JP3363840B2 - Method for producing positive electrode for non-aqueous electrolyte secondary battery - Google Patents

Method for producing positive electrode for non-aqueous electrolyte secondary battery

Info

Publication number
JP3363840B2
JP3363840B2 JP17426999A JP17426999A JP3363840B2 JP 3363840 B2 JP3363840 B2 JP 3363840B2 JP 17426999 A JP17426999 A JP 17426999A JP 17426999 A JP17426999 A JP 17426999A JP 3363840 B2 JP3363840 B2 JP 3363840B2
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
aqueous electrolyte
electrolyte secondary
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17426999A
Other languages
Japanese (ja)
Other versions
JP2000030712A (en
Inventor
修弘 古川
俊之 能間
祐司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP17426999A priority Critical patent/JP3363840B2/en
Publication of JP2000030712A publication Critical patent/JP2000030712A/en
Application granted granted Critical
Publication of JP3363840B2 publication Critical patent/JP3363840B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は、リチウム或いはリ
チウムイオンを可逆的に吸蔵、放出できる材料を負極の
活物質とする非水系二次電池に係り、特に正極の製造法
方法の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous secondary battery using a material capable of reversibly occluding and releasing lithium or lithium ions as an active material of a negative electrode, and more particularly to improving a method for producing a positive electrode.

【0002】[0002]

【従来の技術】一般に非水系二次電池の正極活物質とし
て研究されている物質は、カーボン(C)、二酸化マン
ガン(MnO2)、リチウムマンガンオキサイド(Lix
MnOy;3≦2y−x≦4)、五酸化バナジウム(V2
5)、コバルト酸化物(CoOx)、等であり、一部実
用化されている。これらの正極活物質は、カーボンを除
いて、その結晶中にリチウムイオンが進入、脱離するこ
とによって充放電を行うインターカレーション型の活物
質であり、表面にリチウムイオンを吸着、脱離すること
によって充放電を行う表面吸着型のカーボン活物質に比
べて容量が大きいという利点がある。従って高容量の非
水系二次電池の正極活物質としては、インターカレーシ
ョン型の正極活物質が有利である。ところが、上記イン
ターカレーション型の正極活物質を用いた場合に充放電
の繰り返しによって正極の強度が劣化するという問題点
があった。
2. Description of the Related Art Materials generally studied as positive electrode active materials for non-aqueous secondary batteries include carbon (C), manganese dioxide (MnO 2 ), lithium manganese oxide (Li x
MnO y ; 3 ≦ 2y−x ≦ 4), vanadium pentoxide (V 2
O 5 ), cobalt oxide (CoO x ), and the like, which have been partially put into practical use. Except for carbon, these positive electrode active materials are intercalation-type active materials that charge and discharge by entering and desorbing lithium ions in their crystals, and adsorb and desorb lithium ions on the surface. As a result, there is an advantage that the capacity is larger than that of the surface adsorption type carbon active material which is charged and discharged. Therefore, an intercalation type positive electrode active material is advantageous as a positive electrode active material for a high capacity non-aqueous secondary battery. However, when the above intercalation type positive electrode active material is used, there is a problem that the strength of the positive electrode deteriorates due to repeated charging and discharging.

【0003】即ち、充放電時のリチウムイオンの結晶中
への進入、脱離に伴い、その結晶格子が伸長、収縮し、
この結果活物質の粒子も膨張、収縮を繰り返すことが知
られているが、この際、非水系二次電池の結着剤として
従来から用いられているフッ素樹脂は、そのゴム弾性が
殆ど無いが故に、活物質の膨張、収縮によって結着性が
低下し、活物質粒子と、導電剤粒子の接触が不十分にな
って、正極の利用率が低下したり、或いは正極が集電体
から剥離する等の欠点が生じていた。
That is, as the lithium ions enter and leave the crystal during charge and discharge, the crystal lattice thereof expands and contracts,
As a result, it is known that the particles of the active material also repeatedly expand and contract, but at this time, the fluororesin conventionally used as the binder for the non-aqueous secondary battery has almost no rubber elasticity. Therefore, the binding property is reduced due to the expansion and contraction of the active material, the contact between the active material particles and the conductive agent particles is insufficient, the utilization rate of the positive electrode is reduced, or the positive electrode is separated from the current collector. There were some drawbacks such as doing.

【0004】[0004]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、上記従来技術の問題点に鑑み、正極活物質
の結着剤としてのフッ素樹脂に改良を加え、充放電の繰
り返しによる正極強度の劣化を抑制することである。
In view of the above-mentioned problems of the prior art, the problem to be solved by the present invention is to improve the fluororesin as the binder of the positive electrode active material, and to improve the positive electrode by repeating charging and discharging. It is to suppress the deterioration of strength.

【0005】本発明は、リチウムイオンを可逆的に充放
電できるインターカレーション型のリチウムマンガンオ
キサイドからなる正極活物質と、正極結着剤とを混合、
加圧した後、熱処理する非水系電解液二次電池用正極の
製造方法において、前記正極結着剤として、ゴム弾性を
有し、且つ耐熱温度が200℃以上の材料である、ヘキ
サフルオロプロピレンとフッ化ビニリデンとの共重合体
を主成分とするフッ素ゴムを用いたことを特徴とする。
The present invention reversibly releases lithium ions.
Intercalation type lithium manganese
Mixing a positive electrode active material composed of side and a positive electrode binder,
After pressurizing, heat treatment of non-aqueous electrolyte secondary battery positive electrode
In the manufacturing method, rubber elasticity is used as the positive electrode binder.
Hex that is a material that has a heat resistant temperature of 200 ° C or higher
Copolymer of Safuropropylene and Vinylidene Fluoride
It is characterized by using fluororubber containing as a main component.

【0006】また、本発明は、リチウムイオンを可逆的
に充放電できるインターカレーション型のリチウムマン
ガンオキサイドからなる正極活物質と、正極結着剤とを
混合、加圧した後、熱処理する非水系電解液二次電池用
正極の製造方法において、前記正極結着剤として、ゴム
弾性を有し、且つ耐熱温度が200℃以上の材料であ
る、ヘキサフルオロクロルエチレンとフッ化ビニリデン
との共重合体を主成分とするフッ素ゴムを用いたことを
特徴とする。
The present invention also provides reversible lithium ion
Intercalation type lithium man that can be charged and discharged
A positive electrode active material composed of gun oxide and a positive electrode binder
For non-aqueous electrolyte secondary batteries that are mixed, pressurized, and then heat treated
In the method for producing a positive electrode, rubber is used as the positive electrode binder.
A material that has elasticity and a heat resistant temperature of 200 ° C or higher
Hexafluorochlorethylene and vinylidene fluoride
The use of fluororubber whose main component is a copolymer of
Characterize.

【0007】また他の本発明は、リチウムイオンを可逆
的に充放電できるインターカレーション型の正極活物質
と正極結着剤とを混合、加圧した後、熱処理する非水系
電解液二次電池用正極の製造方法において、前記正極結
着剤として、ゴム弾性を有し、且つ耐熱温度が200℃
以上の材料である、ヘキサフルオロプロピレンとフッ化
ビニリデンとの共重合体を主成分とするフッ素ゴム又は
ヘキサフルオロクロルエチレンとフッ化ビニリデンとの
共重合体を主成分とするフッ素ゴムを用いたことを特徴
とする。
Another aspect of the present invention is a method for reversing lithium ion.
Intercalation type positive electrode active material that can be electrically charged and discharged
A non-aqueous system that heat-treats after mixing and pressurizing the positive electrode binder
In the method for producing a positive electrode for an electrolyte secondary battery,
As a binder, it has rubber elasticity and has a heat resistant temperature of 200 ° C.
Hexafluoropropylene and fluorinated materials
Fluorine rubber whose main component is a copolymer with vinylidene or
Between hexafluorochloroethylene and vinylidene fluoride
Characterized by using fluororubber containing a copolymer as the main component
And

【0008】そして、正極活物質としては、カーボン
(C)、二酸化マンガン(MnO 2 )、リチウムマンガ
ンオキサイド(LixMnOy;3≦2y−x≦4)、五
酸化バナジウム(V 2 5 )、コバルト酸化物(CoO
x)が例示できるが、この中でも、リチウムマンガンオ
キサイドを用いた場合、その効果が顕著に得られる。
Carbon is used as the positive electrode active material.
(C), manganese dioxide (MnO 2 ), lithium manga
Oxide (LixMnOy; 3 ≦ 2y−x ≦ 4), five
Vanadium oxide (V 2 O 5 ), cobalt oxide (CoO
x) can be exemplified, but among these, lithium manganese
When side is used, the effect is remarkably obtained.

【0009】上記のように、非水系二次電池の正極活物
質として容量の大きいインターカレーション型の活物質
を用いる場合に結着剤としてゴム弾性を有する物質を使
うことにより、充放電によって活物質粒子が膨張、収縮
しても結着性が低下すること無く、正極活物質と導電
剤、或いは正極と集電体との接触が良好なままに保た
れ、正極の活物質を有効に利用することが可能となる。
As described above, when the intercalation type active material having a large capacity is used as the positive electrode active material of the non-aqueous secondary battery, by using the material having rubber elasticity as the binder, the material is activated by charging and discharging. Even if the material particles expand or contract, the binding property does not decrease, and the contact between the positive electrode active material and the conductive agent or the positive electrode and the current collector is kept good, and the positive electrode active material is effectively used. It becomes possible to do.

【0010】尚、上述の電池の負極には、リチウム或い
はリチウムイオンを可逆的に吸蔵、放出できる負極材料
を使用する必要がある。
For the negative electrode of the above battery, it is necessary to use a negative electrode material capable of reversibly occluding and releasing lithium or lithium ions.

【0011】[0011]

【実施の形態】(実施例1)化学二酸化マンガンと水酸
化リチウムとを混合して熱処理し、インターカレーショ
ン型のリチウムマンガンオキサイド(Li0.43MnO
2.11)を得た。このLi0.43MnO2.11を正極活物質と
し、導電剤としてのアセチレンブラック粉末、及び結着
剤としてのヘキサフルオロプロピレンとフッ化ビニリデ
ンとの共重合体、を主成分とするゴム状弾性を有するフ
ッ素ゴム(耐熱温度230℃)の粉末を、重量比で9
0:6:4の比率で混合して正極合剤とし、この正極合
剤を2t/cm2で直径20mmに加圧成型した後、2
00℃で熱処理して正極を作製した。
Embodiments (Example 1) Chemical manganese dioxide and lithium hydroxide are mixed and heat-treated to form an intercalation type lithium manganese oxide (Li 0.43 MnO 2).
2.11 ) got. Fluorine rubber having rubbery elasticity containing Li 0.43 MnO 2.11 as a positive electrode active material, acetylene black powder as a conductive agent, and a copolymer of hexafluoropropylene and vinylidene fluoride as a binder, as main components. The powder of (heat-resistant temperature of 230 ° C) is used in a weight ratio of
The mixture was mixed at a ratio of 0: 6: 4 to form a positive electrode mixture, and this positive electrode mixture was pressure-molded at a diameter of 20 mm at 2 t / cm 2 , and then 2
It heat-processed at 00 degreeC and produced the positive electrode.

【0012】また負極は、所定厚み寸法のリチウム板を
直径20mmに打ち抜いて作製した。
The negative electrode was prepared by punching out a lithium plate having a predetermined thickness to a diameter of 20 mm.

【0013】図1は、上記の正・負極を用いて組み立て
た扁平型リチウム電池の半断面を示し、1、2はステン
レス製の正極、及び負極缶であって、これらはポリプロ
ピレン製の絶縁パッキング3により隔離されている。
FIG. 1 shows a half cross-section of a flat type lithium battery assembled by using the above positive and negative electrodes. Reference numerals 1 and 2 denote a positive electrode can and a negative electrode can made of stainless steel, which are polypropylene insulating packings. Separated by 3.

【0014】4は本発明の要旨となる正極であって、正
極缶1の内底面に固着された正極集電体5に圧接されて
いる。
Reference numeral 4 denotes a positive electrode which is the subject of the present invention, and is pressed against a positive electrode current collector 5 fixed to the inner bottom surface of the positive electrode can 1.

【0015】6は負極であって前記負極缶2の内底面に
固着された負極集電体7に圧接されている。
Reference numeral 6 denotes a negative electrode, which is pressed against a negative electrode current collector 7 fixed to the inner bottom surface of the negative electrode can 2.

【0016】8はポリプロピレン製微孔性薄膜からなる
セパレータであり、これに含浸される電解液としては、
プロピレンカーボネートとジメトキシエタンとの混合溶
媒に、過塩素酸リチウムを1mol/リットル溶解した
ものを用いた。
Reference numeral 8 is a separator composed of a polypropylene microporous thin film.
A solution obtained by dissolving 1 mol / liter of lithium perchlorate in a mixed solvent of propylene carbonate and dimethoxyethane was used.

【0017】そして上記の構成によって直径24.0m
m、厚み寸法3.0mmの電池を得た。この本発明電池
を本発明電池A1とする。 (実施例2)正極用結着剤として、トリフルオロクロル
エチレンとフッ化ビニリデンとの共重合体を主成分とす
るゴム状弾性を有するフッ素ゴム粉末(耐熱温度200
℃)を用いることを除いては、実施例1と同様にして本
発明電池A2を作製した。 (比較例1)正極結着剤としてゴム状弾性を持たないフ
ッ素樹脂の一種であるポリテトラフルオロエチレン粉末
(耐熱温度略260℃)を用いることを除いて他は実施
例1と同様にして比較電池B1を作製した。 (比較例2)正極結着剤としてゴム状弾性を有するブチ
ルゴムの粉末(耐熱温度略140℃)を用いることを除
いて他は実施例1と同様にして比較電池B2を作製し
た。 (比較例3)正極結着剤としてゴム状弾性を有するブチ
ルゴムの粉末を用い、正極の熱処理温度を120℃とす
ることを除いて他は実施例1と同様にして比較電池B3
を作製した。
With the above structure, the diameter is 24.0 m.
A battery with m and thickness of 3.0 mm was obtained. This battery of the present invention is referred to as Battery A1 of the present invention. (Example 2) As a positive electrode binder, a fluororubber powder having rubber-like elasticity containing a copolymer of trifluorochloroethylene and vinylidene fluoride as a main component (heat resistant temperature: 200
Inventive battery A2 was produced in the same manner as in Example 1 except that (C) was used. (Comparative Example 1) A comparison was made in the same manner as in Example 1 except that polytetrafluoroethylene powder (heat-resistant temperature of about 260 ° C), which is a kind of fluororesin having no rubber-like elasticity, was used as the positive electrode binder. Battery B1 was produced. (Comparative Example 2) A comparative battery B2 was produced in the same manner as in Example 1 except that butyl rubber powder having a rubber-like elasticity (heat resistant temperature: about 140 ° C) was used as the positive electrode binder. (Comparative Example 3) Comparative battery B3 was prepared in the same manner as in Example 1 except that butyl rubber powder having rubber-like elasticity was used as the positive electrode binder and the heat treatment temperature of the positive electrode was 120 ° C.
Was produced.

【0018】図2は上記各電池A1、A2、B1〜B3
の充放電サイクル特性を示したものである。ここで充放
電条件は、電流3mAで4時間放電した後、電流3mA
で充電終止電圧が4.0Vになるまで充電することとし
た。
FIG. 2 shows the batteries A1, A2, B1 to B3.
3 shows the charge / discharge cycle characteristics of Here, the charge / discharge condition is that the current is 3 mA after being discharged at a current of 3 mA for 4 hours.
Then, it was decided to charge until the end-of-charge voltage reached 4.0V.

【0019】図2を見ると、正極用結着剤として、ゴム
状弾性を有し、耐熱温度が200℃以上であるフッ素ゴ
ムを用いた本発明電池A1、A2の場合、サイクル数が
略180サイクルまで初期の放電終止電圧を保持するの
に対し、ゴム状弾性を持たない正極結着剤を用いた比較
電池B1の場合は、125サイクルまでしか初期の放電
容量を保持することができないことが分かる。このよう
に本発明電池A1、A2は、比較電池B1に比べてサイ
クル特性が改善されていることが明らかである。
Referring to FIG. 2, in the case of the batteries A1 and A2 of the present invention using fluorocarbon rubber having a rubber-like elasticity and a heat resistant temperature of 200 ° C. or more as the binder for the positive electrode, the number of cycles is about 180. The initial discharge end voltage is maintained until the cycle, whereas the comparative battery B1 using the positive electrode binder having no rubber-like elasticity can retain the initial discharge capacity only up to 125 cycles. I understand. As described above, it is clear that the present invention batteries A1 and A2 have improved cycle characteristics as compared with the comparative battery B1.

【0020】また、ゴム状弾性を有する正極結着剤を用
いても、結着剤の耐熱温度が正極の熱処理温度よりも低
い場合(比較電池B2)や、正極の熱処理温度を下げた
場合(比較電池B3)は、1サイクル目から放電終止電
圧の降下がみられる。これは、夫々、結着剤の加熱によ
る劣化、及び正極の不十分な水分除去が原因であると考
えられる。
Even when a positive electrode binder having rubber-like elasticity is used, when the heat resistant temperature of the binder is lower than the heat treatment temperature of the positive electrode (Comparative Battery B2), or when the heat treatment temperature of the positive electrode is lowered ( In the comparative battery B3), a drop in discharge end voltage is seen from the first cycle. It is considered that this is due to deterioration of the binder due to heating and insufficient water removal of the positive electrode.

【0021】尚、本発明の結着剤としては、上記各作製
例のヘキサフルオロプロピレンとフッ化ビニリデンとの
共重合体、或いはトリフルオロクロルエチレンとフッ化
ビニリデンとの共重合体等を主成分とするフッ素ゴムに
限定されること無く、耐熱温度200℃以上で且つゴム
弾性を有する他の材料、またはフッ素ゴムでも使用可能
であることはいうまでもない。さらに、この正極を適用
する電池形状も、作製例で示した扁平型に限らず、円筒
型、角型等の電池にも応用可能であり、また固体電解質
を用いる非水系二次電池にも応用できる。
As the binder of the present invention, the main component is the copolymer of hexafluoropropylene and vinylidene fluoride or the copolymer of trifluorochloroethylene and vinylidene fluoride of the above-mentioned preparation examples. Needless to say, the present invention is not limited to the fluororubber described above, and other materials having a heat resistance temperature of 200 ° C. or higher and rubber elasticity, or fluororubber can also be used. Further, the battery shape to which this positive electrode is applied is not limited to the flat type shown in the manufacturing example, but can be applied to cylindrical type, rectangular type, etc., and also to non-aqueous secondary batteries using a solid electrolyte. it can.

【0022】[0022]

【発明の効果】上述した如く、非水系二次電池の正極用
結着剤として、耐熱温度200℃以上でゴム弾性を有す
る材料を用いることにより、充放電サイクル特性を向上
させることができる。
As described above, the charge / discharge cycle characteristics can be improved by using a material having rubber elasticity at a heat resistant temperature of 200 ° C. or higher as the binder for the positive electrode of the non-aqueous secondary battery.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の非水系二次電池の断面図である。FIG. 1 is a cross-sectional view of a non-aqueous secondary battery of the present invention.

【図2】電池のサイクル特性図である。FIG. 2 is a cycle characteristic diagram of a battery.

【符号の説明】[Explanation of symbols]

1 正極缶 2 負極缶 3 絶縁パッキング 4 正極 5 正極集電体 6 負極 7 負極集電体 8 セパレータ 1 positive electrode can 2 Negative electrode can 3 insulating packing 4 positive electrode 5 Positive electrode current collector 6 Negative electrode 7 Negative electrode current collector 8 separators

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−226560(JP,A) 特開 昭63−121262(JP,A) 特開 平1−294375(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/02 - 4/04 H01M 4/36 - 4/62 H01M 10/40 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP 62-226560 (JP, A) JP 63-121262 (JP, A) JP 1-294375 (JP, A) (58) Field (Int.Cl. 7 , DB name) H01M 4/02-4/04 H01M 4/36-4/62 H01M 10/40

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】1. リチウムイオンを可逆的に充放電できるCan charge and discharge lithium ions reversibly
インターカレーション型のリチウムマンガンオキサイドIntercalation type lithium manganese oxide
からなる正極活物質と、正極結着剤とを混合、加圧したA positive electrode active material consisting of and a positive electrode binder were mixed and pressed.
後、熱処理する非水系電解液二次電池用正極の製造方法After that, a method for producing a positive electrode for a non-aqueous electrolyte secondary battery is heat-treated
において、At 前記正極結着剤として、ゴム弾性を有し、且つ耐熱温度The positive electrode binder has rubber elasticity and has a heat resistant temperature.
が200℃以上の材料である、ヘキサフルオロプロピレIs a material with a temperature of 200 ° C or higher.
ンとフッ化ビニリデンとの共重合体を主成分とするフッContaining fluorine as a main component of a copolymer of vinylidene fluoride
素ゴムを用いたことを特徴とする非水系電解液二次電池Non-aqueous electrolyte secondary battery characterized by using elemental rubber
用正極の製造方法。For manufacturing positive electrode for automobile.
【請求項2】2. リチウムイオンを可逆的に充放電できるCan charge and discharge lithium ions reversibly
インターカレーション型のリチウムマンガンオキサイドIntercalation type lithium manganese oxide
からなる正極活物質と、正極結着剤とを混合、加圧したA positive electrode active material consisting of and a positive electrode binder were mixed and pressed.
後、熱処理する非水系電解液二次電池用正極の製造方法After that, a method for producing a positive electrode for a non-aqueous electrolyte secondary battery is heat-treated
において、At 前記正極結着剤として、ゴム弾性を有し、且つ耐熱温度The positive electrode binder has rubber elasticity and has a heat resistant temperature.
が200℃以上の材料である、ヘキサフルオロクロルエIs a material with a temperature of 200 ° C or higher, hexafluorochlore
チレンとフッ化ビニリデンとの共重合体を主成分とするMainly composed of a copolymer of ethylene and vinylidene fluoride
フッ素ゴムを用いたことを特徴とする非水系電解液二次Secondary non-aqueous electrolyte characterized by using fluororubber
電池用正極の製造方法。A method for manufacturing a positive electrode for a battery.
【請求項3】3. リチウムイオンを可逆的に充放電できるCan charge and discharge lithium ions reversibly
インターカレーション型の正極活物質と正極結着剤とをIntercalation type positive electrode active material and positive electrode binder
混合、加圧した後、熱処理する非水系電解液二次電池用For non-aqueous electrolyte secondary batteries that are mixed, pressurized, and then heat treated
正極の製造方法において、In the manufacturing method of the positive electrode, 前記正極結着剤として、ゴム弾性を有し、且つ耐熱温度The positive electrode binder has rubber elasticity and has a heat resistant temperature.
が200℃以上の材料である、ヘキサフルオロプロピレIs a material with a temperature of 200 ° C or higher.
ンとフッ化ビニリデンとの共重合体を主成分とするフッContaining fluorine as a main component of a copolymer of vinylidene fluoride
素ゴム又はヘキサフルオロクロルエチレンとフッ化ビニRaw rubber or hexafluorochloroethylene and vinyl fluoride
リデンとの共重合体を主成分とするフッ素ゴムを用いたFluorine rubber whose main component is a copolymer with lidene
ことを特徴とする非水系電解液二次電池用正極の製造方Manufacturing method of positive electrode for non-aqueous electrolyte secondary battery characterized by
法。Law.
【請求項4】4. 前記正極活物質が、リチウムマンガンオThe positive electrode active material is lithium manganese oxide.
キサイドであることを特徴とする請求項3記載の非水系A non-aqueous system according to claim 3, wherein the non-aqueous system is side.
電解液二次電池用正極の製造方法。Method for producing positive electrode for electrolyte secondary battery.
【請求項5】5. 上記請求項1〜4記載の非水系電解液二The non-aqueous electrolyte solution 2 according to any one of claims 1 to 4.
次電池用正極の製造方法によって得られた、非水系電解Non-aqueous electrolysis obtained by the method for producing a positive electrode for secondary battery
液二次電池用正極を用いた非水系電解液二次電池。A non-aqueous electrolyte secondary battery using a positive electrode for a liquid secondary battery.
JP17426999A 1999-06-21 1999-06-21 Method for producing positive electrode for non-aqueous electrolyte secondary battery Expired - Fee Related JP3363840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17426999A JP3363840B2 (en) 1999-06-21 1999-06-21 Method for producing positive electrode for non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17426999A JP3363840B2 (en) 1999-06-21 1999-06-21 Method for producing positive electrode for non-aqueous electrolyte secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP20336390A Division JP3197553B2 (en) 1990-07-31 1990-07-31 Non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JP2000030712A JP2000030712A (en) 2000-01-28
JP3363840B2 true JP3363840B2 (en) 2003-01-08

Family

ID=15975708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17426999A Expired - Fee Related JP3363840B2 (en) 1999-06-21 1999-06-21 Method for producing positive electrode for non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3363840B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004077467A1 (en) 2003-02-25 2004-09-10 Zeon Corporation Process for producing electrode for electrochemical device

Also Published As

Publication number Publication date
JP2000030712A (en) 2000-01-28

Similar Documents

Publication Publication Date Title
JP4172423B2 (en) Positive electrode active material and non-aqueous electrolyte secondary battery
EP1739768A1 (en) Lithium ion secondary battery and charge/discharge controlling system thereof
CN1126185C (en) Electrode for nonaqueous electrolyte battery
US9484599B2 (en) Non-aqueous electrolyte secondary battery
EP3660956A1 (en) Negative electrode for lithium secondary battery, and lithium secondary battery comprising same
KR101874159B1 (en) Preparing methode of electrode for lithium secondary battery and electrode for lithium secondary battery thereby
JP2001176558A (en) Non-aqueous electrolyte secondary battery
JPH09115506A (en) Anode for rechargeable lithium electrochemical battery and manufacture thereof
US20220158155A1 (en) Electrode Drying Method
JP4994628B2 (en) Nonaqueous electrolyte secondary battery
JP2002319386A (en) Nonaqueous electrolyte secondary battery
JPH10214640A (en) Battery
JP3197553B2 (en) Non-aqueous secondary battery
JP2003151558A (en) Non-aqueous electrolyte secondary battery
JPH06349493A (en) Secondary battery
KR20140070258A (en) Cathode active material composition, and cathode and lithium secondary battery comprising the same
JP2017010716A (en) Lithium ion battery and lithium ion battery system
JPH1131508A (en) Nonaqueous electrolyte secondary battery
WO2020202307A1 (en) Lithium ion secondary battery
JP3363840B2 (en) Method for producing positive electrode for non-aqueous electrolyte secondary battery
JPH0927316A (en) Lithium secondary battery
JP6766863B2 (en) Lithium ion secondary battery
JP3541481B2 (en) Non-aqueous electrolyte secondary battery
JPH0582131A (en) Nonaqueous type electrolytic secondary battery
JPH11273726A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071025

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081025

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081025

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091025

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees