JP3346365B2 - Method of manufacturing aluminum matrix composite coated steel pipe - Google Patents

Method of manufacturing aluminum matrix composite coated steel pipe

Info

Publication number
JP3346365B2
JP3346365B2 JP2000026091A JP2000026091A JP3346365B2 JP 3346365 B2 JP3346365 B2 JP 3346365B2 JP 2000026091 A JP2000026091 A JP 2000026091A JP 2000026091 A JP2000026091 A JP 2000026091A JP 3346365 B2 JP3346365 B2 JP 3346365B2
Authority
JP
Japan
Prior art keywords
aluminum
matrix composite
powder
tube
steel pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000026091A
Other languages
Japanese (ja)
Other versions
JP2001212612A (en
Inventor
浩明 西尾
隆 能登
和哉 藪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2000026091A priority Critical patent/JP3346365B2/en
Publication of JP2001212612A publication Critical patent/JP2001212612A/en
Application granted granted Critical
Publication of JP3346365B2 publication Critical patent/JP3346365B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Protection Of Pipes Against Damage, Friction, And Corrosion (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、都市ごみ、下水汚
泥、製紙スラツジ等の各種産業廃棄物または石炭の燃焼
排ガスから、水蒸気や空気等の流体を介して熱エネルギ
ーを回収して発電を行う熱回収・利用システムにおける
熱交換器用伝熱管に主として使用するアルミニウムマト
リックス複合材料被覆鋼管の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention generates power by recovering thermal energy from various industrial wastes such as municipal solid waste, sewage sludge, papermaking sludge or the combustion exhaust gas of coal through a fluid such as steam or air. The present invention relates to a method for producing an aluminum matrix composite material coated steel pipe mainly used for a heat exchanger tube for a heat exchanger in a heat recovery and utilization system.

【0002】[0002]

【従来の技術】省エネルギーの観点から、都市ごみ、下
水汚泥、製紙スラツジ等の各種産業廃棄物または石炭の
燃焼廃熱の効率的な回収は極めて重要であり、より高温
の燃焼排ガスからより高温の高圧水蒸気を回収して発電
効率を上げることが望まれる。すなわち、500℃以上
で100気圧以上の水蒸気が得られれば30%を超える
高い発電効率が期待できる。しかしながら、前記燃料を
燃焼すると、ガス状あるいはダスト状の腐食性物質を含
む排ガスが発生する。例えば、都市ごみ燃焼排ガスは、
HCl等の塩化物ガス、H2S、SO2等の硫黄化合物ガ
ス、NaCl、KCl、CaCl2、Na2SO4等の塩
を含んでいる。このため、燃焼排ガスから熱回収を行う
廃熱ボイラーの熱交換器用伝熱管は、使用中に腐食が進
行する。腐食損傷を抑制するために、公知のCr鋼、N
i−Cr鋼からなる伝熱管においては、回収できる水蒸
気の温度は、通常、300℃以下に制限される。このた
め、15%程度の低い発電効率に留まることとなる。
2. Description of the Related Art From the viewpoint of energy saving, it is extremely important to efficiently recover various industrial wastes such as municipal solid waste, sewage sludge, and paper sludge, or the combustion waste heat of coal. It is desired to increase power generation efficiency by collecting high-pressure steam. That is, a high power generation efficiency exceeding 30% can be expected if water vapor of 100 atm or more is obtained at 500 ° C. or more. However, when the fuel is burned, exhaust gas containing gaseous or dusty corrosive substances is generated. For example, municipal waste flue gas
It contains chloride gas such as HCl, sulfur compound gas such as H 2 S and SO 2 , and salts such as NaCl, KCl, CaCl 2 and Na 2 SO 4 . Therefore, corrosion of the heat exchanger tubes for the heat exchanger of the waste heat boiler that recovers heat from the combustion exhaust gas progresses during use. Known Cr steel, N
In a heat transfer tube made of i-Cr steel, the temperature of steam that can be recovered is usually limited to 300C or lower. Therefore, the power generation efficiency is as low as about 15%.

【0003】伝熱管の耐食性を改善するために、鋼管表
面にAl、Si、Cr等の金属の被覆を施すことが知ら
れている。この方法は、拡散浸透、溶融メッキ、溶射等
によって母材と前記金属を接触後、反応させて膜厚0.
2〜1.0mmのFe−Al、Fe−Si、Fe−Cr
の合金皮膜を形成するものである。鉄合金皮膜は母材と
の密着性が良好であり、使用時に酸化物皮膜となって材
料の腐食抵抗を高めるとされている。
[0003] In order to improve the corrosion resistance of the heat transfer tube, it is known to coat the surface of the steel tube with a metal such as Al, Si or Cr. In this method, the base material and the metal are brought into contact with each other by diffusion infiltration, hot-dip plating, thermal spraying, or the like, and then reacted to form a film having a thickness of 0.1 mm.
2-1.0 mm Fe-Al, Fe-Si, Fe-Cr
To form an alloy film. It is said that the iron alloy film has good adhesion to the base material and becomes an oxide film when used to increase the corrosion resistance of the material.

【0004】また、特開昭56−75562号公報で
は、耐熱鋼、純銅等の表面にCoまたはCrをメッキ
し、次にAlを拡散させて、Co−Al、Cr−Alの
合金皮膜を形成させることにより、高温状態下での酸化
損耗を減少させる金属の耐熱用表面処理方法を開示して
いる。特開昭56−81667号公報は、耐熱鋼、純銅
等の表面にNiをメッキし、次にAlを拡散させて、N
i−Alの合金皮膜を形成させる。Ni−Al合金皮膜
は、NiとAlの比が70:30程度が最も耐熱性に富
むとしている。しかしながら、このような合金皮膜の耐
食性はいずれも前記腐食性環境下では不十分である。
In Japanese Patent Application Laid-Open No. 56-75562, Co or Cr is plated on the surface of heat-resistant steel, pure copper or the like, and then Al is diffused to form an alloy film of Co-Al or Cr-Al. A method for heat-resistant surface treatment of metal, which reduces oxidative wear under high-temperature conditions. Japanese Patent Application Laid-Open No. 56-81667 discloses that a surface of heat-resistant steel, pure copper, or the like is plated with Ni, and then Al is diffused.
An i-Al alloy film is formed. The Ni—Al alloy film has the highest heat resistance when the ratio of Ni to Al is about 70:30. However, the corrosion resistance of such an alloy film is insufficient in the corrosive environment.

【0005】一方、鉄合金皮膜に比較して腐食抵抗に優
れたセラミック皮膜を施す方法も知られている。特開平
10一274401号公報は、耐熱金属からなるボイラ
ーチューブの外表面を、溶射、物理的蒸着、化学的蒸着
によりセラミック皮膜を施す方法を開示している。塩類
と濡れ難く卓抜した高温腐食性能を示すセラミックスに
より腐食抵抗を高めることができるとしている。皮膜を
形成する代表的なセラミックスとしてAl23、SiO
2、Cr23ZrO 2 、MgAl24、ZrSiO4
CaZrO3等が知られている。しかしながら、これら
のセラミックスの熱膨張率は母材の鋼に比べて著しく小
さいので、加熱冷却の繰り返しによってセラミック皮膜
には剥離、亀裂が生じる。この現象は皮膜が厚いほど顕
著となる。このため、皮膜の厚さは、通常、0.2mm
以下に制約される。このような薄いセラミック皮膜で
は、腐食性のガスおよび塩の母材金属への侵入を長期間
にわたって阻止することは困難となる。
On the other hand, there is also known a method of applying a ceramic film having better corrosion resistance than an iron alloy film. Japanese Patent Application Laid-Open No. H10-274401 discloses a method of applying a ceramic coating to the outer surface of a boiler tube made of a heat-resistant metal by thermal spraying, physical vapor deposition, or chemical vapor deposition. It is said that corrosion resistance can be increased by ceramics that show excellent high-temperature corrosion performance that is hard to wet with salts. Al 2 O 3 and SiO are typical ceramics for forming a film.
2 , Cr 2 O 3 , ZrO 2 , MgAl 2 O 4 , ZrSiO 4 ,
CaZrO 3 and the like are known. However, since the thermal expansion coefficient of these ceramics is significantly smaller than that of the base steel, the ceramic coating is peeled or cracked by repeated heating and cooling. This phenomenon becomes more remarkable as the film is thicker. For this reason, the thickness of the film is usually 0.2 mm
It is restricted to the following. With such a thin ceramic coating, it is difficult to prevent corrosive gases and salts from entering the base metal for a long period of time.

【0006】[0006]

【発明が解決しようとする課題】上記のように、熱交換
器用伝熱管に高耐食性皮膜を形成する従来の方法では、
加熱、冷却の繰り返しで破損することのない信頼性の高
い厚い膜を施すことは困難であった。
As described above, in the conventional method of forming a highly corrosion-resistant coating on a heat exchanger tube for a heat exchanger,
It has been difficult to form a highly reliable thick film that is not damaged by repeated heating and cooling.

【0007】本発明は、かかる事情に鑑みてなされたも
のであって、熱交換器用伝熱鋼管の表面に高耐食性厚膜
を形成することができるアルミニウムマトリックス複合
材料被覆鋼管の製造方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides a method of manufacturing an aluminum matrix composite material coated steel pipe capable of forming a high corrosion resistant thick film on the surface of a heat transfer steel pipe for a heat exchanger. The purpose is to:

【0008】[0008]

【課題を解決するための手段】本発明者等は、金属アル
ミニウムを連続相とし、選ばれたセラミック粒子または
/および金属粒子、すなわち選ばれた無機物粒子を分散
相とするアルミニウムマトリックス複合材料からなる厚
膜を熱交換器用伝熱鋼管の外表面に形成する方法を見い
出し、該アルミニウムマトリックス複合材料が極めて優
れた耐食性を示すことを確認して、本発明を完成するに
到った。
The present inventors have made an aluminum matrix composite material having metallic aluminum as a continuous phase and selected ceramic particles and / or metal particles, that is, selected inorganic particles as a dispersed phase. The present inventors have found a method for forming a thick film on the outer surface of a heat transfer steel tube for a heat exchanger, and have confirmed that the aluminum matrix composite material exhibits extremely excellent corrosion resistance. Thus, the present invention has been completed.

【0009】[0009]

【0010】本発明は、第に、外表面にセラミック皮
膜を施した鋼製内管の外周にアルミニウム製外管を配
し、該両管の間隙に無横材料粉末を充填して粉末充填層
を形成し、該構造体を絶対圧力1MPa以下の非酸化性
ガス雰囲気で670〜1200℃の温度に加熱してアル
ミニウム製外管を溶融体となして前記粉末充填層中へ溶
浸させることを特徴とするアルミニウムマトリックス複
合材料被覆鋼管の製造方法である。
According to the present invention, first , an outer tube made of aluminum is arranged on the outer periphery of a steel inner tube having a ceramic coating on the outer surface, and a gap between the two tubes is filled with a non-transverse material powder to fill the powder. Forming a layer, heating the structure to a temperature of 670 to 1200 ° C. in a non-oxidizing gas atmosphere having an absolute pressure of 1 MPa or less, forming an aluminum outer tube into a molten material, and infiltrating into the powder packed layer. A method for producing a steel pipe coated with an aluminum matrix composite material, characterized in that:

【0011】本発明は、第に、外表面にセラミック皮
膜を施した鋼製内管の外周にアルミニウム製外管を配
し、該両管の間隙にAlまたは/およびAlNを50w
t%以上含む無機材料粉末を充填して粉末充填層を形成
し、該構造体を絶対圧力0.1〜1MPaの窒化性ガス
雰囲気で670〜900℃の温度に加熱してアルミニウ
ム製外管を溶融体となして前記粉末充填層中へ溶浸させ
るとともに、前記無機材料粉末またはアルミニウム製外
管由来の金属Alの1〜50%を窒化させることを特徴
とするアルミニウムマトリックス複合材料被覆鋼管の製
造方法である。
According to the present invention, secondly , an aluminum outer tube is disposed around the outer periphery of a steel inner tube having an outer surface provided with a ceramic coating, and Al or / and AlN is filled with 50 watts between the two tubes.
An inorganic material powder containing at least t% is filled to form a powder-filled layer, and the structure is heated to a temperature of 670 to 900 ° C. in a nitriding gas atmosphere having an absolute pressure of 0.1 to 1 MPa to form an aluminum outer tube. A method for producing an aluminum matrix composite material-coated steel pipe, comprising infiltrating into the powder-packed layer as a melt and nitriding 1 to 50% of the inorganic material powder or metal Al derived from an aluminum outer pipe. Is the way.

【0012】本発明は、第に、外表面にセラミック皮
膜を施した鋼製内管の外周にアルミニウム製外管を配
し、該両管の間隙にAlまたは/およびAlNを50w
t%以上含む無機材料紛末を充填して粉末充填層を形成
し、該構造体を絶対圧力0.1〜1MPaの窒化性ガス
雰囲気で670〜900℃の温度に加熱してアルミニウ
ム製外管を溶融体となして前記粉末充填層中へ溶浸させ
るとともに、前記無機材料粉末またはアルミニウム製外
管由来の金属Alの1〜50%を窒化させてのち、酸化
性ガス雰囲気で500〜800℃の温度に加熱すること
を特徴とするアルミニウムマトリックス複合材料被覆鋼
管の製造方法である。
In the present invention, thirdly , an aluminum outer tube is disposed on the outer periphery of a steel inner tube having a ceramic coating on the outer surface, and 50 watts of Al or / and AlN are placed between the two tubes.
An aluminum outer tube is formed by filling an inorganic material powder containing at least t% or more to form a powder packed layer and heating the structure to a temperature of 670 to 900 ° C. in a nitriding gas atmosphere at an absolute pressure of 0.1 to 1 MPa. Into a molten material and infiltrate into the powder-packed layer, and nitrify 1 to 50% of the inorganic material powder or metal Al derived from the outer tube made of aluminum, and then 500 to 800 ° C. in an oxidizing gas atmosphere. A method for producing an aluminum matrix composite material-coated steel pipe characterized by heating to a temperature of:

【0013】本発明は、第に、鋼製内管がCr鋼、C
r−Ni鋼のなかから選ばれた材料で構成されることを
特徴とする請求項1から請求項のいずれか一に記載の
アルミニウムマトリックス複合材料被覆鋼管の製造方法
である。
Fourth , the present invention relates to a steel inner pipe made of Cr steel, C
The method for producing a steel pipe coated with an aluminum matrix composite material according to any one of claims 1 to 3 , wherein the method is made of a material selected from r-Ni steel.

【0014】本発明は、第に、鋼製内管の外表面に施
すセラミック皮膜が、肉厚5〜200μmであって、A
23、Cr23、SiO2、SiC、Si34、BN
のなかから選ばれた1種または複数のセラミック材料を
50wt%以上含む無機材料から構成されることを特徴
とする請求項から請求項のいずれか一に記載のアル
ミニウムマトリックス複合材料被覆鋼管の製造方法であ
る。
Fifth , according to the present invention, the ceramic coating applied to the outer surface of the steel inner pipe has a thickness of 5 to 200 μm,
l 2 O 3 , Cr 2 O 3 , SiO 2 , SiC, Si 3 N 4 , BN
Aluminum matrix composite coated steel pipe as claimed in any one of claims 4, characterized in that they are composed of an inorganic material containing more than 50 wt% of one or more ceramic materials selected from among It is a manufacturing method.

【0015】本発明は、第に、アルミニウム製外管が
80wt%以上のAlを含有することを特徴とする請求
項1から請求項のいずれか一に記載のアルミニウムマ
トリックス複合材料被覆鋼管の製造方法である。
Sixth , the present invention provides the aluminum matrix composite material-coated steel pipe according to any one of claims 1 to 5 , wherein the aluminum outer pipe contains 80 wt% or more of Al. It is a manufacturing method.

【0016】本発明は、第に、紛末充填層がAl、S
i、Cr、AlN、Si34、Cr2Nのなかから選ば
れた1種または複数の無機材料を50wt%以上含む無
機材料から構成されることを特徴とする請求項1から請
求項のいずれか一に記載のアルミニウムマトリックス
複合材料被覆鋼管の製造方法である。
[0016] Seventh , the present invention provides a method for manufacturing a semiconductor device in which the powder filling layer is made of Al, S
i, Cr, AlN, Si 3 N 4, Cr 2 N claim from claim 1 to one or more inorganic materials selected from among, characterized in that it is composed of an inorganic material containing more than 50 wt% 6 The method for producing an aluminum matrix composite material-coated steel pipe according to any one of the above items.

【0017】本発明は、第に、アルミニウム製外管の
一部が溶浸処理後残留して皮膜を形成することを特徴と
する請求項1から請求項のいずれか一に記載のアルミ
ニウムマトリックス複合材料被覆鋼管の製造方法であ
る。
The present invention, in the eighth, aluminum according to claims 1, part of the aluminum outer pipe and forming a film remaining after infiltration process to any one of claims 7 This is a method for producing a matrix composite material coated steel pipe.

【0018】本発明は、第に、鋼製内管とアルミニウ
ム製外管がともに円管であることを特徴とする請求頻1
から請求項のいずれか一に記載のアルミニウムマトリ
ックス複合材料被覆鋼管の製造方法である。
Ninth aspect of the present invention is that the steel inner pipe and the aluminum outer pipe are both circular pipes.
A method for producing an aluminum matrix composite material-coated steel pipe according to any one of claims 1 to 8 .

【0019】本発明において、鋼製内管は炭素鋼、Cr
鋼、Cr−Ni鋼のいずれでもよいが、耐熱性の観点か
らCr鋼、Cr−Ni鋼がより好ましい。Cr鋼として
は5〜30wt%Crを含む公知の材料が適用できる。
Cr−Ni鋼としては10〜30wt%Cr、8〜35
wt%Niを含む公知の材料が適用できる。これらは、
Mo、Ti、Si、Al、Nb、Cb、Ta等を含んで
もよい。その中でも、18wt%Cr−8wt%Ni鋼
はもっとも代表的な材料であり、本発明に好適な材料で
ある。
In the present invention, the steel inner pipe is made of carbon steel, Cr
Any of steel and Cr-Ni steel may be used, but from the viewpoint of heat resistance, Cr steel and Cr-Ni steel are more preferable. Known materials containing 5 to 30 wt% Cr can be used as the Cr steel.
10 to 30 wt% Cr, 8 to 35 as Cr-Ni steel
A known material containing wt% Ni can be applied. They are,
Mo, Ti, Si, Al, Nb, Cb, Ta or the like may be included. Among them, 18 wt% Cr-8 wt% Ni steel is the most typical material, and is a suitable material for the present invention.

【0020】前記鋼製内管の外部に形成されるアルミニ
ウムマトリックス複合材料厚膜の構成成分であるAl
が、鋼製内管の母材中へ拡散してFe一Al系の金属間
化合物が生成すると、界面に沿う亀裂発生をもたらし、
鋼製内管とアルミニウムマトリックス複合材料厚膜はこ
の亀裂面で摺動が可能となり、加熱による膨張と冷却に
よる収縮が独立に行われる。これでもよいが、しかし、
これが起点となってアルミニウムマトリックス複合材料
厚膜中に亀裂が進展することがある。したがって、かか
る拡散接合を防止することがより好ましい。そこで、本
発明では、鋼製内管ともアルミニウムマトリックス複合
材料厚膜とも反応し難い薄いセラミック皮膜を鋼製内管
の外表面に施すのである。すなわち、本発明におけるセ
ラミック皮膜は、鋼製内管ともアルミニウムマトリック
ス複合材料厚膜とも反応し難い薄いセラミック皮膜を意
味する。
Al, which is a component of the aluminum matrix composite thick film formed outside the steel inner tube,
However, when it diffuses into the base material of the steel inner tube to form an Fe-Al-based intermetallic compound, it causes cracking along the interface,
The steel inner tube and the aluminum matrix composite thick film can slide on the cracked surface, and the expansion by heating and the contraction by cooling are performed independently. This is fine, but
This may be the starting point for cracks to develop in the aluminum matrix composite thick film. Therefore, it is more preferable to prevent such diffusion bonding. Therefore, in the present invention, a thin ceramic coating which is hardly reacted with the steel inner tube and the aluminum matrix composite material thick film is applied to the outer surface of the steel inner tube. That is, in the present invention,
Lamic coating is aluminum matrix for both steel inner tube
A thin ceramic coating that does not easily react with thick composite
To taste.

【0021】このようなセラミック皮膜材料として、酸
化物では、まず、Al23が挙げられる。Al23はF
eともAlとも反応しない。次に、Cr23、Si
2、ZrO2、TiO2、MgOが挙げられる。これら
の酸化物はAlと比較的反応し難くFeとは反応しな
い。ここに挙げた酸化物同士の複合酸化物でもよい。例
えば、3Al23・2SiO2、Al23・TiO2、M
gO・Al23、MgO・Cr23、Zr23・SiO
2、2MgO・SiO2が挙げられる。Al23はベーマ
イト・ゾルを塗布して皮膜形成してもよい。SiO2
ケイ酸メチルやケイ酸エチルの加水分解液、水ガラス等
のSiO2前駆体を塗布してもよい。また、酸化物紛末
を水ガラス等の無機バインダーで結合してもよい。
[0021] As such a ceramic coating material, the oxides, first, include Al 2 O 3. Al 2 O 3 is F
Neither e nor Al react. Next, Cr 2 O 3 , Si
O 2 , ZrO 2 , TiO 2 and MgO are mentioned. These oxides are relatively hard to react with Al and do not react with Fe. A composite oxide of the oxides listed here may be used. For example, 3Al 2 O 3 .2SiO 2 , Al 2 O 3 .TiO 2 , M
gO.Al 2 O 3 , MgO.Cr 2 O 3 , Zr 2 O 3 .SiO
2 , 2MgO.SiO 2 . Al 2 O 3 may be formed into a film by applying a boehmite sol. SiO 2 may be coated with a hydrolyzed solution of methyl silicate or ethyl silicate, or an SiO 2 precursor such as water glass. Further, the oxide powder may be bound with an inorganic binder such as water glass.

【0022】炭化物ではSiCが挙げられる。SiC粉
末を無機バインダーで結合した皮膜でもよいが、特に、
有機ケイ素化合物の誘導体であるポリカルボシラン溶解
液を鋼製内管の外表面に塗布し、乾燥、熱分解して得ら
れるSiC皮膜は好適である。
The carbide includes SiC. Although a film obtained by bonding SiC powder with an inorganic binder may be used,
A SiC film obtained by applying a polycarbosilane solution, which is a derivative of an organosilicon compound, to the outer surface of a steel inner tube, drying and thermally decomposing is preferable.

【0023】窒化物ではSi34、BNが挙げられる。
これらは粉末と無機バインダーの組み合わせで皮膜を形
成してもよいし、液状の前駆体を適用してもよい。例え
ば、Si34の前駆体としてポリシラザンが挙げられ
る。
Examples of the nitride include Si 3 N 4 and BN.
These may form a film with a combination of a powder and an inorganic binder, or may be a liquid precursor. For example, polysilazane is a precursor of Si 3 N 4 .

【0024】前記のセラミック皮膜材料のなかで、特
に、Al23、Cr23、SiO2、SiC、Si
34、BNが好適である。このなかで、BNはもっとも
好適である。なぜなら、BNはFe、Alと反応しない
だけでなく、潤滑性があり、熱膨張率の異なる鋼製内管
とアルミニウムマトリックス複合材料厚膜の接触界面の
摺動抵抗を軽減するからである。これらのセラミック皮
膜材料は前述の複数の成分を組み合わせてもよく、ま
た、50wt%未満に限定すれば、前述しなかったセラ
ミック材料と組み合わせてもよい。
Among the above ceramic coating materials, in particular, Al 2 O 3 , Cr 2 O 3 , SiO 2 , SiC, Si
3 N 4 and BN are preferred. Of these, BN is most preferred. This is because BN not only does not react with Fe and Al, but also has lubricity and reduces the sliding resistance at the contact interface between the steel inner tube having a different coefficient of thermal expansion and the aluminum matrix composite material thick film. These ceramic coating materials may be used in combination with a plurality of the above-mentioned components, or may be used in combination with a ceramic material not described above if the content is limited to less than 50 wt%.

【0025】セラミック皮膜の肉厚は5〜200μmと
することが好ましい。これは、5μm未満では十分な被
覆が困難であり、皮膜の信頼性に欠けるからである。ま
た、200μmを越えると、皮膜が弾性変形によって鋼
製内管の膨張、収縮の繰り返しに追従することが困難と
なり、セラミック皮膜に損傷を発生させ易くなるからで
ある。
The thickness of the ceramic film is preferably 5 to 200 μm. This is because if the thickness is less than 5 μm, it is difficult to sufficiently coat the film, and the film lacks reliability. On the other hand, if it exceeds 200 μm, it becomes difficult for the coating to follow the expansion and contraction of the steel inner tube due to elastic deformation, and the ceramic coating is easily damaged.

【0026】アルミニウム製外管は80wt%以上のA
lを含有することが好ましい。耐食性に優れたAl23
皮膜を形成するには80wt%以上のAlを含有するこ
とが好ましい。すなわち、20wt%未満であれば、A
l以外の元素を含んでもよく、例えば、Si、Zn、M
g、Mnが挙げられる。
The outer tube made of aluminum has an A content of 80% by weight or more.
It is preferred to contain l. Al 2 O 3 with excellent corrosion resistance
To form a film, it is preferable to contain 80 wt% or more of Al. That is, if it is less than 20 wt%, A
l may be included, for example, Si, Zn, M
g and Mn.

【0027】鋼製内管とアルミニウム製外管の間隙で構
成される空間に金属または/およびセラミックスの粉末
すなわち無機材料粉末を充填して粉末充填層を形成する
のであるが、この粉末充填層はアルミニウム製外管から
溶融Alの浸透を許容する必要がある。充填粉末は耐食
性に優れ、かつ、溶融Alと濡れることが要求される。
この観点より、Al、Si、Cr、AlN、Si34
Cr2Nが好適である。さらに、AlとAlNはもっと
も好適である。これらの無機材料を50wt%以上配合
すれば、溶融Alは粉末充填層の空隙への浸透、すなわ
ち含浸が起き易くなるのである。すなわち、50wt%
未満であれば、前記無機材料以外の無機材料を含んでも
よく、例えば、Mo、Ti、Nb、Cb、Ta、Mg等
の金属が挙げられる。また、Al23、Cr23、Si
2、ZrO2、TiO2、MgO、3Al23・2Si
2、Al23・TiO2、MgO・Al23、MgO・
Cr23、Zr23・SiO2、2MgO・SiO2等の
酸化物、TiN、ZrN、BN等の窒化物、AlON、
SiAlONで総称される多数の酸窒化物、SiC、C
32、TiC、ZrC等の炭化物、CrB、Ti
2、ZrB2等のホウ化物、MoSi2、WSi2等のケ
イ化物が挙げられる。
The space defined by the gap between the steel inner tube and the aluminum outer tube is filled with a metal or / and ceramic powder, that is, an inorganic material powder, to form a powder packed layer. It is necessary to allow molten aluminum to penetrate from the aluminum outer tube. The filling powder is required to have excellent corrosion resistance and to be wet with the molten Al.
From this viewpoint, Al, Si, Cr, AlN, Si 3 N 4 ,
Cr 2 N is preferred. Further, Al and AlN are most preferred. If these inorganic materials are blended in an amount of 50 wt% or more, the molten Al easily penetrates into the voids of the powder-packed layer, that is, impregnation occurs easily. That is, 50 wt%
If it is less than the above, an inorganic material other than the inorganic material may be included, and examples thereof include metals such as Mo, Ti, Nb, Cb, Ta, and Mg. Al 2 O 3 , Cr 2 O 3 , Si
O 2, ZrO 2, TiO 2 , MgO, 3Al 2 O 3 · 2Si
O 2 , Al 2 O 3 .TiO 2 , MgO.Al 2 O 3 , MgO.
Cr 2 O 3, Zr 2 O 3 · SiO 2, 2MgO · SiO 2 oxide such, TiN, ZrN, nitrides such as BN, AlON,
Numerous oxynitrides, SiC, C, collectively referred to as SiAlON
carbides such as r 3 C 2 , TiC, ZrC, CrB, Ti
Borides such as B 2 and ZrB 2 and silicides such as MoSi 2 and WSi 2 are mentioned.

【0028】溶融Alの粉末充填層への浸透、すなわち
溶浸を首尾よく進行させるには、粉末充填層内の空隙を
非酸化性雰囲気にする必要がある。もし、雰囲気ガス中
にAlを酸化させるに十分なO2、H2O、CO2等の酸
化性成分が存在すると、生成するAl23が溶融Alの
浸透を妨げるのである。したがって、真空ポンプで排気
して絶対圧力1Pa以下とするか、絶対圧力1MPa以
下の不活性ガスArまたは還元性ガスH2に置換する必
要がある。また、Alの窒化を促す窒化性ガスでもよ
い。この場合、生成するAlNが空隙の減少に寄与す
る。また、1MPaを越える高い庄カは、ガスの存在が
Alの十分な浸透を阻害するので好ましくない。系全体
の温度は670〜1200℃が好ましい。すなわち、A
lの融点以上であって、鋼製内管の力学的特性を損なう
ことのない温度に上限を抑える必要から制限されるので
ある。
In order for the penetration of molten Al into the powder-packed layer, that is, the infiltration to proceed successfully, the voids in the powder-packed layer must have a non-oxidizing atmosphere. If there are sufficient oxidizing components such as O 2 , H 2 O, and CO 2 in the atmosphere gas to oxidize Al, the generated Al 2 O 3 prevents the penetration of the molten Al. Therefore, it is necessary to evacuate with a vacuum pump to an absolute pressure of 1 Pa or less, or to replace with an inert gas Ar or a reducing gas H 2 having an absolute pressure of 1 MPa or less. Further, a nitriding gas that promotes nitriding of Al may be used. In this case, the generated AlN contributes to the reduction of the void. A high pressure exceeding 1 MPa is not preferable because the presence of gas impedes the sufficient penetration of Al. The temperature of the entire system is preferably from 670 to 1200 ° C. That is, A
It is limited by the need to limit the upper limit to a temperature which is not lower than the melting point of 1 and does not impair the mechanical properties of the steel inner tube.

【0029】Alまたは/およびAlNを50wt%以
上含む無機材料粉末を充填して粉末充填層を形成し、窒
化性ガス雰囲気で溶融Alを浸透させる場合、窒化の発
熱を伴うので、温度、圧力とも低めに抑制することが必
要である。したがって、絶対圧力で0.1〜1MPa、
雰囲気温度670〜900℃が好ましい。さもないと、
処理物が異常加熱されてアルミニウムが噴き出したり、
鋼製内管の変形や溶融をもたらすからである。
When a powder-filled layer is formed by filling an inorganic material powder containing 50 wt% or more of Al and / or AlN and infiltrating molten Al in a nitriding gas atmosphere, heat generation of nitriding accompanies both temperature and pressure. It is necessary to keep it low. Therefore, the absolute pressure is 0.1 to 1 MPa,
The atmosphere temperature is preferably 670 to 900 ° C. Otherwise,
The treated material is abnormally heated and aluminum is blown out,
This is because it causes deformation and melting of the steel inner pipe.

【0030】粉末充填層の空隙に浸透した溶融Alは連
続体、すなわちアルミニウムマトリックスを構成する。
溶浸可能量は多数の因子により影響されて決まるが、こ
の溶浸可能量をやや上回る量のアルミニウム製外管を適
用することによって、アルミニウムマトリックス複合材
料被覆鋼管の外表面にAlを残留させてAlを主成分と
する緻密なAl皮膜を形成することができる。窒化性雰
囲気の場合、このAl皮膜はAlとAlNの両成分を含
む。該Al皮膜は外部からの腐食性ガスの侵入を阻止す
るのに有効に働くので好ましい。
The molten Al permeated into the voids of the powder-filled layer forms a continuous body, that is, an aluminum matrix.
The amount of infiltration that can be determined depends on a number of factors, but by applying an amount of aluminum outer tube that slightly exceeds this amount, aluminum can be left on the outer surface of the aluminum matrix composite-coated steel tube. A dense Al film containing Al as a main component can be formed. In the case of a nitriding atmosphere, this Al film contains both components of Al and AlN. The Al film is preferable because it works effectively to prevent invasion of corrosive gas from the outside.

【0031】前述のいくつかの方法により得られるアル
ミニウムマトリックス複合材料被覆鋼管は、あらかじめ
酸化性ガス雰囲気で加熱処理することによって厚い酸化
皮膜が生成し、耐食性が向上するので好ましい。この処
理は500〜800℃で実施することが望ましい。50
0℃未満では酸化の進行は不十分であり、また、800
℃を越えると溶融Alの噴き出しが激しく起きる。この
噴き出しは内部に通じる開気孔を表面で閉塞させる効果
はあるものの、一方で、内部の気孔が増加する欠点があ
るからである。
The aluminum matrix composite material-coated steel pipe obtained by any of the above-mentioned methods is preferable because a thick oxide film is formed by heat treatment in an oxidizing gas atmosphere in advance, and the corrosion resistance is improved. This treatment is desirably performed at 500 to 800 ° C. 50
If the temperature is lower than 0 ° C., the progress of oxidation is insufficient.
When the temperature exceeds ℃, the ejection of molten Al occurs violently. Although this blowing has the effect of closing the open pores communicating with the inside on the surface, it has the disadvantage that the number of pores inside increases.

【0032】[0032]

【発明の実施の形態】アルミニウムマトリックス複合材
料被覆鋼管の断面形状は鋼製内管とアルミニウム製外管
の断面形状の選択により定まる。すなわち、両者をとも
に四角管とすれば四角管状アルミニウムマトリックス複
合材料被覆鋼管が得られ、また、両者をともに円管とす
れば円管状アルミニウムマトリックス複合材料被覆鋼管
が得られる。
BEST MODE FOR CARRYING OUT THE INVENTION The cross-sectional shape of an aluminum matrix composite coated steel pipe is determined by the selection of the cross-sectional shape of an inner steel pipe and an outer aluminum pipe. That is, if both are square tubes, a square tubular aluminum matrix composite material-coated steel tube is obtained, and if both are circular tubes, a circular tubular aluminum matrix composite material-coated steel tube is obtained.

【0033】図1〜図6に基づいて、四角管状アルミニ
ウムマトリックス複合材料被覆鋼管の製造工程を説明す
る。図1と図2は、それぞれ、溶浸処理前の処理物の型
横断方向切断面と長手方向切断面を示す。まず、アルミ
ニウム製外管2をその外面形状と同一の内面形状を有す
る固定容器1に収納する。固定容器1は溶浸温度までの
アルミニウム製外管2の保形と溶融Alとの非反応性が
要求される。固定容器1がないとアルミニウム製外管2
は溶浸に有効に消費されず、多くが流れ落ちて塊となっ
て集積することとなる。したがって、固定容器1の適用
が好ましい。また、溶融Alが固定容器1の内面で該容
器材料と反応すると、溶浸固化後の処理物が固定容器1
と固着して分離が困難となるだけでなく、固定容器1の
繰り返し使用が困難となる。したがって、該容器1は溶
融Alと反応し難い材料で構成することが好ましい。例
えば、Al23、ZrO2、Al23・TiO2、MgO
・Al23等の酸化物、TiB2、ZrB2、CrB、C
rB2等のホウ化物、Si34、BN等の窒化物、Si
C等の炭化物が材料として挙げられる。また、固定容器
1を黒鉛で構成し、溶融Alと接触する内面に上述のセ
ラミックスを主成分とする皮膜を施してもよい。
The manufacturing process of the square tubular aluminum matrix composite material coated steel pipe will be described with reference to FIGS. FIG. 1 and FIG. 2 show a cross section in a mold cross direction and a cross section in a longitudinal direction of a processed product before infiltration treatment, respectively. First, the aluminum outer tube 2 is housed in the fixed container 1 having the same inner surface shape as its outer surface shape. The fixed container 1 is required to maintain the shape of the aluminum outer tube 2 up to the infiltration temperature and to have non-reactivity with molten Al. Without fixed container 1, aluminum outer tube 2
Is not effectively consumed for infiltration, and much of it flows down and collects as a lump. Therefore, application of the fixed container 1 is preferable. Further, when the molten Al reacts with the material of the container on the inner surface of the fixed container 1, the processed material after infiltration and solidification becomes fixed container 1.
Not only makes it difficult to separate, but also makes it difficult to use the fixed container 1 repeatedly. Therefore, it is preferable that the container 1 is made of a material that does not easily react with molten Al. For example, Al 2 O 3 , ZrO 2 , Al 2 O 3 .TiO 2 , MgO
Oxides such as Al 2 O 3 , TiB 2 , ZrB 2 , CrB, C
Borides such as rB 2 , nitrides such as Si 3 N 4 and BN, Si
Carbides such as C are examples of the material. Further, the fixed container 1 may be made of graphite, and the above-mentioned coating mainly composed of ceramics may be applied to the inner surface in contact with the molten Al.

【0034】一方、前述のようにあらかじめ外周面にセ
ラミック皮膜4を施した鋼製内管3を用意して、これを
アルミニウム製外管2の内部に配設する。そして、両管
2と3の間隙に無機材料粉末を充填するのであるが、こ
れに先立って、図2のように間隙端部の一方を多孔質で
弾力性のある無機材料ブランケット6aで閉じる。それ
から、他端より充填を実施して無機材料からなる紛末充
填層5を形成し、充填ロを無機材料ブランケット6bで
閉じる。これを炉内に横にして配設し、前述のように溶
浸処理を施す。
On the other hand, as described above, a steel inner tube 3 having a ceramic film 4 applied on the outer peripheral surface in advance is prepared, and this is disposed inside the aluminum outer tube 2. Then, the gap between the tubes 2 and 3 is filled with the inorganic material powder. Prior to this, one end of the gap is closed with a porous and elastic inorganic material blanket 6a as shown in FIG. Then, filling is performed from the other end to form a powder filling layer 5 made of an inorganic material, and the filling roller is closed with an inorganic material blanket 6b. This is placed horizontally in the furnace and subjected to infiltration treatment as described above.

【0035】溶融Alの溶浸、固化によって、図3に示
すように、固定容器1の内部にはアルミニウムマトリッ
クス複合材料皮膜7とセラミック皮膜4付きの鋼製内管
3からなるアルミニウムマトリックス複合材料被覆鋼管
8が生成する。このとき、該被覆鋼管8は未溶浸Alを
主成分とする緻密なAl皮膜2aを有してもよい。アル
ミニウムマトリックス複合材料被覆鋼管8の外寸は固定
容器1の内寸より小さく、ほぼアルミニウム製外管2の
内径に等しいので、図3および図4に示すように両者の
間に間隙9が発生する。このため、アルミニウムマトリ
ックス複合材料被覆鋼管8は固定容器1から容易に取り
出せる。こうして、図5および図6に示すアルミニウム
マトリックス複合材料被覆鋼管8が得られる。
As shown in FIG. 3, an aluminum matrix composite material coating consisting of an aluminum matrix composite material film 7 and a steel inner tube 3 with a ceramic film 4 is provided inside the fixed container 1 by infiltration and solidification of the molten Al. A steel pipe 8 is produced. At this time, the coated steel pipe 8 may have a dense Al film 2a mainly composed of uninfiltrated Al. Since the outer dimensions of the aluminum matrix composite material coated steel pipe 8 are smaller than the inner dimensions of the fixed vessel 1 and are substantially equal to the inner diameter of the outer pipe 2 made of aluminum, a gap 9 is generated between the two as shown in FIGS. . Therefore, the aluminum matrix composite material-coated steel pipe 8 can be easily taken out of the fixed container 1. Thus, the aluminum matrix composite material-coated steel pipe 8 shown in FIGS. 5 and 6 is obtained.

【0036】アルミニウム製外管2と鋼製内管3に円管
を適用すると、図7に示すように、アルミニウムマトリ
ックス複合材料皮膜7、セラミック皮膜4、鋼製内管3
からなる円管状のアルミニウムマトリックス複合材料被
覆鋼管8が得られる。また、該被覆鋼管8は未溶漫Al
を主成分とする緻密なAl皮膜2aを有してもよい。
When a circular pipe is applied to the aluminum outer pipe 2 and the steel inner pipe 3, as shown in FIG. 7, the aluminum matrix composite material coating 7, the ceramic coating 4, and the steel inner pipe 3
A cylindrical aluminum matrix composite material-coated steel pipe 8 made of The coated steel pipe 8 is made of unmelted Al.
May be provided as a dense Al film 2a.

【0037】本発明の方法により、四角管、円管に留ま
ることなく多様な断面形状のアルミニウムマトリックス
複合材料被覆鋼管が得られる。長さについても特に制約
はない。なお、アルミニウム製外管2と鋼製内管3は同
心状に配置する必要は必ずしもない。すなわち、アルミ
ニウムマトリックス複合材料被覆部の厚さは必ずしも均
一である必要はない。厚さが不均一であっても被覆が完
全であれば問題ない。
According to the method of the present invention, an aluminum matrix composite coated steel pipe having various cross-sectional shapes can be obtained without being limited to a square pipe or a circular pipe. There is no particular limitation on the length. The aluminum outer tube 2 and the steel inner tube 3 do not necessarily need to be arranged concentrically. That is, the thickness of the aluminum matrix composite material coating need not necessarily be uniform. Even if the thickness is uneven, there is no problem as long as the coating is complete.

【0038】[0038]

【実施例】(実施例1)鋼製内管として材質SUS30
4、径20A(外径27.2mm、内径21.6m
m)、長さ700mmの円管を採用した。この管の外面
に水ガラスをバインダーとするBN系塗布剤を塗布して
乾燥し、膜厚10〜20μmのBN−SiO 2を主成分
とするセラミック皮膜を施した。アルミニウム製外管と
して材質JIS6063、外径40mm、内径38m
m、長さ700mmの円管を採用した。固定容器として
材質黒鉛、内径40.2mm、外径100mm、長さ7
00mmの円管を採用した。
(Example 1) Material SUS30 as a steel inner tube
4, diameter 20A (outer diameter 27.2mm, inner diameter 21.6m
m), a circular tube having a length of 700 mm was employed. Outer surface of this tube
BN coating agent with water glass as binder
Dried, BN-SiO with a film thickness of 10 to 20 μm TwoThe main component
Was applied. Aluminum outer tube and
JIS6063, outer diameter 40mm, inner diameter 38m
A circular tube having a length of 700 mm and a length of 700 mm was employed. As a fixed container
Material graphite, inner diameter 40.2mm, outer diameter 100mm, length 7
A 00 mm circular tube was employed.

【0039】3つの円管を内側より、鋼製内管、アルミ
ニウム製外管、固定容器の順に同心円をなすように配設
し、一端を内径27.2mm、外径38mm、厚さ6m
mのムライト製の無機材料ブランケットを鋼製内管とア
ルミニウム製外管の間に配して塞ぎ、これを下端となる
ように立てた。この上端より、無横材料粉末を上端部6
mmを残して充填した。無機材料粉末の組成は78.6
wt%Al、15.6wt%AIN、5.8wt%Al
23である。充填量は379gであった。上端を内径2
7.2mm、外径38mm、厚さ6mmのムライト製の
無機材料ブランケットで塞いだ。これを横にして雰囲気
炉に配設した。
Three circular pipes are arranged so as to form concentric circles from the inside in the order of a steel inner pipe, an aluminum outer pipe, and a fixed container. One end has an inner diameter of 27.2 mm, an outer diameter of 38 mm, and a thickness of 6 m.
m, a blanket of an inorganic material made of mullite was placed between a steel inner tube and an aluminum outer tube and closed, and this was set up at the lower end. From the upper end, the non-transverse material powder is applied to the upper end 6
mm. The composition of the inorganic material powder is 78.6.
wt% Al, 15.6 wt% AIN, 5.8 wt% Al
2 O 3 . The filling amount was 379 g. Upper end is inner diameter 2
It was covered with a mullite inorganic material blanket having a size of 7.2 mm, an outer diameter of 38 mm, and a thickness of 6 mm. This was placed sideways in an atmosphere furnace.

【0040】まず、常温で真空排気して窒素ガスと置換
した。ガス圧力を絶対圧で0.11MPaに保持しつ
つ、10℃/minの昇温速度で800℃まで加熱し、7
Hr、800℃で保持した。こののち、電源を切って放
冷した。炉から取り出した固定容器より内容物を引き出
し、Alマトリックス複合材料被覆鋼管が成形出来てい
ることを確認した。両端の無機材料ブランケットを除去
し、重量測定をしたところ、被覆部に6.6wt%の重
量増加が認められた。これはAlの窒化によるものであ
り、被覆部の組成は66.7wt%Al、29.2wt
AlN、4.1wt%Al23と推定された。外径は
38.2mmであり、これより、嵩密度2.06g/c
c、気孔率28.7%と推定された。このAlマトリッ
クス複合材料被覆鋼管を大気炉で650℃に20Hr保
持して酸化したところ、2.6%の重量増加が認められ
た。
First, the chamber was evacuated at room temperature and replaced with nitrogen gas. While maintaining the gas pressure at 0.11 MPa in absolute pressure, the mixture was heated up to 800 ° C. at a rate of 10 ° C./min.
Hr, kept at 800 ° C. After this, the power was turned off and it was allowed to cool. The contents were pulled out from the fixed container taken out of the furnace, and it was confirmed that the Al matrix composite material-coated steel pipe was formed. The inorganic material blanket at both ends was removed, and the weight was measured. As a result, a weight increase of 6.6 wt% was recognized in the coating portion. This is due to nitriding of Al, and the composition of the coating portion is 66.7 wt% Al, 29.2 wt%.
% AlN , 4.1 wt% Al 2 O 3 . The outer diameter is 38.2 mm, from which the bulk density is 2.06 g / c
c, porosity was estimated to be 28.7%. When the Al-matrix composite material-coated steel tube was oxidized while being kept at 650 ° C. for 20 hours in an air furnace, a 2.6% weight increase was observed.

【0041】この管を管状炉に配設して腐食性高温ガス
と接触させて耐食試験を行った。すなわち、大気雰囲気
で加熱して管外雰囲気温度を700℃とする一方、鋼製
内管に空気を流通させて管内温度を500℃に制御し、
温度制御が安定したところで、外部雰囲気を10%
2、20% 2 、1000ppmHCl、残部N2の雰囲
気に切り替えた。この腐食性雰囲気に前記被覆管を60
0Hr、晒した。放冷後、Alマトリックス複合材料被
覆鋼管を取り出して観察した。外面に変色が見られたが
脆化は認められず、重量変化はなく、極めて健全であっ
た。
The tube was placed in a tube furnace and brought into contact with a corrosive high-temperature gas to conduct a corrosion resistance test. That is, while heating in the air atmosphere to bring the outside atmosphere temperature to 700 ° C., while circulating air through the steel inner tube, controlling the inside temperature of the tube to 500 ° C.,
When temperature control is stable, external atmosphere is reduced to 10%
The atmosphere was switched to O 2 , 20% H 2 O , 1000 ppm HCl, and the balance N 2 . Place the cladding tube in this corrosive atmosphere
0Hr, exposed. After cooling, the steel pipe coated with the Al matrix composite material was taken out and observed. Discoloration was observed on the outer surface, but no embrittlement was observed, there was no change in weight, and it was extremely sound.

【0042】(実施例2)鋼製内管として材質SUS3
04、径20A(外径27.2mm、内径21.6m
m)、長さ700mmの円管を採用した。この管の外面
に水ガラスをバインダーとするBN系塗布剤を塗布して
乾燥し、膜厚10〜20μmのBN−SiO 2を主成分
とするセラミック皮膜を施した。アルミニウム製外管と
して材質JIS6063、外径40mm、内径37m
m、長さ700mmの円管を採用した。
(Example 2) Material SUS3 as a steel inner tube
04, diameter 20A (outer diameter 27.2mm, inner diameter 21.6m
m), a circular tube having a length of 700 mm was employed. Outer surface of this tube
BN coating agent with water glass as binder
Dried, BN-SiO with a film thickness of 10 to 20 μm TwoThe main component
Was applied. Aluminum outer tube and
And material JIS6063, outer diameter 40mm, inner diameter 37m
A circular tube having a length of 700 mm and a length of 700 mm was employed.

【0043】3つの円管を内側より、鋼製内管、アルミ
ニウム製外管、固定容器の順に同心円をなすように配設
し、一端を内径27.2mm、外径38mm、厚さ6m
mのムライト製の無機材料ブランケットを鋼製内管とア
ルミニウム製外管の間に配して塞ぎ、これを下端となる
ように立てた。この上端より、無機材料粉末を上端部6
mmを残して充填した。無機材料粉末の組成は56.1
wt%Al、40.0wt%SiO2、3.9wt%A
23である。充填量は368gであった。上端を内径
27.2mm、外径38mm、厚さ6mmのムライト製
の無機材料ブランケットで塞いだ。これを横にして雰囲
気炉に配設した。
Three circular pipes are arranged so as to form a concentric circle from the inside in the order of a steel inner pipe, an aluminum outer pipe, and a fixed container, and one end has an inner diameter of 27.2 mm, an outer diameter of 38 mm, and a thickness of 6 m.
m, a blanket of an inorganic material made of mullite was placed between a steel inner tube and an aluminum outer tube and closed, and this was set up at the lower end. From this upper end, the inorganic material powder is applied to the upper end 6.
mm. The composition of the inorganic material powder was 56.1.
wt% Al, 40.0 wt% SiO 2 , 3.9 wt% A
l 2 O 3 . The filling amount was 368 g. The upper end was closed with an inorganic material blanket made of mullite having an inner diameter of 27.2 mm, an outer diameter of 38 mm, and a thickness of 6 mm. This was placed sideways in an atmosphere furnace.

【0044】炉内を真空排気しつつ、10℃/minの昇
温速度で700℃まで加熱し、16Hr、700℃で保
持した。この間、ガス圧力は約1Paに到達し安定して
いた。こののち、電源を切って放冷した。炉から取り出
した固定容器より内容物を引き出し、Alマトリックス
複合材料被覆鋼管が成形出来ていることを確認した。両
端の無機材料ブランケットを除去した。被覆部の組成は
73.1wt%Al、24.5wt%SiO2、2.4
wt%Al23と准定された。外径は37.1mmであ
り、これより、嵩密度1.75g/cc、気孔率32.
0%と推定された。
While evacuating the furnace, the furnace was heated to 700 ° C. at a rate of 10 ° C./min, and kept at 700 ° C. for 16 hours. During this time, the gas pressure reached about 1 Pa and was stable. After this, the power was turned off and it was allowed to cool. The contents were pulled out from the fixed container taken out of the furnace, and it was confirmed that the Al matrix composite material-coated steel pipe was formed. The inorganic material blankets at both ends were removed. The composition of the coating portion is 73.1 wt% Al, 24.5 wt% SiO 2 , 2.4
It was standardized as wt% Al 2 O 3 . The outer diameter is 37.1 mm, from which the bulk density is 1.75 g / cc and the porosity is 32.
It was estimated to be 0%.

【0045】この管を管状炉に配設して腐食性高温ガズ
と接触させて耐食試験を行った。すなわち、大気雰囲気
で加熱して管外雰囲気温度700℃とする一方、鋼製内
管に空気を流通させて管内温度を500℃に制御し温度
制御が安定したところで、外部雰囲気を10%O2、2
0%H2O、1000ppmHCl、残部N2の雰囲気に切
り替えた。この腐食性雰囲気に前記被覆管を600H
r、晒した。放冷後、Alマトリックス複合材料被覆鋼
管を取り出して観察した。外面に変色が見られたが脆化
は認められず、重量変化はなく、極めて健全であった。
The tube was placed in a tube furnace and brought into contact with corrosive high-temperature gas to conduct a corrosion resistance test. That is, while heating in an air atmosphere to an outside atmosphere temperature of 700 ° C., air is circulated through a steel inner pipe to control the inside temperature of the pipe to 500 ° C., and when the temperature control is stabilized, the outside atmosphere is changed to 10% O 2. , 2
The atmosphere was switched to 0% H 2 O, 1000 ppm HCl, and the balance N 2 . Place the cladding tube in this corrosive atmosphere for 600H
r, exposed. After cooling, the steel pipe coated with the Al matrix composite material was taken out and observed. Discoloration was observed on the outer surface, but no embrittlement was observed, there was no change in weight, and it was extremely sound.

【0046】(実施例3)鋼製内管として材質SUS3
04、径20A(外径27.2mm、内径21.6m
m)、長さ700mmの円管を採用した。この管の外面
にポリカルボシラン系塗布剤の塗布と乾燥を5回線り返
してのち、800℃、窒素雰囲気で1Hr焼成した。こ
うして、膜厚80〜100μmのSiC皮膜を施した。
アルミニウム製外管として材質JIS6063、外径4
0mm、内径37mm、長さ700mmの円管を採用し
た。固定容器として材質黒鉛、内径40.2mm、外径
100mm、長さ700mmの円管を採用した。
(Example 3) Material SUS3 as a steel inner tube
04, diameter 20A (outer diameter 27.2mm, inner diameter 21.6m
m), a circular tube having a length of 700 mm was employed. After coating and drying the polycarbosilane-based coating agent on the outer surface of the tube five times, the tube was fired at 800 ° C. in a nitrogen atmosphere for 1 hour. Thus, a SiC film having a thickness of 80 to 100 μm was formed.
Aluminum outer tube made of JIS6063, outer diameter 4
A circular tube having a length of 0 mm, an inner diameter of 37 mm, and a length of 700 mm was used. As a fixed container, a circular tube having a graphite material, an inner diameter of 40.2 mm, an outer diameter of 100 mm, and a length of 700 mm was employed.

【0047】3つの円管を内側より、鋼製内管、アルミ
ニウム製外管、固定容器の順に同心円をなすように配設
し、一端を内径27.2mm、外径38mm、厚さ6m
mのムライト製の無機材料ブランケットを鋼製内管とア
ルミニウム製外管の間に配して塞ぎ、これを下端となる
ように立てた。この上端より、無機材料粉末を上端部6
mmを残して充填した。無機材料粉末の組成は51.4
wt%Al、45.0wt%Cr23、3.6wt%A
23である。充填量は553gであった。上端を内径
27.2mm、外径38mm、厚さ6mmのムライト製
の無機材料ブランケットで塞いだ。これを横にして雰囲
気炉に配設した。
Three circular pipes are arranged so as to form a concentric circle from the inside in the order of a steel inner pipe, an aluminum outer pipe, and a fixed container, and have one end having an inner diameter of 27.2 mm, an outer diameter of 38 mm, and a thickness of 6 m.
m, a blanket of an inorganic material made of mullite was placed between a steel inner tube and an aluminum outer tube and closed, and this was set up at the lower end. From this upper end, the inorganic material powder is applied to the upper end 6.
mm. The composition of the inorganic material powder is 51.4.
wt% Al, 45.0 wt% Cr 2 O 3 , 3.6 wt% A
l 2 O 3 . The filling amount was 553 g. The upper end was closed with an inorganic material blanket made of mullite having an inner diameter of 27.2 mm, an outer diameter of 38 mm, and a thickness of 6 mm. This was placed sideways in an atmosphere furnace.

【0048】炉内を真空排気しつつ、10℃/minの昇
温速度で700℃まで加熱し、20Hr、700℃で保
持した。この間、ガス庄カは約1Paに到達し安定して
いた。こののち、電源を切って放冷した。炉から取り出
した固定容器より内容物を引き出し、Alマトリックス
複合材料被覆鋼管が成形出来ていることを確認した。両
端の無機材料ブランケットを除去した。被覆部の組成は
65.9wt%Al、31.6wt%Cr23、2.5
wt%Al23と推定された。外径は37.1mmであ
り、これより、嵩密度2.28g/cc、気孔率29.
0%と推定された。
While evacuating the furnace, the furnace was heated to 700 ° C. at a rate of 10 ° C./min, and maintained at 700 ° C. for 20 hours. During this time, the gas pressure reached about 1 Pa and was stable. After this, the power was turned off and it was allowed to cool. The contents were pulled out from the fixed container taken out of the furnace, and it was confirmed that the Al matrix composite material-coated steel pipe was formed. The inorganic material blankets at both ends were removed. The composition of the coating was 65.9 wt% Al, 31.6 wt% Cr 2 O 3 , 2.5
It was estimated to be wt% Al 2 O 3 . The outer diameter is 37.1 mm, from which the bulk density is 2.28 g / cc and the porosity is 29.
It was estimated to be 0%.

【0049】この管を管状炉に配設して腐食性高温ガス
と接触させて耐食試験を行った。すなわち、大気雰囲気
で加熱して管外雰囲気温度700℃とする一方、鋼製内
管に空気を流通させて管内温度を500℃に制御し温度
制御が安定したところで、外部雰囲気を10%O2、2
0%H2O、1000ppmHCl、残部N2の雰囲気に切
り替えた。この腐食性雰囲気に前記被覆管を600H
r、晒した。放冷後、Alマトリックス複合材料被覆鋼
管を取り出して観察した。外面に変色が見られたが脆化
は認められず、重量変化はなく、極めて健全であった。
The tube was placed in a tube furnace and brought into contact with a corrosive high-temperature gas to conduct a corrosion resistance test. That is, while heating in the air atmosphere to bring the outside atmosphere temperature to 700 ° C., air is circulated through the steel inner pipe to control the inside temperature to 500 ° C., and when the temperature control is stabilized, the outside atmosphere is changed to 10% O 2. , 2
The atmosphere was switched to 0% H 2 O, 1000 ppm HCl, and the balance N 2 . Place the cladding tube in this corrosive atmosphere for 600H
r, exposed. After cooling, the steel pipe coated with the Al matrix composite material was taken out and observed. Discoloration was observed on the outer surface, but no embrittlement was observed, there was no change in weight, and it was extremely sound.

【0050】以上の実施例1〜3について述べた構成材
料(鋼製内管、アルミニウム製外管、無機材料粉末)の
仕様、溶浸条件、アルミニウムマトリックス複合材料の
仕様、酸化処理条件、および耐食試験の条件と結果を表
1に示す。
Specifications of constituent materials (inner pipe made of steel, outer pipe made of aluminum, inorganic material powder) described in Examples 1 to 3 above, infiltration conditions, specifications of aluminum matrix composite material, oxidation treatment conditions, and corrosion resistance Table 1 shows the test conditions and results.

【0051】[0051]

【表1】 [Table 1]

【0052】(比較例1)鋼管として材質SUS30
4、径20A(外径27.2mm、内径21.6m
m)、長さ700mmの円管を採用した。この管を管状
炉に配設して腐食性高温ガスと接触させて耐食試験を行
った。すなわち、大気雰囲気で加熱して管外雰囲気温度
700℃とする一方、鋼製内管に空気を流通させて管内
温度を500℃に制御し温度制御が安定したところで、
外部雰囲気を10%O2、20%H2O、1000ppmH
Cl、残部N2の雰囲気に切り替えた。この腐食性雰囲
気に前記被覆管を600Hr、晒した。放冷後、鋼管を
取り出して観察したところ、全面にわたって顕著な減肉
が認められた。
(Comparative Example 1) SUS30 made of steel pipe
4, diameter 20A (outer diameter 27.2mm, inner diameter 21.6m
m), a circular tube having a length of 700 mm was employed. The tube was placed in a tubular furnace and brought into contact with a corrosive high-temperature gas to perform a corrosion resistance test. That is, while heating in the air atmosphere to bring the outside atmosphere temperature to 700 ° C., while circulating air through the steel inner tube and controlling the inside temperature to 500 ° C., and the temperature control becomes stable,
External atmosphere is 10% O 2 , 20% H 2 O, 1000ppmH
Cl, switched to an atmosphere of the remainder N 2. The cladding tube was exposed to this corrosive atmosphere for 600 hours. After cooling down, the steel pipe was taken out and observed. As a result, remarkable thickness reduction was observed over the entire surface.

【0053】(比較例2)鋼管として材質SUS30
4、径20A(外径27.2mm、内径21.6m
m)、長さ700mmの円管を採用した。この管の外面
に水ガラスをバインダーとするBN系塗布剤を塗布して
乾燥し、膜厚10〜20μmのBN−SiO2を主成分
とするセラミック皮膜を施した。この管を管状炉に配設
して腐食性高温ガスと接触させて耐食試験を行った。す
なわち、大気雰囲気で加熱して管外雰囲気温度700℃
とする一方、鋼製内管に空気を流通させて管内温度を5
00℃に制御し温度制御が安定したところで、外部雰囲
気を10%O2、20%H2O、1000ppmHCl、残
部N2の雰囲気に切り替えた。この腐食性雰囲気に前記
被覆管を600Hr、晒した。放冷後、鋼管を取り出し
て観察したところ、剥離と減肉が多数個所、認められ
た。
(Comparative Example 2) Material SUS30 as a steel pipe
4, diameter 20A (outer diameter 27.2mm, inner diameter 21.6m
m), a circular tube having a length of 700 mm was employed. A BN-based coating agent using water glass as a binder was applied to the outer surface of the tube and dried, and a 10 to 20 μm-thick ceramic coating mainly composed of BN-SiO 2 was applied. The tube was placed in a tubular furnace and brought into contact with a corrosive high-temperature gas to perform a corrosion resistance test. That is, by heating in an air atmosphere, the outside air temperature is 700 ° C.
On the other hand, air is circulated through the steel inner pipe to reduce
When the temperature was controlled at 00 ° C. and the temperature control became stable, the external atmosphere was switched to an atmosphere of 10% O 2 , 20% H 2 O, 1000 ppm HCl, and the balance N 2 . The cladding tube was exposed to this corrosive atmosphere for 600 hours. After cooling, the steel pipe was taken out and observed. As a result, peeling and wall thinning were observed in many places.

【0054】(比較例3)鋼管として材質SUS30
4、径20A(外径27.2mm、内径21.6m
m)、長さ700mmの円管を採用した。この管の外面
にポリカルボシラン系塗布剤の塗布と乾燥を5回線り返
してのち、800℃、窒素雰囲気で1Hr焼成した。こ
うして、膜厚80〜100μmのSiC皮膜を施した。
この管を管状炉に配設して腐食性高温ガスと接触させて
耐食試験を行った。すなわち、大気雰囲気で加熱して管
外雰囲気温度700℃とする一方、鋼製内管に空気を流
通させて管内温度を500℃に制御し温度制御が安定し
たところで、外部雰囲気を10%O2、20%H2O、1
000ppmHCl、残部N2の雰囲気に切り替えた。この
腐食性雰囲気に前記被覆管を600Hr、晒した。放冷
後、鋼管を取り出して観察したところ、剥離と減肉が多
数個所、認められた。
(Comparative Example 3) Material SUS30 as a steel pipe
4, diameter 20A (outer diameter 27.2mm, inner diameter 21.6m
m), a circular tube having a length of 700 mm was employed. After coating and drying the polycarbosilane-based coating agent on the outer surface of the tube five times, the tube was baked at 800 ° C. in a nitrogen atmosphere for 1 hour. Thus, a SiC film having a thickness of 80 to 100 μm was formed.
The tube was placed in a tubular furnace and brought into contact with a corrosive high-temperature gas to perform a corrosion resistance test. That is, while heating in an air atmosphere to an outside atmosphere temperature of 700 ° C., air is circulated through a steel inner pipe to control the inside temperature of the pipe to 500 ° C., and when the temperature control is stabilized, the outside atmosphere is changed to 10% O 2. , 20% H 2 O, 1
The atmosphere was changed to 000 ppm HCl and the balance was N 2 . The cladding tube was exposed to this corrosive atmosphere for 600 hours. After cooling, the steel pipe was taken out and observed. As a result, peeling and wall thinning were observed in many places.

【0055】以上の比較例1〜3の構成および耐食試験
の条件と結果を表2に示す。
Table 2 shows the configurations of Comparative Examples 1 to 3 and the conditions and results of the corrosion resistance test.

【0056】[0056]

【表2】 [Table 2]

【0057】以上のように、鋼管の外面に、アルミニウ
ムマトリックス複合材料を被覆した3つの実施例では、
被覆部および鋼管のガス腐食が認められないのに対し
て、アルミニウムマトリックス複合材料を被覆しなかっ
た3つの比較例では、表面にセラミック皮膜を施したか
どうかにかかわらず、ガス腐食が進行した。
As described above, in the three embodiments in which the outer surface of the steel pipe is coated with the aluminum matrix composite material,
While no gas corrosion of the coating and the steel pipe was observed, gas corrosion progressed in the three comparative examples in which the aluminum matrix composite was not coated, regardless of whether or not the surface was coated with the ceramic coating.

【0058】[0058]

【発明の効果】以上のように本発明によれば、鋼管の外
面に、高温高圧下で耐食性に富む厚膜のアルミニウムマ
トリックス複合材料を被覆することができる。このた
め、鋼管の腐食を防止できるので、熱交換器用伝熱管の
寿命を大幅に延ばすことができる。また、高温水蒸気の
回収が可能となるので、熱交換器の熱効率の上昇がもた
らされる。
As described above, according to the present invention, the outer surface of a steel pipe can be coated with a thick-film aluminum matrix composite material having high corrosion resistance under high temperature and high pressure. Therefore, corrosion of the steel pipe can be prevented, so that the life of the heat exchanger tube for a heat exchanger can be greatly extended. In addition, since high-temperature steam can be recovered, the heat efficiency of the heat exchanger is increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のアルミニウムマトリックス複合材料被
覆鋼管の製造方法における溶浸処理前の処理物の断面正
面図である。
FIG. 1 is a cross-sectional front view of a processed product before an infiltration process in a method for manufacturing an aluminum matrix composite material-coated steel pipe of the present invention.

【図2】上記溶浸処理前の処理物の断面側面図である。FIG. 2 is a cross-sectional side view of a processed product before the infiltration process.

【図3】本発明のアルミニウムマトリックス複合材料被
覆鋼管の製造方法における溶浸処理後の処理物の断面正
面図である。
FIG. 3 is a cross-sectional front view of a processed product after an infiltration process in the method for manufacturing an aluminum matrix composite material-coated steel pipe of the present invention.

【図4】上記溶浸処理後の処理物の断面側面図である。FIG. 4 is a cross-sectional side view of a processed product after the infiltration process.

【図5】本発明によるアルミニウムマトリックス複合材
料被覆鋼管の断面正面図である。
FIG. 5 is a sectional front view of an aluminum matrix composite coated steel pipe according to the present invention.

【図6】上記アルミニウムマトリックス複合材料被覆鋼
管の断面側面図である。
FIG. 6 is a cross-sectional side view of the aluminum matrix composite material-coated steel pipe.

【図7】本発明の他の実施の形態によるアルミニウムマ
トリックス複合材料被覆鋼管の断面正面図である。
FIG. 7 is a cross-sectional front view of an aluminum matrix composite material-coated steel pipe according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 固定容器 2 アルミニウム製外管 2a Al皮膜 3 鋼製内管 4 セラミック皮膜 5 無機材料の粉末充填層 6a、6b 無機材料ブランケット 7 アルミニウムマトリックス複合材料皮膜 8 アルミニウムマトリックス複合材料被覆鋼管 DESCRIPTION OF SYMBOLS 1 Fixed container 2 Aluminum outer tube 2a Al coating 3 Steel inner tube 4 Ceramic coating 5 Powder filling layer of inorganic material 6a, 6b Inorganic material blanket 7 Aluminum matrix composite material coating 8 Aluminum matrix composite material coated steel tube

フロントページの続き (56)参考文献 特開 昭57−175783(JP,A) (58)調査した分野(Int.Cl.7,DB名) B21C 37/06 B23K 20/00 F16L 58/02 F16L 58/14 F23G 5/46 Continuation of the front page (56) References JP-A-57-175783 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B21C 37/06 B23K 20/00 F16L 58/02 F16L 58 / 14 F23G 5/46

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 外表面にセラミック皮膜を施した鋼製内
管の外周にアルミニウム製外管を配し、該両管の間隙に
無機材料粉末を充填して粉末充填層を形成し、該構造体
を絶対圧力1MPa以下の非酸化性ガス雰囲気で670
〜1200℃の温度に加熱してアルミニウム製外管を溶
融体となして前記粉末充填層中へ溶浸させることを特徴
とするアルミニウムマトリックス複合材料被覆鋼管の製
造方法。
An outer tube made of aluminum is arranged around the outer periphery of a steel inner tube having a ceramic coating on the outer surface, and a gap between the two tubes is filled with an inorganic material powder to form a powder-filled layer. The body was placed in a non-oxidizing gas atmosphere at an absolute pressure of 1 MPa or less for 670
A method for producing an aluminum matrix composite material-coated steel pipe, comprising heating the aluminum outer pipe to a molten state by heating to a temperature of about 1200 ° C. to infiltrate into the powder packed bed.
【請求項2】 外表面にセラミック皮膜を施した鋼製内
管の外周にアルミニウム製外管を配し、該両管の間隙に
Alまたは/およびAlNを50wt%以上含む無機材
料粉末を充填して粉末充填層を形成し、該構造体を絶対
圧力0.1〜1MPaの窒化性ガス雰囲気で670〜9
00℃の温度に加熱してアルミニウム製外管を溶融体と
なして前記粉末充填層中へ溶浸させるとともに、前記無
機材料粉末またはアルミニウム製外管由来の金属Alの
1〜50%を窒化させることを特徴とするアルミニウム
マトリックス複合材料被覆鋼管の製造方法。
2. An outer tube made of aluminum is arranged around the outer periphery of a steel inner tube having a ceramic coating on its outer surface, and a gap between the two tubes is filled with an inorganic material powder containing at least 50 wt% of Al or / and AlN. To form a powder-filled layer, and the structure is subjected to 670-9
Heating to a temperature of 00 ° C. turns the aluminum outer tube into a molten material and infiltrates into the powder-packed layer, and nitrides 1 to 50% of the inorganic material powder or metal Al derived from the aluminum outer tube. A method for producing an aluminum matrix composite material-coated steel pipe.
【請求項3】 外表面にセラミック皮膜を施した鋼製内
管の外周にアルミニウム製外管を配し、該両管の間隙に
Alまたは/およびAlNを50wt%以上含む無機材
料紛末を充填して粉末充填層を形成し、該構造体を絶対
圧力0.1〜1MPaの窒化性ガス雰囲気で670〜9
00℃の温度に加熱してアルミニウム製外管を溶融体と
なして前記粉末充填層中へ溶浸させるとともに、前記無
機材料粉末またはアルミニウム製外管由来の金属Alの
1〜50%を窒化させてのち、酸化性ガス雰囲気で50
0〜800℃の温度に加熱することを特徴とするアルミ
ニウムマトリックス複合材料被覆鋼管の製造方法。
3. An outer pipe made of aluminum is arranged around the outer circumference of a steel inner pipe having a ceramic coating on its outer surface, and a gap between the two pipes is filled with an inorganic material powder containing at least 50 wt% of Al or / and AlN. To form a powder-packed layer, and the structure was subjected to 670-9
The aluminum outer tube is heated to a temperature of 00 ° C. to form a melt and infiltrate into the powder packed layer, and nitridate 1 to 50% of the inorganic material powder or metal Al derived from the aluminum outer tube. After that, in an oxidizing gas atmosphere,
A method for producing an aluminum matrix composite material-coated steel pipe, comprising heating to a temperature of 0 to 800 ° C.
【請求項4】 鋼製内管がCr鋼、Cr−Ni鋼のなか
から選ばれた材料で構成されることを特徴とする請求項
1から請求項のいずれか一に記載のアルミニウムマト
リックス複合材料被覆鋼管の製造方法。
4. A steel inner pipe Cr steel, aluminum matrix composite according to claims 1, characterized in that it is composed of a material selected from among Cr-Ni steels in any one of claims 3 Manufacturing method of material coated steel pipe.
【請求項5】 鋼製内管の外表面に施すセラミック皮膜
が、肉厚5〜200μmであって、Al23、Cr
23、SiO2、SiC、Si34、BNのなかから選
ばれた1種または複数のセラミック材料50wt%以上
含む無機材料から構成されることを特徴とする請求項
から請求項のいずれか一に記載のアルミニウムマトリ
ックス複合材料被覆鋼管の製造方法。
5. The ceramic coating applied to the outer surface of the steel inner tube has a thickness of 5 to 200 μm, and is made of Al 2 O 3 , Cr
2 O 3, SiO 2, SiC , claim 1, characterized in that they are composed of Si 3 N 4, 1 or more ceramic materials 50 wt% or more comprises an inorganic material selected from among BN
A method for producing an aluminum matrix composite material-coated steel pipe according to any one of claims 1 to 4 .
【請求項6】 アルミニウム製外管が80wt%以上の
Alを含有することを特徴とする請求項1から請求項
のいずれか一に記載のアルミニウムマトリックス複合材
料被覆鋼管の製造方法。
Claim from claim 1, wherein aluminum outer tube is characterized in that it contains 80 wt% or more Al 5
The method for producing an aluminum matrix composite material-coated steel pipe according to any one of the above.
【請求項7】 粉末充填層がAl、Si、Cr、Al
N、Si34、Cr2Nのなかから選ばれた1種または
複数の無機材料を50wt%以上含む無機材料から構成
されることを特徴とする請求項1から請求項のいずれ
か一に記載のアルミニウムマトリックス複合材料被覆鋼
管の製造方法。
7. The powder-filled layer is made of Al, Si, Cr, Al
N, Si 3 N 4, Cr 2 any one of claims 1 to 6 in which one or more inorganic materials selected from among N, characterized in that it is composed of an inorganic material containing more than 50 wt% The method for producing an aluminum matrix composite material-coated steel pipe according to the above item.
【請求項8】 アルミニウム製外管の一部が溶浸処理後
残留して皮膜を形成することを特徴とする請求項1から
請求項のいずれか一に記載のアルミニウムマトリック
ス複合材料被覆鋼管の製造方法。
8. Some of the aluminum outer tube is aluminum matrix composite coated steel pipe as claimed in any one of claims 7, characterized in that to form the film remaining after the infiltration process Production method.
【請求項9】 鋼製内管とアルミニウム製外管がともに
円管であることを特徴とする請求項1から請求項のい
ずれか一に記載のアルミニウムマトリックス複合材料被
覆鋼管の製造方法。
9. A manufacturing method of an aluminum matrix composite coated steel pipe as claimed in any one of claims 8, wherein the steel inner tube and aluminum outer tube are both circular pipe.
JP2000026091A 2000-02-03 2000-02-03 Method of manufacturing aluminum matrix composite coated steel pipe Expired - Fee Related JP3346365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000026091A JP3346365B2 (en) 2000-02-03 2000-02-03 Method of manufacturing aluminum matrix composite coated steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000026091A JP3346365B2 (en) 2000-02-03 2000-02-03 Method of manufacturing aluminum matrix composite coated steel pipe

Publications (2)

Publication Number Publication Date
JP2001212612A JP2001212612A (en) 2001-08-07
JP3346365B2 true JP3346365B2 (en) 2002-11-18

Family

ID=18551861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000026091A Expired - Fee Related JP3346365B2 (en) 2000-02-03 2000-02-03 Method of manufacturing aluminum matrix composite coated steel pipe

Country Status (1)

Country Link
JP (1) JP3346365B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104175070A (en) * 2014-07-21 2014-12-03 北京有色金属研究总院 Preparation method of aluminum-stainless steel composite tube for thermal control

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2936179B1 (en) * 2008-09-23 2010-10-15 Commissariat Energie Atomique METHOD FOR MANUFACTURING A HEAT EXCHANGER SYSTEM, PREFERABLY OF THE EXCHANGER / REACTOR TYPE

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104175070A (en) * 2014-07-21 2014-12-03 北京有色金属研究总院 Preparation method of aluminum-stainless steel composite tube for thermal control
CN104175070B (en) * 2014-07-21 2016-10-05 北京有色金属研究总院 A kind of preparation method of thermal control aluminium-stainless steel composite pipe

Also Published As

Publication number Publication date
JP2001212612A (en) 2001-08-07

Similar Documents

Publication Publication Date Title
Li et al. ZrB 2 particles reinforced glass coating for oxidation protection of carbon/carbon composites
JPH0394966A (en) Transfer tube
JP3813413B2 (en) Externally heated rotary kiln
JP6841897B2 (en) Roller furnace roller having at least one coating on its surface
JP5118057B2 (en) Metal tube
KR20020060689A (en) Steel pipe with composite material coating and method for manufacturing the same
JP3346365B2 (en) Method of manufacturing aluminum matrix composite coated steel pipe
JP3674401B2 (en) Heat exchanger tube for heat exchange
JPH0624636B2 (en) Catalyst carrier and method for producing the same
Magnani et al. Oxidation resistance of SIC–AlN ceramics coated by oxidation-assisted-pack cementation process
WO2003012155A1 (en) Material being resistant to chloride-containing molten salt corrosion, steel pipe for heat exchanger coated with the same, and method for production thereof
JP2002038277A (en) Steel tube coated with aluminum-matrix composite material
JP2002038278A (en) Steel tube coated with aluminum-matrix composite material
Koh et al. Strengthening and prevention of oxidation of aluminum nitride by formation of a silica layer on the surface
JPH0424142B2 (en)
JP4448915B2 (en) Laminated porous body, method for producing the same, and filter
JP2003042688A (en) Heat exchanging coated steel pipe, its producing method and heat exchanger
JP2001049379A (en) Heat transfer tube for heat exchanger
JP7232007B2 (en) Member for molten metal and manufacturing method thereof
JPH0699190B2 (en) Carbon-containing ceramic composite for non-ferrous molten metal
JP3060589B2 (en) High temperature heat resistant material
JP4354671B2 (en) Silicon carbide member and manufacturing method thereof
JP2005255491A (en) Tool for firing and method of manufacturing sintered compact using the same
JPH09109327A (en) Heat resistant member comprising ceramic and metal
Perepezko et al. Mo-Si-B-Based Coatings for Ceramic Base Substrates

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090906

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090906

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090906

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100906

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110906

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees