0033】《参考例4》 PVA粉末として200メッシュパス品を使用した以外
参考例2と同様に行った。その結果を表1に示す。 【0034】 【表1】【0035】 上記表1の結果から、養生に至るまでの
段階、すなわちPVA粉末およびゲル化剤を含む水硬性
組成物(水性スラリー)の段階または成形後で且つ養生
の前の段階でゲル化用加熱を施している実施例1〜2お
よび参考例1〜4による場合は、かさ比重が小さくて軽
量であり、それにも拘わらず強度(曲げ強度)に優れた
成形物が得られることがわかる。それに対して、本発明
におけるゲル化用加熱を行わない比較例1および2の場
合は、得られる成形物のかさ比重が大きく且つ強度が小
さいことがわかる。 【0036】《参考例5〜6》 下記の表2に示すように、未変性PVAの代わりにイタ
コン酸を2モル%共重合したPVA共重合体粉末(重合
度1750;ケン化度合98モル%;100メッシュパ
ス品)を3重量部使用し、硼酸0.3重量部の代わりに
第2硫酸鉄0.5重量部を使用し、且つ搾液後の板材の
ゲル化用加熱を40℃、60分として、養生を下記の表
2に示す条件で行った以外は参考例2と同様にして板材
を作製し、それより得た試験片のかさ比重、曲げ強度、
長さ変化率を上記した方法により求めた。その結果を表
2に示す。 【0037】《参考例7〜8および比較例3》 下記の表2に示すように、未変性PVA3重量部の代わ
りにマレイン酸を3モル%共重合したPVA共重合体粉
末(重合度1750;ケン化度合97モル%;100メ
ッシュパス品)を表2に示す量で使用し、硼酸0.3重
量部の代わりに第2硫酸鉄を表2に示す量で使用し、且
つ搾液後の板材のゲル化用加熱を40℃、30分とし
て、養生を160℃で10時間行った以外は参考例2
同様にして板材を作製し、それより得た試験片のかさ比
重、曲げ強度、長さ変化率を上記した方法により求め
た。その結果を表2に示す。 【0038】 【表2】【0039】 上記表2の結果から、養生に至るまでの
段階、すなわちPVA粉末およびゲル化剤を含む水硬性
成形物に対して養生の前にゲル化用加熱を施している
考例5〜8では、かさ比重が小さくて且つ強度(曲げ強
度)の大きな成形物が得られること、それに対してゲル
化用加熱を行っていない比較例3では得られる成形物の
かさ比重が大きく、軽量性に欠けていることがわかる。 【0040】《参考例》 PVA粉末として、50メッシュパス品(100メッシ
ュオン品)を使用した以外は実施例1と同様に行ったと
ころ、得られる板材のかさ比重は1.10であり、粒度
の大きなPVA系重合体粉末を使用した場合には、水硬
性成形物の軽量化が幾分達成されにくい。 【0041】 【発明の効果】本発明の方法により、PVA系重合体粉
末とそのゲル化剤を水硬性組成物中に配合して、養生に
至るまでの段階(養生前の段階)で30〜80℃という
比較的低温の加熱処理を10〜120分という短い時間
施すだけで、軽量性に富み、しかも強度に優れた水硬
性成形物を極めて簡単な操作で円滑に製造することがで
きる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a molded product made of a hydraulic material such as cement, gypsum, slag and the like. More specifically, the present invention relates to a method for producing a hydraulic molded product having voids in the molded product, light weight, and excellent strength. [0002] Improvement of mechanical properties, frost damage resistance, dimensional stability, etc., improvement of surface condition, improvement of moldability, etc. of molded articles made of hydraulic substances such as cement, gypsum, slag slag, etc. For this reason, polyvinyl alcohol (hereinafter referred to as "P
VA ") in some cases. For example, see JP-A-49-4593.
Japanese Patent Application Laid-Open No. 61-77655 and Japanese Patent Application Laid-Open No. 61-209 disclose that PVA is incorporated into a pulp cement board to improve its bending strength and impact strength.
No. 950 discloses the bending strength, impact strength,
It describes that PVA is used to improve dimensional stability and prevent cracks. In addition, Japanese Patent Application Laid-Open Nos. 49-50017, 60-239377, and 51-1377
No. 19 also discloses the use of PVA for improving the strength of cement molded products or lightweight concrete, improving the surface condition, preventing cracks, and the like. Further, JP-A-3-97644 and JP-A-3-193651
The publication describes that PVA is added to a hydraulic material in the form of powder to perform molding and curing, thereby improving the strength, frost resistance and the like of the hydraulic molded product. [0004] The reason that PVA has the above-mentioned effects on hydraulic molded articles is that PVA is generally stable in an alkaline region in hydraulic substance and does not inhibit the hydration reaction of hydraulic substance, It is said that it dissolves in water and uniformly disperses in a matrix of a hydraulic substance such as cement to perform a binding action between particles of the hydraulic substance and the like, thereby forming a stronger film. [0005] In the prior art described above, P
By using VA, considerable effects can be achieved in improving strength and in other respects, but there is still room for improvement, and it is not sufficiently satisfactory, especially in terms of reducing the weight of hydraulic molded products. On the other hand, in order to reduce the weight of a hydraulic molded product, it has been customary to mix a lightweight aggregate such as pearlite or polystyrene beads, and it is also known to use PVA in this case. However, in such a conventional technique, although the weight reduction of the hydraulic molded product can be achieved, the strength of the obtained molded product tends to be significantly reduced by the addition of the lightweight aggregate, and the hydraulic characteristics excellent in the lightweight and the strength are excellent. At present, it is impossible to obtain a molded product. SUMMARY OF THE INVENTION An object of the present invention is to provide a hydraulic molded article which is lightweight and has excellent strength and other physical properties. [0008] The present inventor has continued his research to solve the above-mentioned problems. As a result, instead of blending the PVA and the gelling agent into the hydraulic material, forming the same at room temperature and then curing, the hydraulic material containing the PVA and the gelling agent is cured at least at the stage until curing , that is, before curing. In any step , the PVA powder contained in the hydraulic composition is heated to a specific temperature to form swollen water-absorbing gelled granules, and a molded article containing such PVA water-absorbing gel granules After curing, it was found that a large number of voids were formed in the obtained molded product, and that the molded product could be reduced in weight, and that the strength of the molded product was excellent despite the presence of the voids. Completed the invention. That is, the present invention provides a method for molding a hydraulic composition containing a hydraulic substance, a polyvinyl alcohol-based polymer (hereinafter referred to as “PVA-based polymer”) powder, and a gelling agent for the PVA-based polymer powder. Curing, to produce a hydraulic molded product, comprising the steps of preparing a hydraulic composition , hydraulic
After the preparation of the conductive composition and before the molding and during the molding
In at least one of the steps, the hydraulic composition is
Heat to a temperature of 30 to 80 ° C for 10 to 120 minutes to obtain hydraulic
This is a method for producing a hydraulic molded product, which comprises curing a polyvinyl alcohol-based polymer powder contained in a composition after forming the powder into particles of a water-absorbing gel. In the present invention, as the hydraulic substance, any of inorganic substances which harden by reacting with water can be used and is not particularly limited. For example, various portland cements, blast furnace cements, alumina cements, gypsum, slag slag, water Examples include calcium oxide and silica powder. The hydraulic substance may be used alone or in combination of two or more. The PVA-based polymer powder is not dissolved in the hydraulic composition as it is, but absorbs the water contained in the composition and swells. And any of those which can be present in the hydraulic composition or molded product in the form of water-absorbing gel particles by reacting with any of the unmodified normal PVA and the modified PVA. Is also good. Modified PVA
Examples of the carboxyl-modified PVA copolymerized with unsaturated carboxylic acid components such as itaconic acid and maleic acid,
Examples include ion-modified PVA into which a sulfate group or a phosphate group has been introduced, and PVA into which an acetoacetyl group or a silyl group has been introduced. When a modified PVA is used, it is preferable to use the above-mentioned carboxyl-modified PVA. PVA
One type of the polymer may be used alone, or two or more types may be used in combination. Although the degree of polymerization of the PVA polymer is not particularly limited, it is preferably 500 or more, preferably 1500 or more.
More preferably. When a PVA-based polymer having a degree of polymerization of 500 or more is used, the strength of the obtained hydraulic molded product can be further increased. Further, the degree of saponification of the PVA-based polymer is not particularly limited, but is preferably 80 mol% or more, more preferably 90 mol% or more, and even more preferably 95 mol% or more. [0013] The smaller the particle size of the PVA-based polymer powder, the more uniformly dispersed it can be dispersed in the hydraulic composition. It is preferable because it is easy to form a body, and moreover, the number of formed water-absorbing gel particles per unit weight of the PVA-based polymer powder is increased, which leads to promotion of weight reduction. From such a point, PV
The A-based polymer powder is not limited,
Generally, the content of fine powder passing through a 100 mesh sieve is 7
It is preferable to use one having 0% by weight or more, and more preferably one having 95% by weight or more of fine powder passing through a 100 mesh sieve. The mixing ratio of the PVA polymer powder is as follows:
It is preferably in the range of 0.2 to 10% by weight, more preferably 0.5 to 5% by weight, based on the weight of the hydraulic substance. 0.2% by weight of PVA polymer powder
If it is less than 10%, it is difficult to reduce the weight and improve the strength of the hydraulic molded product, while if it exceeds 10% by weight, the water resistance and the flame retardancy tend to decrease. Further, in the present invention, it is necessary to use a gelling agent for a PVA polymer together with the above-mentioned PVA polymer powder. Examples of the gelling agent include boric acid, borax, ammonium borate, various divalent and trivalent iron salts, lead salts, zirconium salts, silver salts, aluminum salts, chromates, permanganates, and the like. Among them, boric acid and borax are particularly preferred in terms of forming water-absorbing gel particles suitable for hydraulic molded products. One of the above gelling agents may be used alone, or two or more thereof may be used in combination if they do not adversely affect each other. The amount used may vary depending on the type of the gelling agent and the like, but it is generally preferable to use the gelling agent in the range of 1 to 30% by weight, based on the weight of the PVA-based polymer powder, preferably 5 to 30% by weight. -20% by weight is more preferred. The gelling agent itself dissolved in water contained in the hydraulic composition, gelled the PVA-based polymer powder coexisting in the composition, and swollen without dissolving the PVA-based polymer powder It acts as an agent to be present in the hydraulic composition or in the hydraulic molding before curing in the form of water-absorbing gel granules. The hydraulic composition used in the present invention comprises the above-mentioned hydraulic substance, PVA polymer powder and gelling agent.
If necessary, various other components and materials known to be used in the production of hydraulic molded products may be contained. Such other components and materials include, for example, vinylon, acrylic fiber, polypropylene fiber, polyester fiber, synthetic fiber such as polyamide fiber, inorganic fiber such as glass, synthetic pulp, pulp such as wood pulp, shirasu balloon, parlate And light aggregates such as polystyrene beads, silica fume, fine silica powder and the like. These other components and materials may be used alone or in combination of two or more. When compounding such other components and materials in the hydraulic composition, the amount of the compound can be appropriately selected depending on the type and use of the hydraulic substance, but generally the hydraulic substance is used. Is preferably blended at a ratio of 1 to 50% by weight, more preferably 2 to 20% by weight, based on the weight of Then, the above-mentioned hydraulic substance, PVA-based polymer powder, gelling agent for PVA-based polymer, and other components and materials are mixed with water as required to prepare a hydraulic composition. In that case, the solid content concentration is not particularly limited, but is generally preferably 5 to 90% by weight, and more preferably 15 to 85% by weight. The mixing method and mixing means for preparing the hydraulic composition are not particularly limited, and for example, they can be mixed by a concrete mixer, a screw-type kneader, a peller-type kneader, or the like. As the mixing conditions at that time, it is necessary to adopt conditions so that the PVA-based polymer powder becomes swollen water-absorbing gel particles without dissolving. The hydraulic composition prepared above is then molded. The molding method is not particularly limited, and any of the methods used for the production of a hydraulic molded product can be adopted, for example, a mold forming method, an extrusion molding method, a paper forming method, a flow-on method,
A dry method can be used. What is important here is that, in the present invention, a hydraulic composition containing a hydraulic substance, a PVA-based polymer powder and a gelling agent as essential components is heated to 30 to 80 ° C. at an arbitrary stage before curing. At 10 ° C. for 10 to 120 minutes to make the PVA powder contained therein into swollen water-absorbing gelled granules (the heat treatment before curing is hereinafter referred to as “ Heating for gelling "). By the way, in the present invention, the above-mentioned “ optional stage before curing”
The term refers to a stage of preparing a hydraulic composition, a stage after preparation of a hydraulic composition and before molding, and / or a stage during molding . Therefore, in the present invention, the heating time for gelation may be any stage as long as it is at those stages, and in some cases, the heating may be performed over a plurality of stages. The heating for gelation is 30 to 80 ° C. as described above.
, And more preferably 40 to 70 ° C. If the temperature during heating for gelation is lower than 30 ° C, P
The swelling / absorption gel of the VA-based polymer powder is not sufficiently performed. On the other hand, if the temperature is higher than 80 ° C., the formed water-absorbing gel particles disappear due to dissolution or the like before curing, resulting in a hydraulic molded article. No voids are formed in the holes. The heating time for gelling is preferably 10 to 120 minutes,
~ 90 minutes is more preferred. If the heating time is too short, PV
It is difficult to form swollen water-absorbing gel particles from the A-based polymer powder. On the other hand, if it is too long, the bent water-absorbing gel particles are also likely to disappear before curing. Further, when the formation of the water-absorbing gel particles from the PVA-based polymer powder is viewed from the viewpoint of the degree of swelling of the PVA-based polymer powder, the PVA-based polymer powder blended in the hydraulic composition contains In a hard composition or a hydraulic molding, P before mixing
About 5 to 15 times, preferably 7 times the weight of the VA polymer powder
The above-mentioned heating for gelation may be performed so as to form the water-absorbing gel particles in a state of swelling up to 12 times. In the present invention, by employing the above-mentioned heating for gelling, a large number of swollen water-absorbing gel particles of PVA-based polymer powder can be dispersed and present in the molded product.
The water-absorbing gel particles become a large number of independent voids (closed cells) after curing of the molded article, and are present in the hydraulic molded article, thereby reducing the weight of the molded article. Next, the final hydraulically molded product is produced by curing the molded product containing the swollen water-absorbing gel particles of the PVA polymer obtained as described above. The curing method at that time is not particularly limited, and any of the known curing methods for hydraulic molded articles can be adopted, and examples thereof include autoclave curing, steam curing, and natural curing. Of these, autoclave curing and steam curing with heating are preferred, and autoclave curing is more preferred. Although not limited, when adopting autoclave curing, it is preferable to carry out curing under a saturated vapor pressure of about 120 to 180 ° C. for 5 to 20 hours. Then, as a result of the above curing, a final hydraulic molded product is obtained. A large number of independent voids (closed cells) are formed in the obtained hydraulic molded product,
This makes the molded product lightweight, and the hydraulic molded product obtained in spite of the existence of many voids has excellent strength. The reason why the hydraulic molded product obtained by the method of the present invention has many closed cells and is excellent in strength is not clear, but the swollen PVA formed in the molded product before curing is not clear.
The water-absorbing gel particles of the system polymer disappear by dissolution etc. in the last curing step, and at the same time, penetrate into the matrix of the hydraulic molded product to perform a reinforcing action, and are independent of the part where the water-absorbing gel particles existed It is considered that voids remain to reduce the weight of the molded product. The hydraulic molded product produced by the present invention can be widely used in various fields such as construction, civil engineering, ships, etc., and particularly, due to its excellent lightness and strength, roofs, outer walls, inner walls and floors. It can be used very effectively as building materials such as timber, gates, road blocks, and seawalls. EXAMPLES The present invention will be specifically described below with reference to examples and the like, but the present invention is not limited thereto. In the following examples, the bulk specific gravity, bending strength and length change rate (dimensional stability) of the obtained molded product were determined as follows. Bulk specific gravity : In accordance with JIS A5413, a test piece is placed in a hot air drier at 105 ° C. ± 5 ° C. for 24 hours.
After drying for an hour, the weight / volume value at that time was determined. Bending strength (bending deflection) : Measured at a span length of 5 cm according to JIS A1408 “Bending test method for building boards”. Length change rate (dimensional stability) : based on JIS A5416, dried at 60 ° C for 24 hours, 20 ° C
The length when immersed in water all day and night was measured to determine the rate of change. << Examples 1-2 and Comparative Examples 1-2 >> (1) Portland cement 50 parts by weight, silica powder 30
Parts by weight, wood pulp 5 parts by weight, PVA powder [manufactured by Kuraray Co., Ltd .; degree of polymerization 1750; degree of saponification 98.5 mol%; 1
00 mesh pass product] and 3 parts by weight of boric acid in the proportions shown in Table 1 below were mixed, and water was added to form an aqueous slurry having a solid concentration of 30% by weight. (2) The aqueous slurry obtained in the above (1) was used in Examples
In Nos. 1 and 2, heat treatment was performed at 45 ° C. for 30 minutes. Also,
In Comparative Examples 1 and 2 , no heat treatment was performed. (3) After the heat-treated slurry or the unheated slurry of the above (2) is poured into a mold, the slurry is pressed and squeezed so as to have a solid content concentration of 60 to 70% by weight. A plate material was produced. (4) The plate material obtained in the above (3) was subjected to autoclave curing under a saturated vapor pressure of 160 ° C. for 10 hours, and a test piece was taken from the obtained plate material, and its bulk specific gravity, bending strength and length change rate were described above. Determined by method. Table 1 shows the results. Reference Examples 1-2 In Example 1, instead of subjecting the aqueous slurry to heat treatment, the squeezed plate obtained in the step (3) was subjected to the following Table 1 before curing. A plate was manufactured in the same manner as in Example 1 except that the plate was heat-treated at the temperature shown in
Then, a test piece was taken, and its bulk specific gravity, bending strength, and rate of change in length were determined by the methods described above. Table 1 shows the results.
Shown in Reference Example 3 Reference Example 2 except that the amount of boric acid was changed as shown in Table 1.
The same was done. Table 1 shows the results. Reference Example 4 The procedure of Reference Example 2 was repeated except that a 200 mesh pass product was used as the PVA powder. Table 1 shows the results. [Table 1] From the results shown in Table 1 above, gelation is performed at a stage before curing, that is, at a stage of a hydraulic composition (aqueous slurry) containing PVA powder and a gelling agent or after molding and before curing. Examples 1 and 2 where heating is applied
In the case of Reference Examples 1 to 4 , it can be seen that a molded product having a small bulk specific gravity and light weight and excellent strength (flexural strength) can be obtained. On the other hand, in the case of Comparative Examples 1 and 2 in which heating for gelation in the present invention is not performed, it can be seen that the obtained molded product has a large bulk specific gravity and a small strength. Reference Examples 5 to 6 As shown in Table 2 below, PVA copolymer powder obtained by copolymerizing 2 mol% of itaconic acid instead of unmodified PVA (polymerization degree: 1750; saponification degree: 98 mol%) ; 100 mesh pass product), using 0.5 parts by weight of ferric sulfate instead of 0.3 parts by weight of boric acid, and heating the plate after gelation at 40 ° C. A plate material was prepared in the same manner as in Reference Example 2 except that curing was performed under the conditions shown in Table 2 below as 60 minutes, and the bulk density, bending strength,
The rate of change in length was determined by the method described above. Table 2 shows the results. Reference Examples 7 to 8 and Comparative Example 3 As shown in Table 2 below, a PVA copolymer powder obtained by copolymerizing maleic acid at 3 mol% instead of 3 parts by weight of unmodified PVA (polymerization degree: 1750; Saponification degree: 97 mol%; 100 mesh pass product) in the amount shown in Table 2, using ferric sulfate in the amount shown in Table 2 in place of 0.3 part by weight of boric acid, and after squeezing. A plate material was prepared in the same manner as in Reference Example 2 except that the heating for gelation of the plate material was performed at 40 ° C. for 30 minutes and curing was performed at 160 ° C. for 10 hours, and the bulk specific gravity, bending strength, The rate of change in length was determined by the method described above. Table 2 shows the results. [Table 2] The ginseng is subjected from the results of Table 2, steps up to the curing, i.e. the gelling heated prior to curing against hydraulic molding comprising a PVA powder and gelling agent
In Examples 5 to 8 , a molded product having a small bulk specific gravity and a large strength (flexural strength) is obtained, whereas in Comparative Example 3 in which heating for gelation is not performed, the bulk specific gravity of the obtained molded product is small. It turns out that it is large and lacks lightness. Reference Example 9 The procedure of Example 1 was repeated, except that a 50-mesh pass product (100-mesh on product) was used as the PVA powder. The bulk specific gravity of the obtained plate material was 1.10, When a PVA-based polymer powder having a large particle size is used, it is difficult to reduce the weight of the hydraulic molded product to some extent. According to the method of the present invention, a PVA-based polymer powder and a gelling agent thereof are blended in a hydraulic composition, and a curing process (a stage before curing) is 30 to 30%. Heating at a relatively low temperature of 80 ° C. for a short time of 10 to 120 minutes
In this case, it is possible to produce a hydraulic molded product having high lightness and excellent strength by a very simple operation.

Claims (1)

(57)【特許請求の範囲】 【請求項1】 水硬性物質、ポリビニルアルコール系重
合体粉末およびポリビニルアルコール系重合体用のゲル
化剤を含む水硬性組成物を成形した後、養生して水硬性
成形物を製造する方法であって、水硬性組成物の調製段
階、水硬性組成物の調製後で且つ成形前の段階および成
形途中の段階のうちの少なくとも1つの段階で、水硬性
組成物を30〜80℃の温度に10〜120分加熱し
て、水硬性組成物中に含まれているポリビニルアルコー
ル系重合体粉末を吸水ゲル粒体の形態にした後に、養生
を行うことを特徴とする水硬性成形物の製造方法。
(57) [Claim 1] A hydraulic composition containing a hydraulic substance, a polyvinyl alcohol-based polymer powder and a gelling agent for a polyvinyl alcohol-based polymer is molded, cured, and then water-cooled. A method for producing a hard molded product, comprising a step of preparing a hydraulic composition.
Stage, after the preparation of the hydraulic composition and prior to molding.
In at least one of the stages during shaping, hydraulic
Heating the composition to a temperature of 30-80 ° C for 10-120 minutes
A method for producing a hydraulic molded product, comprising: forming a polyvinyl alcohol-based polymer powder contained in a hydraulic composition into the form of a water-absorbing gel particle, followed by curing.
JP8023193A 1993-03-16 1993-03-16 Method for producing hydraulic molded product Expired - Fee Related JP3365811B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8023193A JP3365811B2 (en) 1993-03-16 1993-03-16 Method for producing hydraulic molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8023193A JP3365811B2 (en) 1993-03-16 1993-03-16 Method for producing hydraulic molded product

Publications (2)

Publication Number Publication Date
JPH06271368A JPH06271368A (en) 1994-09-27
JP3365811B2 true JP3365811B2 (en) 2003-01-14

Family

ID=13712581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8023193A Expired - Fee Related JP3365811B2 (en) 1993-03-16 1993-03-16 Method for producing hydraulic molded product

Country Status (1)

Country Link
JP (1) JP3365811B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2108224C (en) * 1993-10-12 1997-09-09 Deborah L. Pinard Method and aparatus for implementing hunt groups

Also Published As

Publication number Publication date
JPH06271368A (en) 1994-09-27

Similar Documents

Publication Publication Date Title
US4778529A (en) Cementitious compositions comprising a water soluble polymer and a cross-linking agent therefor
CA2421011C (en) Concrete admixture, mortar admixture and blended cement
JPH04507393A (en) Products with cement characteristics
JP2966881B2 (en) Hydraulic composition for autoclave curing
CN115231893B (en) Shrinkage-compensating self-compacting expansive concrete and preparation method thereof
JP3365811B2 (en) Method for producing hydraulic molded product
JPS63291840A (en) Cement composite
JPH06293546A (en) Production of hydraulic and inorganic material molding
CN113667061A (en) Water-absorbent resin and preparation method and application thereof
JPH0454629B2 (en)
JPH10330146A (en) Production of hydraulic inorganic molded product
JP3280636B2 (en) Manufacturing method of molded product
JPH05117001A (en) Hardened material of cement
JPS5951509B2 (en) magnesia cement composition
JP4368489B2 (en) Hydraulic composition for autoclave curing
JPS62223046A (en) Manufacture of cementitious hardened body
JP3089001B1 (en) Inorganic paperboard and method for producing the same
JP2868547B2 (en) Lightweight cement building materials
JPH1112015A (en) Production of high strength hardened cement having excellent water resistance
JP3290068B2 (en) Manufacturing method of inorganic plate
JP3728012B2 (en) Method for producing binder for inorganic hydraulic molding
JPS62256751A (en) Manufacture of cement set body
JPH11314979A (en) Production of cement hardened body
JPS6177655A (en) Hydraulic composition
JPS5841748A (en) Manufacture of cement product

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071101

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081101

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091101

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091101

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101101

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101101

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111101

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees