JP3341683B2 - 内燃機関 - Google Patents

内燃機関

Info

Publication number
JP3341683B2
JP3341683B2 JP20065198A JP20065198A JP3341683B2 JP 3341683 B2 JP3341683 B2 JP 3341683B2 JP 20065198 A JP20065198 A JP 20065198A JP 20065198 A JP20065198 A JP 20065198A JP 3341683 B2 JP3341683 B2 JP 3341683B2
Authority
JP
Japan
Prior art keywords
amount
combustion
air
fuel
fuel ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20065198A
Other languages
English (en)
Other versions
JP2000027698A (ja
Inventor
静夫 佐々木
雅人 後藤
丈和 伊藤
康二 吉▲崎▼
宏樹 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP20065198A priority Critical patent/JP3341683B2/ja
Priority to US09/348,282 priority patent/US6209515B1/en
Priority to EP99113774A priority patent/EP0972925B1/en
Priority to DE69928178T priority patent/DE69928178T2/de
Publication of JP2000027698A publication Critical patent/JP2000027698A/ja
Application granted granted Critical
Publication of JP3341683B2 publication Critical patent/JP3341683B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は内燃機関に関する。
【0002】
【従来の技術】従来より内燃機関、例えばディーゼル機
関においてはNOx の発生を抑制するために機関排気通
路と機関吸気通路とを排気ガス再循環(以下、EGRと
称す)通路により連結し、このEGR通路を介して排気
ガス、即ちEGRガスを機関吸気通路内に再循環させる
ようにしている。この場合、EGRガスは比較的比熱が
高く、従って多量の熱を吸収することができるので、E
GRガス量を増大するほど、即ちEGR率(EGRガス
量/(EGRガス量+吸入空気量))を増大するほど燃
焼室内における燃焼温度が低下する。燃焼温度が低下す
るとNOx の発生量が低下し、従ってEGR率を増大す
ればするほどNOx の発生量は低下することになる。
【0003】このように従来よりEGR率を増大すれば
NOx の発生量を低下しうることはわかっている。しか
しながらEGR率を増大させていくとEGR率が或る限
度を越えたときに煤の発生量、即ちスモークが急激に増
大し始める。この点に関し従来より、それ以上EGR率
を増大すればスモークが限りなく増大していくものと考
えられており、従ってスモークが急激に増大し始めるE
GR率がEGR率の最大許容限界であると考えられてい
る。
【0004】従って従来よりEGR率はこの最大許容限
界を越えない範囲内に定められている。このEGR率の
最大許容限界は機関の形式や燃料によってかなり異なる
がおおよそ30パーセントから50パーセントである。
従って従来のディーゼル機関ではEGR率は最大でも3
0パーセントから50パーセント程度に抑えられてい
る。
【0005】このように従来ではEGR率に対して最大
許容限界が存在すると考えられていたので従来よりEG
R率はこの最大許容限界を越えない範囲内においてNO
x およびスモークの発生量ができるだけ少なくなるよう
に定められていた。しかしながらこのようにしてEGR
率をNOx およびスモークの発生量ができるだけ少なく
なるように定めてもNOx およびスモークの発生量の低
下には限度があり、実際には依然としてかなりの量のN
x およびスモークが発生してしまうのが現状である。
【0006】ところがディーゼル機関の燃焼の研究の過
程においてEGR率を最大許容限界よりも大きくすれば
上述の如くスモークが急激に増大するがこのスモークの
発生量にはピークが存在し、このピークを越えてEGR
率を更に大きくすると今度はスモークが急激に減少しは
じめ、アイドリング運転時においてEGR率を70パー
セント以上にすると、またEGRガスを強力に冷却した
場合にはEGR率をほぼ55パーセント以上にするとス
モークがほとんど零になる即ち煤がほとんど発生しな
いことが見い出されたのである。また、このときにはN
x の発生量が極めて少量となることも判明している。
この後この知見に基づいて煤が発生しない理由について
検討が進められ、その結果これまでにない煤およびNO
x の同時低減が可能な新たな燃焼システムが構築される
に至ったのである。この新たな燃焼システムについては
後に詳細に説明するが簡単に言うと炭化水素が煤に成長
するまでの途中の段階において炭化水素の成長を停止さ
せることを基本としている。
【0007】即ち、実験研究を重ねた結果判明したこと
は燃焼室内における燃焼時の燃料およびその周囲のガス
温度が或る温度以下のときには炭化水素の成長が煤に至
る前の途中の段階で停止し、燃料およびその周囲のガス
温度が或る温度以上になると炭化水素は一気に煤まで成
長してしまうということである。この場合、燃料および
その周囲のガス温度は燃料が燃焼した際の燃料周りのガ
スの吸熱作用が大きく影響しており、燃料燃焼時の発熱
量に応じて燃料周りのガスの吸熱量を調整することによ
って燃料およびその周囲のガス温度を制御することがで
きる。
【0008】従って、燃焼室内における燃焼時の燃料お
よびその周囲のガス温度を炭化水素の成長が途中で停止
する温度以下に抑制すれば煤が発生しなくなり、燃焼室
内における燃焼時の燃料およびその周囲のガス温度を炭
化水素の成長が途中で停止する温度以下に抑制すること
は燃料周りのガスの吸熱量を調整することによって可能
となる。一方、煤に至る前に成長が途中で停止した炭化
水素は酸化触媒等を用いた後処理によって容易に浄化す
ることができる。これが新たな燃焼システムの基本的な
考え方である。この新たな燃焼システムを採用した内燃
機関については本出願人により既に出願されている(特
願平9−305850号)。
【0009】
【発明が解決しようとする課題】ところでこの新たな燃
焼システムではEGR率をほぼ55パーセント以上にす
る必要がある。しかしながらEGR率をほぼ55パーセ
ント以上にすることが可能なのは吸入空気量が比較的少
ないとき、即ち機関負荷が比較的低いときであり、吸入
空気量が一定限度を越えるとEGR率を低下させない限
り吸入空気量を増大させることができなくなる。従って
吸入空気量が一定限度を越えたときには従来より行われ
ている燃焼に切換える必要がある。
【0010】この場合、新たな燃焼と従来より行われて
いる燃焼とでは燃焼方法が異なっており、従って新たな
燃焼を行う場合と従来より行われている燃焼を行う場合
とでは異なる運転制御が必要となる。即ち、従来より行
われている燃焼のもとでは、云い換えると空気過剰のも
とで燃焼が行われている場合には燃料の周りに十分な空
気が存在するために空気量を増大しても機関の発生トル
クは増大せず、機関の発生トルクを増大させるためには
燃料噴射量を増大させる必要がある。即ち、要求負荷が
増大したときに要求に答えて機関の出力トルクを増大さ
せるためには燃料噴射量をただちに増大させることが必
要であり、空燃比を目標空燃比とするための吸入空気量
の調整は燃料噴射量の増大作用が行われた後に行えば十
分である。
【0011】これに対して新たな燃焼のもとでは若干状
況が異なる。即ち、新たな燃焼はEGR率が高い状態で
行われており、燃料周りの空気量が少ない状態で燃焼が
行われている。この場合には燃料噴射量を増量しても増
量した燃料を燃焼させるのに十分な空気が存在しないた
めに機関の発生トルクは増大しない。しかしながらこの
場合、空気量を増大すると燃料周りの空気量が増大する
ために燃焼が活発となり、斯くして機関の発生トルクが
増大する。即ち、新たな燃焼のもとで要求負荷が増大し
たときに要求に答えて機関の出力トルクを増大させるた
めには空気量をただちに増大させることが必要であり、
空燃比を目標空燃比にするための燃料噴射量の調整は空
気量の増大作用が行われた後に行えば十分である。
【0012】このように新たな燃焼のもとでは機関の発
生トルクは空気量の変化に対し敏感であって燃料噴射量
の変化に対し鈍感であり、従来より行われている燃焼の
もとでは機関の発生トルクは燃料噴射量の変化に対し敏
感であって空気量の変化に対し鈍感である。本発明の目
的は燃焼の形態に応じた最適の運転制御を行うようにし
たことにある。
【0013】
【課題を解決するための手段】上記目的を達成するため
に、1番目の発明では、燃焼室内に供給される再循環排
気ガス量を増大していくと煤の発生量が次第に増大して
ピークに達し、燃焼室内に供給される再循環排気ガス量
を更に増大していくと燃焼室内における燃焼時の燃料お
よびその周囲のガス温が煤の生成温度よりも低くなって
煤がほとんど発生しなくなる内燃機関において、煤の発
生量がピークとなる再循環排気ガス量よりも燃焼室内に
供給される再循環排気ガス量が多く煤がほとんど発生し
ない第1の燃焼と、煤の発生量がピークとなる再循環ガ
ス量よりも燃焼室内に供給される再循環排気ガス量が少
ない第2の燃焼とを選択的に切換える切換手段と、燃焼
室内に供給される吸入ガス量を制御する制御手段と、燃
焼室内に供給される吸入空気量を検出する検出手段とを
具備し、第1の燃焼が行われているときには要求負荷お
よび機関回転数に基づいて吸入ガス量を制御すると共に
検出手段により検出された吸入空気量に基づいて燃料噴
射量を制御するようにしている。
【0014】即ち、吸入ガス量が制御されると吸入空気
量の検出値が変化し、変化した吸入空気量の検出値に基
づいて燃料噴射量が制御される。云い換えると吸入ガス
量の制御が燃料噴射量の制御に優先して行われる。2番
目の発明では1番目の発明において、制御手段が燃焼室
に供給される吸入空気量を制御するためのスロットル弁
と、燃焼室内に再循環される再循環排気ガス量を制御す
るための再循環排気ガス制御弁からなり、要求負荷およ
び機関回転数に応じたスロットル弁の目標開度と、要求
負荷および機関回転数に応じた再循環排気ガス制御弁の
目標開度が予め記憶されており、第1の燃焼が行われて
いるときにはスロットル弁の開度および再循環排気ガス
制御弁の開度が夫々対応する目標開度とされる。
【0015】3番目の発明では1番目の発明において、
第1の燃焼が行われているときには検出手段により検出
された吸入空気量に基づいて空燃比が目標空燃比となる
ように燃料噴射量が制御される。4番目の発明では1番
目の発明において、第2の燃焼が行われているときには
要求負荷および機関回転数に基づいて燃料噴射量を制御
すると共に検出手段により検出された吸入空気量に基づ
いて吸入ガス量を制御するようにしている。
【0016】5番目の発明では4番目の発明において、
要求負荷および機関回転数に応じた目標燃料噴射量が予
め記憶されており、第2の燃焼が行われているときには
燃料噴射量が目標燃料噴射量とされる。6番目の発明で
は4番目の発明において、制御手段が燃焼室に供給され
る吸入空気量を制御するためのスロットル弁と、燃焼室
内に再循環される再循環排気ガス量を制御するための再
循環排気ガス制御弁からなり、第2の燃焼が行われてい
るときには検出手段により検出された吸入空気量に基づ
いて空燃比が目標空燃比となるようにスロットル弁又は
再循環排気ガス制御弁の少くともいずれか一方が制御さ
れる。
【0017】7番目の発明では1番目の発明において、
第1の燃焼が行われているときの排気ガス再循環率がほ
ぼ55パーセント以上であり、第2の燃焼が行われてい
るときの排気ガス再循環率がほぼ50パーセント以下で
ある。8番目の発明では1番目の発明において、機関排
気通路内に酸化機能を有する触媒を配置している。
【0018】9番目の発明では8番目の発明において、
触媒が酸化触媒、三元触媒又はNO x 吸収剤の少くとも
一つからなる。10番目の発明では1番目の発明におい
て、機関の運転領域を低負荷側の第1の運転領域と高負
荷側の第2の運転領域に分割し、第1の運転領域では第
1の燃焼を行い、第2の運転領域では第2の燃焼を行う
ようにしている。
【0019】
【発明の実施の形態】図1は本発明を4ストローク圧縮
着火式内燃機関に適用した場合を示している。図1を参
照すると、1は機関本体、2はシリンダブロック、3は
シリンダヘッド、4はピストン、5は燃焼室、6は電気
制御式燃料噴射弁、7は吸気弁、8は吸気ポート、9は
排気弁、10は排気ポートを夫々示す。吸気ポート8は
対応する吸気枝管11を介してサージタンク12に連結
され、サージタンク12は吸気ダクト13およびインタ
ークーラ14を介して過給機、例えば排気ターボチャー
ジャ15のコンプレッサ16の出口部に連結される。コ
ンプレッサ16の入口部は空気吸込管17を介してエア
クリーナ18に連結され、空気吸込管17内にはステッ
プモータ19により駆動されるスロットル弁20が配置
される。また、スロットル弁20上流の空気吸込管17
内には吸入空気の質量流量を検出するための質量流量検
出器21が配置される。
【0020】方、排気ポート10は排気マニホルド2
2を介して排気ターボチャージャ15の排気タービン2
3の入口部に連結され、排気タービン23の出口部は排
気管24を介して酸化機能を有する触媒25を内蔵した
触媒コンバータ26に連結される。排気マニホルド22
内には空燃比センサ27が配置される。触媒コンバータ
26の出口部に連結された排気管28とスロットル弁2
0下流の空気吸込管17とは排気ガス再循環(以下、E
GRと称す)通路29を介して互いに連結され、EGR
通路29内にはステップモータ30により駆動されるE
GR制御弁31が配置される。また、EGR通路29内
にはEGR通路29内を流れるEGRガスを冷却するた
めのインタークーラ32が配置される。図1に示される
実施例では機関冷却水がインタークーラ32内に導びか
れ、機関冷却水によってEGRガスが冷却される。
【0021】一方、燃料噴射弁6は燃料供給管33を介
して燃料リザーバ、いわゆるコモンレール34に連結さ
れる。このコモンレール34内へは電気制御式の吐出量
可変な燃料ポンプ35から燃料が供給され、コモンレー
ル34内に供給された燃料は各燃料供給管33を介して
燃料噴射弁6に供給される。コモンレール34にはコモ
ンレール34内の燃料圧を検出するための燃料圧センサ
36が取付けられ、燃料圧センサ36の出力信号に基づ
いてコモンレール34内の燃料圧が目標燃料圧となるよ
うに燃料ポンプ35の吐出量が制御される。
【0022】電子制御ユニット40はデジタルコンピュ
ータからなり、双方向性バス41によって互いに接続さ
れたROM(リードオンリメモリ)42、RAM(ラン
ダムアクセスメモリ)43、CPU(マイクロプロセッ
サ)44、入力ポート45および出力ポート46を具備
する。質量流量検出器21の出力信号は対応するAD変
換器47を介して入力ポート45に入力され、空燃比セ
ンサ27および燃料圧センサ36の出力信号も夫々対応
するAD変換器47を介して入力ポート45に入力され
る。アクセルペダル50にはアクセルペダル50の踏込
み量Lに比例した出力電圧を発生する負荷センサ51が
接続され、負荷センサ51の出力電圧は対応するAD変
換器47を介して入力ポート45に入力される。また、
入力ポート45にはクランクシャフトが例えば30°回
転する毎に出力パルスを発生するクランク角センサ52
が接続される。一方、出力ポート46は対応する駆動回
路48を介して燃料噴射弁6、スロットル弁制御用ステ
ップモータ19、EGR制御弁制御用ステップモータ3
0および燃料ポンプ35に接続される。
【0023】図2は機関低負荷運転時にスロットル弁2
0の開度およびEGR率を変化させることにより空燃比
A/F(図2の横軸)を変化させたときの出力トルクの
変化、およびスモーク、HC,CO,NOx の排出量の
変化を示す実験例を表している。図2からわかるように
この実験例では空燃比A/Fが小さくなるほどEGR率
が大きくなり、理論空燃比(≒14.6)以下のときに
はEGR率は65パーセント以上となっている。
【0024】図2に示されるようにEGR率を増大する
ことにより空燃比A/Fを小さくしていくとEGR率が
40パーセント付近となり空燃比A/Fが30程度にな
ったときにスモークの発生量が増大を開始する。次い
で、更にEGR率を高め、空燃比A/Fを小さくすると
スモークの発生量が急激に増大してピークに達する。次
いで更にEGR率を高め、空燃比A/Fを小さくすると
今度はスモークが急激に低下し、EGR率を65パーセ
ント以上とし、空燃比A/Fが15.0付近になるとス
モークがほぼ零となる。即ち、煤がほとんど発生しなく
なる。このとき機関の出力トルクは若干低下し、またN
x の発生量がかなり低くなる。一方、このときHC,
COの発生量は増大し始める。
【0025】図3(A)は空燃比A/Fが18付近でス
モークの発生量が最も多いときの燃焼室5内の燃焼圧変
化を示しており、図3(B)は空燃比A/Fが13付近
でスモークの発生量がほぼ零のときの燃焼室5内の燃焼
圧の変化を示している。図3(A)と図3(B)とを比
較すればわかるようにスモークの発生量がほぼ零である
図3(B)に示す場合はスモークの発生量が多い図3
(A)に示す場合に比べて燃焼圧が低いことがわかる。
【0026】図2および図3に示される実験結果から次
のことが言える。即ち、まず第1に空燃比A/Fが1
5.0以下でスモークの発生量がほぼ零のときには図2
に示されるようにNOx の発生量がかなり低下する。N
x の発生量が低下したということは燃焼室5内の燃焼
温度が低下していることを意味しており、従って煤がほ
とんど発生しないときには燃焼室5内の燃焼温度が低く
なっていると言える。同じことが図3からも言える。即
ち、煤がほとんど発生していない図3(B)に示す状態
では燃焼圧が低くなっており、従ってこのとき燃焼室5
内の燃焼温度は低くなっていることになる。
【0027】第2にスモークの発生量、即ち煤の発生量
がほぼ零になると図2に示されるようにHCおよびCO
の排出量が増大する。このことは炭化水素が煤まで成長
せずに排出されることを意味している。即ち、燃料中に
含まれる図4に示されるような直鎖状炭化水素や芳香族
炭化水素は酸素不足の状態で温度上昇せしめられると熱
分解して煤の前駆体が形成され、次いで主に炭素原子が
集合した固体からなる煤が生成される。この場合、実際
の煤の生成過程は複雑であり、煤の前駆体がどのような
形態をとるかは明確ではないがいずれにしても図4に示
されるような炭化水素は煤の前駆体を経て煤まで成長す
ることになる。従って、上述したように煤の発生量がほ
ぼ零になると図2に示される如くHCおよびCOの排出
量が増大するがこのときのHCは煤の前駆体又はその前
の状態の炭化水素である。
【0028】図2および図3に示される実験結果に基づ
くこれらの考察をまとめると燃焼室5内の燃焼温度が低
いときには煤の発生量がほぼ零になり、このとき煤の前
駆体又はその前の状態の炭化水素が燃焼室5から排出さ
れることになる。このことについて更に詳細に実験研究
を重ねた結果、燃焼室5内における燃料およびその周囲
のガス温度が或る温度以下である場合には煤の成長過程
が途中で停止してしまい、即ち煤が全く発生せず、燃焼
室5内における燃料およびその周囲の温度が或る温度以
上になると煤が生成されることが判明したのである。
【0029】ところで煤の前駆体の状態で炭化水素の生
成過程が停止するときの燃料およびその周囲の温度、即
ち上述の或る温度は燃料の種類や空燃比圧縮比等の種
々の要因によって変化するので何度であるかということ
は言えないがこの或る温度はNOx の発生量と深い関係
を有しており、従ってこの或る温度はNOx の発生量か
ら或る程度規定することができる。即ち、EGR率が増
大するほど燃焼時の燃料およびその周囲のガス温度は低
下し、NOx の発生量が低下する。このときNOx の発
生量が10p.p.m 前後又はそれ以下になったときに煤が
ほとんど発生しなくなる。従って上述の或る温度はNO
x の発生量が10p.p.m 前後又はそれ以下になったとき
の温度にほぼ一致する。
【0030】一旦、煤が生成されるとこの煤は酸化機能
を有する触媒を用いた後処理でもって浄化することはで
きない。これに対して煤の前駆体又はその前の状態の炭
化水素は酸化機能を有する触媒を用いた後処理でもって
容易に浄化することができる。このように酸化機能を有
する触媒による後処理を考えると炭化水素を煤の前駆体
又はその前の状態で燃焼室5から排出させるか、或いは
煤の形で燃焼室5から排出させるかについては極めて大
きな差がある。本発明において採用されている新たな燃
焼システムは燃焼室5内において煤を生成させることな
く炭化水素を煤の前駆体又はその前の状態の形でもって
燃焼室5から排出させ、この炭化水素を酸化機能を有す
る触媒により酸化せしめることを核としている。
【0031】さて、煤が生成される前の状態で炭化水素
の成長を停止させるには燃焼室5内における燃焼時の燃
料およびその周囲のガス温度を煤が生成される温度より
も低い温度に抑制する必要がある。この場合、燃料およ
びその周囲のガス温度を抑制するには燃料が燃焼した際
の燃料周りのガスの吸熱作用が極めて大きく影響するこ
とが判明している。
【0032】即ち、燃料周りに空気しか存在しないと蒸
発した燃料はただちに空気中の酸素と反応して燃焼す
る。この場合、燃料から離れている空気の温度はさほど
上昇せず、燃料周りの温度のみが局所的に極めて高くな
る。即ち、このときには燃料から離れている空気は燃料
の燃焼熱の吸熱作用をほとんど行わない。この場合には
燃焼温度が局所的に極めて高くなるために、この燃焼熱
を受けた未燃炭化水素は煤を生成することになる。
【0033】一方、多量の不活性ガスと少量の空気の混
合ガス中に燃料が存在する場合には若干状況が異なる。
この場合には蒸発燃料は周囲に拡散して不活性ガス中に
混在する酸素と反応し、燃焼することになる。この場合
には燃焼熱は周りの不活性ガスに吸収されるために燃焼
温度はさほど上昇しなくなる。即ち、燃焼温度を低く抑
えることができることになる。即ち、燃焼温度を抑制す
るには不活性ガスの存在が重要な役割を果しており、不
活性ガスの吸熱作用によって燃焼温度を低く抑えること
ができることになる。
【0034】この場合、燃料およびその周囲のガス温度
を煤が生成される温度よりも低い温度に抑制するにはそ
うするのに十分な熱量を吸収しうるだけの不活性ガス量
が必要となる。従って燃料量が増大すれば必要となる不
活性ガス量はそれに伴なって増大することになる。な
お、この場合、不活性ガスの比熱が大きいほど吸熱作用
が強力となり、従って不活性ガスは比熱の大きなガスが
好ましいことになる。この点、CO2 やEGRガスは比
較的比熱が大きいので不活性ガスとしてEGRガスを用
いることは好ましいと言える。
【0035】図5は不活性ガスとしてEGRガスを用
い、EGRガスの冷却度合を変えたときのEGR率とス
モークとの関係を示している。即ち、図5において曲線
AはEGRガスを強力に冷却してEGRガス温をほぼ9
0℃に維持した場合を示しており、曲線Bは小型の冷却
装置でEGRガスを冷却した場合を示しており、曲線C
はEGRガスを強制的に冷却していない場合を示してい
る。
【0036】図5の曲線Aで示されるようにEGRガス
を強力に冷却した場合にはEGR率が50パーセントよ
りも少し低いところで煤の発生量がピークとなり、この
場合にはEGR率をほぼ55パーセント以上にすれば煤
がほとんど発生しなくなる。一方、図5の曲線Bで示さ
れるようにEGRガスを少し冷却した場合にはEGR率
が50パーセントよりも少し高いところで煤の発生量が
ピークとなり、この場合にはEGR率をほぼ65パーセ
ント以上にすれば煤がほとんど発生しなくなる。
【0037】また、図5の曲線Cで示されるようにEG
Rガスを強制的に冷却していない場合にはEGR率が5
5パーセントの付近で煤の発生量がピークとなり、この
場合にはEGR率をほぼ70パーセント以上にすれば煤
がほとんど発生しなくなる。なお、図5は機関負荷が比
較的高いときのスモークの発生量を示しており、機関負
荷が小さくなると煤の発生量がピークとなるEGR率は
若干低下し、煤がほとんど発生しなくなるEGR率の下
限も若干低下する。このように煤がほとんど発生しなく
なるEGR率の下限はEGRガスの冷却度合や機関負荷
に応じて変化する。
【0038】図6は不活性ガスとしてEGRガスを用い
た場合において燃焼時の燃料およびその周囲のガス温度
を煤が生成される温度よりも低い温度にするために必要
なEGRガスと空気の混合ガス量、およびこの混合ガス
量中の空気の割合、およびこの混合ガス中のEGRガス
の割合を示している。なお、図6において縦軸は燃焼室
5内に吸入される全吸入ガス量を示しており、鎖線Yは
過給が行われないときに燃焼室5内に吸入しうる全吸入
ガス量を示している。また、横軸は要求負荷を示してい
る。
【0039】図6を参照すると空気の割合、即ち混合ガ
ス中の空気量は噴射された燃料を完全に燃焼せしめるの
に必要な空気量を示している。即ち、図6に示される場
合では空気量と噴射燃料量との比は理論空燃比となって
いる。一方、図6においてEGRガスの割合、即ち混合
ガス中のEGRガス量は噴射燃料が燃焼せしめられたと
きに燃料およびその周囲のガス温度を煤が形成される温
度よりも低い温度にするのに必要最低限のEGRガス量
を示している。このEGRガス量はEGR率で表すとほ
ぼ55パーセント以上であり、図6に示す実施例では7
0パーセント以上である。即ち、燃焼室5内に吸入され
た全吸入ガス量を図6において実線Xとし、この全吸入
ガス量Xのうちの空気量とEGRガス量との割合を図6
に示すような割合にすると燃料およびその周囲のガス温
度は煤が生成される温度よりも低い温度となり、斯くし
て煤が全く発生しなくなる。また、このときのNOx
生量は10p.p.m 前後、又はそれ以下であり、従ってN
x の発生量は極めて少量となる。
【0040】燃料噴射量が増大すれば燃料が燃焼した際
の発熱量が増大するので燃料およびその周囲のガス温度
を煤が生成される温度よりも低い温度に維持するために
はEGRガスによる熱の吸収量を増大しなければならな
い。従って図6に示されるようにEGRガス量は噴射燃
料量が増大するにつれて増大せしめなければならない。
即ち、EGRガス量は要求負荷が高くなるにつれて増大
する必要がある。
【0041】ところで過給が行われていない場合には燃
焼室5内に吸入される全吸入ガス量Xの上限はYであ
り、従って図6において要求負荷がLo よりも大きい領
域では要求負荷が大きくなるにつれてEGRガス割合を
低下させない限り空燃比を理論空燃比に維持することが
できない。云い換えると過給が行われていない場合に要
求負荷がLo よりも大きい領域において空燃比を理論空
燃比に維持しようとした場合には要求負荷が高くなるに
つれてEGR率が低下し、斯くして要求負荷がLo より
も大きい領域では燃料およびその周囲のガス温度を煤が
生成される温度よりも低い温度に維持しえなくなる。
【0042】ところが図1に示されるようにEGR通路
29を介して過給機の入口側即ち排気ターボチャージャ
15の空気吸込管17内にEGRガスを再循環させると
要求負荷がLo よりも大きい領域においてEGR率を5
5パーセント以上、例えば70パーセントに維持するこ
とができ、斯くして燃料およびその周囲のガス温度を煤
が生成される温度よりも低い温度に維持することができ
る。即ち、空気吸込管17内におけるEGR率が例えば
70パーセントになるようにEGRガスを再循環させれ
ば排気ターボチャージャ15のコンプレッサ16により
昇圧された吸入ガスのEGR率も70パーセントとな
り、斯くしてコンプレッサ16により昇圧しうる限度ま
で燃料およびその周囲のガス温度を煤が生成される温度
よりも低い温度に維持することができる。従って、低温
燃焼を生じさせることのできる機関の運転領域を拡大す
ることができることになる。要求負荷がLo よりも大き
い領域でEGR率を55パーセント以上にする際にはE
GR制御弁31が全開せしめられる、スロットル弁20
が若干閉弁せしめられる。
【0043】前述したように図6は燃料を理論空燃比の
もとで燃焼させる場合を示しているが空気量を図6に示
される空気量よりも少くしても、即ち空燃比をリッチに
しても煤の発生を阻止しつつNOx の発生量を10p.p.
m 前後又はそれ以下にすることができ、また空気量を図
6に示される空気量よりも多くしても、即ち空燃比の平
均値を17から18のリーンにしても煤の発生を阻止し
つつNOx の発生量を10p.p.m 前後又はそれ以下にす
ることができる。
【0044】即ち、空燃比がリッチにされると燃料が過
剰となるが燃焼温度が低い温度に抑制されているために
過剰な燃料は煤まで成長せず、斯くして煤が生成される
ことがない。また、このときNOx も極めて少量しか発
生しない。一方、平均空燃比がリーンのとき、或いは空
燃比が理論空燃比のときでも燃焼温度が高くなれば少量
の煤が生成されるが本発明では燃焼温度が低い温度に抑
制されているので煤は全く生成されない。更に、NOx
も極めて少量しか発生しない。
【0045】このように、低温燃焼が行われているとき
には空燃比にかかわらずに、即ち空燃比がリッチであろ
うと、理論空燃比であろうと、或いは平均空燃比がリー
ンであろうと煤が発生されず、NOx の発生量が極めて
少量となる。従って燃料消費率の向上を考えるとこのと
き平均空燃比をリーンにすることが好ましいと言える。
【0046】ところで燃焼室内における燃焼時の燃料お
よびその周囲のガス温度を炭化水素の成長が途中で停止
する温度以下に抑制しうるのは燃焼による発熱量が比較
的少ない機関中低負荷運転時に限られる。従って本発明
による実施例では機関中低負荷運転時には燃焼時の燃料
およびその周囲のガス温度を炭化水素の成長が途中で停
止する温度以下に抑制して第1の燃焼、即ち低温燃焼を
行うようにし、機関高負荷運転時には第2の燃焼、即ち
従来より普通に行われている燃焼を行うようにしてい
る。なお、ここで第1の燃焼、即ち低温燃焼とはこれま
での説明から明らかなように煤の発生量がピークとなる
不活性ガス量よりも燃焼室内の不活性ガス量が多く煤が
ほとんど発生しない燃焼のことを言い、第2の燃焼、即
ち従来より普通に行われている燃焼とは煤の発生量がピ
ークとなる不活性ガス量よりも燃焼室内の不活性ガス量
が少い燃焼のことを言う。
【0047】図7は第1の燃焼、即ち低温燃焼が行われ
る第1の運転領域Iと、第2の燃焼、即ち従来の燃焼方
法による燃焼が行われる第2の運転領域IIとを示してい
る。なお、図7において縦軸Lはアクセルペダル50の
踏込み量、即ち要求負荷を示しており、横軸Nは機関回
転数を示している。また、図7においてX(N)は第1
の運転領域Iと第2の運転領域IIとの第1の境界を示し
ており、Y(N)は第1の運転領域Iと第2の運転領域
IIとの第2の境界を示している。第1の運転領域Iから
第2の運転領域IIへの運転領域の変化判断は第1の境界
X(N)に基づいて行われ、第2の運転領域IIから第1
の運転領域Iへの運転領域の変化判断は第2の境界Y
(N)に基づいて行われる。
【0048】即ち、機関の運転状態が第1の運転領域I
にあって低温燃焼が行われているときに要求負荷Lが機
関回転数Nの関数である第1の境界X(N)を越えると
運転領域が第2の運転領域IIに移ったと判断され、従来
の燃焼方法による燃焼が行われる。次いで要求負荷Lが
機関回転数Nの関数である第2の境界Y(N)よりも低
くなると運転領域が第1の運転領域Iに移ったと判断さ
れ、再び低温燃焼が行われる。このように第1の境界X
(N)と第1の境界X(N)よりも低負荷側の第2の境
界Y(N)との二つの境界を設けたのは次の二つの理由
による。第1の理由は、第2の運転領域IIの高負荷側で
は比較的燃焼温度が高く、このとき要求負荷Lが第1の
境界X(N)より低くなったとしてもただちに低温燃焼
を行えないからである。即ち、要求負荷Lがかなり低く
なったとき、即ち第2の境界Y(N)よりも低くなった
ときでなければただちに低温燃焼が開始されないからで
ある。第2の理由は第1の運転領域Iと第2の運転領域
II間の運転領域の変化に対してヒステリシスを設けるた
めである。
【0049】ところで機関の運転領域が第1の運転領域
Iにあって低温燃焼が行われているときには煤はほとん
ど発生せず、その代り未燃炭化水素が煤の前駆体又はそ
の前の状態の形でもって燃焼室5から排出される。この
とき燃焼室5から排出された未燃炭化水素は酸化機能を
有する触媒25により良好に酸化せしめられる。触媒2
5としては酸化触媒、三元触媒、又はNOx 吸収剤を用
いることができる。NOx 吸収剤は燃焼室5内における
平均空燃比がリーンのときにNOx を吸収し、燃焼室5
内における平均空燃比がリッチになるとNOx を放出す
る機能を有する。
【0050】このNOx 吸収剤は例えばアルミナを担体
とし、この担体上に例えばカリウムK、ナトリウムN
a、リチウムLi、セシウムCsのようなアルカリ金
属、バリウムBa、カルシウムCaのようなアルカリ土
類、ランタンLa、イットリウムYのような希土類から
選ばれた少くとも一つと、白金Ptのような貴金属とが
担持されている。
【0051】酸化触媒はもとより、三元触媒およびNO
x 吸収剤も酸化機能を有しており、従って上述した如く
三元触媒およびNOx 吸収剤を触媒25として用いるこ
とができる。図8は空燃比センサ27の出力を示してい
る。図8に示されるように空燃比センサ27の出力電流
Iは空燃比A/Fに応じて変化する。従って空燃比セン
サ27の出力電流Iから空燃比を知ることができる。
【0052】次に図9を参照しつつ第1の運転領域Iお
よび第2の運転領域IIにおける運転制御について概略的
に説明する。図9は要求負荷Lに対するスロットル弁2
0の開度、EGR制御弁31の開度、EGR率、空燃
比、噴射時期および噴射量を示している。図9に示され
るように要求負荷Lの低い第1の運転領域Iではスロッ
トル弁20の開度は要求負荷Lが高くなるにつれて全閉
近くから2/3開度程度まで徐々に増大せしめられ、E
GR制御弁31の開度は要求負荷Lが高くなるにつれて
全閉近くから全開まで徐々に増大せしめられる。また、
図9に示される例では第1の運転領域IではEGR率が
ほぼ70パーセントとされており、空燃比はわずかばか
りリーンなリーン空燃比とされている。
【0053】言い換えると第1の運転領域IではEGR
率がほぼ70パーセントとなり、空燃比がわずかばかり
リーンなリーン空燃比となるようにスロットル弁20の
開度およびEGR制御弁31の開度が制御される。ま
た、第1の運転領域Iでは圧縮上死点TDC前に燃料噴
射が行われる。この場合、噴射開始時期θSは要求負荷
Lが高くなるにつれて遅くなり、噴射完了時期θEも噴
射開始時期θSが遅くなるにつれて遅くなる。
【0054】なお、アイドリング運転時にはスロットル
弁20は全閉近くまで閉弁され、このときEGR制御弁
31も全閉近くまで閉弁せしめられる。スロットル弁2
0を全閉近くまで閉弁すると圧縮始めの燃焼室5内の圧
力が低くなるために圧縮圧力が小さくなる。圧縮圧力が
小さくなるとピストン4による圧縮仕事が小さくなるた
めに機関本体1の振動が小さくなる。即ち、アイドリン
グ運転時には機関本体1の振動を抑制するためにスロッ
トル弁20が全閉近くまで閉弁せしめられる。
【0055】一方、機関の運転領域が第1の運転領域I
から第2の運転領域IIに変わるとスロットル弁20の開
度が2/3開度程度から全開方向へステップ状に増大せ
しめられる。このとき図9に示す例ではEGR率がほぼ
70パーセントから40パーセント以下までステップ状
に減少せしめられ、空燃比がステップ状に大きくされ
る。即ち、EGR率が多量のスモークを発生するEGR
率範囲(図5)を飛び越えるので機関の運転領域が第1
の運転領域Iから第2の運転領域IIに変わるときに多量
のスモークが発生することがない。
【0056】第2の運転領域IIでは従来から行われてい
る燃焼が行われる。この第2の運転領域IIではスロット
ル弁20は一部を除いて全開状態に保持され、EGR制
御弁31の開度は要求負荷Lが高くなると次第に小さく
される。また、この運転領域IIではEGR率は要求負荷
Lが高くなるほど低くなり、空燃比は要求負荷Lが高く
なるほど小さくなる。ただし、空燃比は要求負荷Lが高
くなってもリーン空燃比とされる。また、第2の運転領
域IIでは噴射開始時期θSは圧縮上死点TDC付近とさ
れる。
【0057】図10(A)は第1の運転領域Iにおける
目標空燃比A/Fを示している。図10(A)におい
て、A/F=15.5,A/F=16,A/F=17,
A/F=18で示される各曲線は夫々目標空燃比が1
5.5,16,17,18であるときを示しており、各
曲線間の空燃比は比例配分により定められる。図10
(A)に示されるように第1の運転領域Iでは空燃比が
リーンとなっており、更に第1の運転領域Iでは要求負
荷Lが低くなるほど目標空燃比A/Fがリーンとされ
る。
【0058】即ち、要求負荷Lが低くなるほど燃焼によ
る発熱量が少くなる。従って要求負荷Lが低くなるほど
EGR率を低下させても低温燃焼を行うことができる。
EGR率を低下させると空燃比は大きくなり、従って図
10(A)に示されるように要求負荷Lが低くなるにつ
れて目標空燃比A/Fが大きくされる。目標空燃比A/
Fが大きくなるほど燃料消費率は向上し、従ってできる
限り空燃比をリーンにするために本発明による実施例で
は要求負荷Lが低くなるにつれて目標空燃比A/Fが大
きくされる。
【0059】なお、図10(A)に示される目標空燃比
A/Fは図10(B)に示されるように要求負荷Lおよ
び機関回転数Nの関数としてマップの形で予めROM4
2内に記憶されている。また、空燃比を図10(A)に
示す目標空燃比A/Fとするのに必要なスロットル弁2
0の目標開度STが図11(A)に示されるように要求
負荷Lおよび機関回転数Nの関数としてマップの形で予
めROM42内に記憶されており、空燃比を図10
(A)に示す目標空燃比A/Fとするのに必要なEGR
制御弁31の目標開度SEが図11(B)に示されるよ
うに要求負荷Lおよび機関回転数Nの関数としてマップ
の形で予めROM42内に記憶されている。
【0060】図12(A)は第2の燃焼、即ち従来の燃
焼方法による普通の燃焼が行われるときの目標空燃比A
/Fを示している。なお、図12(A)においてA/F
=24,A/F=35,A/F=45,A/F=60で
示される各曲線は夫々目標空燃比24,35,45,6
0を示している。図12(A)に示される目標空燃比A
/Fは図12(B)に示されるように要求負荷Lおよび
機関回転数Nの関数としてマップの形で予めROM42
内に記憶されている。また、空燃比を図12(A)に示
す目標空燃比A/Fとするのに必要なスロットル弁20
の目標開度STが図13(A)に示されるように要求負
荷Lおよび機関回転数Nの関数としてマップの形で予め
ROM42内に記憶されており、空燃比を図12(A)
に示す目標空燃比A/Fとするのに必要なEGR制御弁
31の目標開度SEが図13(B)に示されるように要
求負荷Lおよび機関回転数Nの関数としてマップの形で
予めROM42内に記憶されている。
【0061】また、第2の燃焼が行われているときには
燃料噴射量Qは要求負荷Lおよび機関回転数Nに基づい
て算出される。この燃料噴射量Qは図14に示されるよ
うに要求負荷Lおよび機関回転数Nの関数としてマップ
の形で予めROM42内に記憶されている。次に図15
を参照しつつ運転制御について説明する。
【0062】図15を参照すると、まず初めにステップ
100において機関の運転状態が第1の運転領域Iであ
ることを示すフラグIがセットされているか否かが判別
される。フラグIがセットされているとき、即ち機関の
運転状態が第1の運転領域Iであるときにはステップ1
01に進んで要求負荷Lが第1の境界X1(N)よりも
大きくなったか否かが判別される。L≦X1(N)のと
きにはステップ103に進んで低温燃焼が行われる。
【0063】即ち、ステップ103では図11(A)に
示すマップからスロットル弁20の目標開度STが算出
され、スロットル弁20の開度がこの目標開度STとさ
れる。次いでステップ104では図11(B)に示すマ
ップからEGR制御弁31の目標開度SEが算出され、
EGR制御弁31の開度がこの目標開度SEとされる。
次いでステップ105では質量流量検出器21により検
出された吸入空気の質量流量(以下、単に吸入空気量と
称す)Gaが取込まれ、次いでステップ106では図1
0(B)に示すマップから目標空燃比A/Fが算出され
る。次いでステップ107では吸入空気量Gaと目標空
燃比A/Fに基づいて空燃比を目標空燃比A/Fとする
のに必要な燃料噴射量Qが算出される。
【0064】このように低温燃焼が行われているときに
は要求負荷L又は機関回転数Nが変化するとスロットル
弁20の開度およびEGR制御弁31の開度がただちに
要求負荷Lおよび機関回転数Nに応じた目標開度ST,
SEに一致せしめられる。従って例えば要求負荷Lが増
大せしめられるとただちに燃焼室5内の空気量が増大せ
しめられ、斯くして機関の発生トルクがただちに増大せ
しめられる。
【0065】一方、スロットル弁20の開度又はEGR
制御弁31の開度が変化して吸入空気量が変化するとこ
の吸入空気量Gaの変化が質量流量検出器21により検
出され、この検出された吸入空気量Gaに基づいて燃料
噴射量Qが制御される。即ち、吸入空気量Gaが実際に
変化した後に燃料噴射量Qが変化せしめられることにな
る。
【0066】ステップ101においてL>X(N)にな
ったと判別されたときにはステップ102に進んでフラ
グIがリセットされ、次いでステップ110に進んで第
2の燃焼が行われる。即ち、ステップ110では図14
に示されるマップから目標燃料噴射量Qが算出され、燃
料噴射量がこの目標燃料噴射量Qとされる。次いでステ
ップ111では図13(A)に示すマップからスロット
ル弁20の目標開度STが算出される。次いでステップ
112では図13(B)に示すマップからEGR制御弁
31の目標開度SEが算出され、EGR制御弁31の開
度がこの目標開度SEとされる。
【0067】次いでステップ113では質量流量検出器
21により検出された吸入空気量Gaが取込まれる。次
いでステップ114では燃料噴射量Qと吸入空気量Ga
から実際の空燃比(A/F)R が算出される。次いでス
テップ115では図12(B)に示すマップから目標空
燃比A/Fが算出される。次いでステップ116では実
際の空燃比(A/F)R が目標空燃比A/Fよりも大き
いか否かが判別される。(A/F)R >A/Fのときに
はステップ117に進んでスロットル開度の補正値ΔS
Tが一定値αだけ減少せしめられ、次いでステップ11
9へ進む。これに対して(A/F)R ≦A/Fのときに
はステップ118に進んで補正値ΔSTが一定値αだけ
増大せしめられ、次いでステップ119に進む。ステッ
プ119ではスロットル弁20の目標開度STに補正値
ΔSTを加算することにより最終的な目標開度STが算
出され、スロットル弁20の開度がこの最終的な目標開
度STとされる。即ち、実際の空燃比(A/F)R が目
標空燃比A/Fとなるようにスロットル弁20の開度が
制御される。
【0068】このように第2の燃焼が行われているとき
には要求負荷L又は機関回転数Nが変化すると燃料噴射
量がただちに要求負荷Lおよび機関回転数Nに応じた目
標燃料噴射量Qに一致せしめられる。例えば要求負荷L
が増大せしめられるとただちに燃料噴射量が増大せしめ
られ、斯くして機関の発生トルクがただちに増大せしめ
られる。
【0069】一方、燃料噴射量Qが増大せしめられて空
燃比が目標空燃比A/Fからずれると空燃比が目標空燃
比A/Fとなるようにスロットル弁20の開度が制御さ
れる。即ち、燃料噴射量Qが変化した後に空燃比が変化
せしめられることになる。フラグIがリセットされると
次の処理サイクルではステップ100からステップ10
8に進んで要求負荷Lが第2の境界Y(N)よりも低く
なったか否かが判別される。L≧Y(N)のときにはス
テップ110に進み、リーン空燃比のもとで第2の燃焼
が行われる。
【0070】一方、ステップ108においてL<Y
(N)になったと判別されたときにはステップ109に
進んでフラグIがセットされ、次いでステップ103に
進んで低温燃焼が行われる。これまで述べた実施例では
低温燃焼が行われているときに燃料噴射量Qはオープン
ループ制御され、第2の燃焼が行われているときに空燃
比がスロットル弁20の開度を変化させることによって
制御される。しかしながら低温燃焼が行われているとき
に燃料噴射量Qを空燃比センサ27の出力信号に基づい
てフィードバック制御することもできるし、また第2の
燃焼が行われているときに空燃比をEGR制御弁31の
開度を変化させることによって制御することもできる。
【0071】図16は低温燃焼時には燃料噴射量Qを空
燃比センサ27の出力信号に基づいてフィードバック制
御し、第2の燃焼時にはEGR制御弁31の開度を制御
することによって空燃比を制御するようにした実施例を
示している。図16を参照すると、まず初めにステップ
200において機関の運転状態が第1の運転領域Iであ
ることを示すフラグIがセットされているか否かが判別
される。フラグIがセットされているとき、即ち機関の
運転状態が第1の運転領域Iであるときにはステップ2
01に進んで要求負荷Lが第1の境界X1(N)よりも
大きくなったか否かが判別される。L≦X1(N)のと
きにはステップ203に進んで低温燃焼が行われる。
【0072】即ち、ステップ203では図11(A)に
示すマップからスロットル弁20の目標開度STが算出
され、スロットル弁20の開度がこの目標開度STとさ
れる。次いでステップ204では図11(B)に示すマ
ップからEGR制御弁31の目標開度SEが算出され、
EGR制御弁31の開度がこの目標開度SEとされる。
次いでステップ205では目標燃料噴射量Qが算出され
る。この目標燃料噴射量Qは図17に示されるように要
求負荷Lおよび機関回転数Nの関数としてマップの形で
予めROM42内に記憶されている。
【0073】次いでステップ206では空燃比センサ2
7の出力信号から実際の空燃比(A/F)R が算出され
る。次いでステップ207では図10(B)に示すマッ
プから目標空燃比A/Fが算出される。次いでステップ
208では実際の空燃比(A/F)R が目標空燃比A/
Fよりも大きいか否かが判別される。(A/F)R >A
/Fのときにはステップ209に進んで燃料噴射量の補
正値ΔQが一定値βだけ増大せしめられ、次いでステッ
プ211へ進む。これに対して(A/F)R ≦A/Fの
ときにはステップ210に進んで補正値ΔQが一定値β
だけ減少せしめられ、次いでステップ211に進む。ス
テップ211では目標燃料噴射量Qに補正値ΔQを加算
することにより最終的な目標燃料噴射量Qが算出され、
燃料噴射量がこの最終的な目標燃料噴射量Qとされる。
即ち、実際の空燃比(A/F)Rが目標空燃比A/Fと
なるように燃料噴射量が制御される。
【0074】この実施例においても低温燃焼が行われて
いるときには要求負荷L又は機関回転数Nが変化すると
スロットル弁20の開度およびEGR制御弁31の開度
がただちに要求負荷Lおよび機関回転数Nに応じた目標
開度ST,SEに一致せしめられる。従って、例えば要
求負荷Lが増大せしめられるとただちに燃焼室5内の空
気量が増大せしめられ、斯くして機関の発生トルクがた
だちに増大せしめられる。また、この実施例では燃焼室
5内の空気量が変化した後に燃料噴射量Qが変化せしめ
られることになる。
【0075】一方、ステップ201においてL>X
(N)になったと判別されたときにはステップ202に
進んでフラグIがリセットされ、次いでステップ214
に進んで第2の燃焼が行われる。即ち、ステップ214
では図14に示されるマップから目標燃料噴射量Qが算
出され、燃料噴射量がこの目標燃料噴射量Qとされる。
次いでステップ215では図13(A)に示すマップか
らスロットル弁20の目標開度STが算出され、スロッ
トル弁20の開度がこの目標開度STとされる。次いで
ステップ216では図13(B)に示すマップからEG
R制御弁31の目標開度SEが算出される。
【0076】次いでステップ217では質量流量検出器
21により検出された吸入空気量Gaが取込まれる。次
いでステップ218では燃料噴射量Qと吸入空気量Ga
から実際の空燃比(A/F)R が算出される。次いでス
テップ219では図12(B)に示すマップから目標空
燃比A/Fが算出される。次いでステップ220では実
際の空燃比(A/F)R が目標空燃比A/Fよりも大き
いか否かが判別される。(A/F)R >A/Fのときに
はステップ221に進んでEGR制御弁開度の補正値Δ
SEが一定値αだけ増大せしめられ、次いでステップ2
23へ進む。これに対して(A/F)R ≦A/Fのとき
にはステップ222に進んで補正値ΔSEが一定値αだ
け減少せしめられ、次いでステップ223に進む。ステ
ップ223ではEGR制御弁31の目標開度SEに補正
値ΔSEを加算することにより最終的な目標開度SEが
算出され、EGR制御弁31の開度がこの最終的な目標
開度SEとされる。即ち、実際の空燃比(A/F)R
目標空燃比A/FとなるようにEGR制御弁31の開度
が制御される。
【0077】この実施例でも第2の燃焼が行われている
ときには要求負荷L又は機関回転数Nが変化すると燃料
噴射量がただちに要求負荷Lおよび機関回転数Nに応じ
た目標燃料噴射量Qに一致せしめられる。従って、例え
ば要求負荷Lが増大せしめられるとただちに燃料噴射量
が増大せしめられ、斯くして機関の発生トルクがただち
に増大せしめられる。また、この実施例においても燃料
噴射量Qが変化した後に空燃比が変化せしめられること
になる。
【0078】フラグIがリセットされると次の処理サイ
クルではステップ200からステップ212に進んで要
求負荷Lが第2の境界Y(N)よりも低くなったか否か
が判別される。L≧Y(N)のときにはステップ214
に進み、リーン空燃比のもとで第2の燃焼が行われる。
一方、ステップ212においてL<Y(N)になったと
判別されたときにはステップ213に進んでフラグIが
セットされ、次いでステップ203に進んで低温燃焼が
行われる。
【0079】図18に吸入空気量を検出するための別の
実施例を示す。この実施例ではスロットル弁20の上流
側と下流側の圧力差ΔPを検出するための圧力差検出器
60が設けられ、この圧力差ΔPの平方根とスロットル
弁20の有効流路面積Sとの積から吸入空気量Gaが求
められる。なお、この場合スロットル弁20の有効流路
面積Sは図19に示されるようにスロットル弁開度TA
の関数であり、図19に示す関係は予め実験により求め
られる。
【0080】
【発明の効果】機関の出力トルクの応答性を高めること
ができる。
【図面の簡単な説明】
【図1】圧縮着火式内燃機関の全体図である。
【図2】スモークおよびNOx の発生量等を示す図であ
る。
【図3】燃焼圧を示す図である。
【図4】燃料分子を示す図である。
【図5】スモークの発生量とEGR率との関係を示す図
である。
【図6】噴射燃料量と混合ガス量との関係を示す図であ
る。
【図7】第1の運転領域Iおよび第2の運転領域IIを示
す図である。
【図8】空燃比センサの出力を示す図である。
【図9】スロットル弁の開度等を示す図である。
【図10】第1の運転領域Iにおける空燃比等を示す図
である。
【図11】スロットル弁等の目標開度のマップを示す図
である。
【図12】第2の燃焼における空燃比等を示す図であ
る。
【図13】スロットル弁等の目標開度のマップを示す図
である。
【図14】燃料噴射量のマップを示す図である。
【図15】機関の運転を制御するためのフローチャート
である。
【図16】機関の運転を制御するための別の実施例を示
すフローチャートである。
【図17】燃料噴射量のマップを示す図である。
【図18】圧縮着火式内燃機関の別の実施例を示す図で
ある。
【図19】スロットル弁の有効流路面積を示す図であ
る。
【符号の説明】
6…燃料噴射弁 15…排気ターボチャージャ 20…スロットル弁 29…EGR通路 31…EGR制御弁
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI F02D 41/02 330 F02D 41/02 330E F02M 25/07 550 F02M 25/07 550R 570 570J (72)発明者 吉▲崎▼ 康二 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (72)発明者 村田 宏樹 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (56)参考文献 特開 平7−4287(JP,A) 特開 平8−177654(JP,A) 特開 平8−86251(JP,A) 特開 平9−287527(JP,A) 特開 平9−287528(JP,A) 特開 平7−279718(JP,A) 特開 平10−141125(JP,A) 特開 平9−4519(JP,A) 特開 平9−14026(JP,A) 特開 平11−36923(JP,A) (58)調査した分野(Int.Cl.7,DB名) F02D 41/00 - 45/00 395

Claims (10)

    (57)【特許請求の範囲】
  1. 【請求項1】 燃焼室内に供給される再循環排気ガス量
    を増大していくと煤の発生量が次第に増大してピークに
    達し、燃焼室内に供給される再循環排気ガス量を更に増
    大していくと燃焼室内における燃焼時の燃料およびその
    周囲のガス温が煤の生成温度よりも低くなって煤がほと
    んど発生しなくなる内燃機関において、煤の発生量がピ
    ークとなる再循環排気ガス量よりも燃焼室内に供給され
    る再循環排気ガス量が多く煤がほとんど発生しない第1
    の燃焼と、煤の発生量がピークとなる再循環ガス量より
    も燃焼室内に供給される再循環排気ガス量が少ない第2
    の燃焼とを選択的に切換える切換手段と、燃焼室内に供
    給される吸入ガス量を制御する制御手段と、燃焼室内に
    供給される吸入空気量を検出する検出手段とを具備し、
    第1の燃焼が行われているときには要求負荷および機関
    回転数に基づいて吸入ガス量を制御すると共に検出手段
    により検出された吸入空気量に基づいて燃料噴射量を制
    御するようにした内燃機関。
  2. 【請求項2】 上記制御手段が燃焼室に供給される吸入
    空気量を制御するためのスロットル弁と、燃焼室内に再
    循環される再循環排気ガス量を制御するための再循環排
    気ガス制御弁からなり、要求負荷および機関回転数に応
    じたスロットル弁の目標開度と、要求負荷および機関回
    転数に応じた再循環排気ガス制御弁の目標開度が予め記
    憶されており、第1の燃焼が行われているときにはスロ
    ットル弁の開度および再循環排気ガス制御弁の開度が夫
    々対応する目標開度とされる請求項1に記載の内燃機
    関。
  3. 【請求項3】 第1の燃焼が行われているときには検出
    手段により検出された吸入空気量に基づいて空燃比が目
    標空燃比となるように燃料噴射量が制御される請求項1
    に記載の内燃機関。
  4. 【請求項4】 第2の燃焼が行われているときには要求
    負荷および機関回転数に基づいて燃料噴射量を制御する
    と共に検出手段により検出された吸入空気量に基づいて
    吸入ガス量を制御するようにした請求項1に記載の内燃
    機関。
  5. 【請求項5】 要求負荷および機関回転数に応じた目標
    燃料噴射量が予め記憶されており、第2の燃焼が行われ
    ているときには燃料噴射量が該目標燃料噴射量とされる
    請求項4に記載の内燃機関。
  6. 【請求項6】 上記制御手段が燃焼室に供給される吸入
    空気量を制御するためのスロットル弁と、燃焼室内に再
    循環される再循環排気ガス量を制御するための再循環排
    気ガス制御弁からなり、第2の燃焼が行われているとき
    には検出手段により検出された吸入空気量に基づいて空
    燃比が目標空燃比となるようにスロットル弁又は再循環
    排気ガス制御弁の少くともいずれか一方が制御される請
    求項4に記載の内燃機関。
  7. 【請求項7】 第1の燃焼が行われているときの排気ガ
    ス再循環率がほぼ55パーセント以上であり、第2の燃
    焼が行われているときの排気ガス再循環率がほぼ50パ
    ーセント以下である請求項1に記載の内燃機関。
  8. 【請求項8】 機関排気通路内に酸化機能を有する触媒
    を配置した請求項1に記載の内燃機関。
  9. 【請求項9】 該触媒が酸化触媒、三元触媒又はNOx
    吸収剤の少くとも一つからなる請求項8に記載の内燃機
    関。
  10. 【請求項10】 機関の運転領域を低負荷側の第1の運
    転領域と高負荷側の第2の運転領域に分割し、第1の運
    転領域では第1の燃焼を行い、第2の運転領域では第2
    の燃焼を行うようにした請求項1に記載の内燃機関。
JP20065198A 1998-07-15 1998-07-15 内燃機関 Expired - Fee Related JP3341683B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP20065198A JP3341683B2 (ja) 1998-07-15 1998-07-15 内燃機関
US09/348,282 US6209515B1 (en) 1998-07-15 1999-07-07 Internal combustion engine, controller and method
EP99113774A EP0972925B1 (en) 1998-07-15 1999-07-14 Internal combustion engine
DE69928178T DE69928178T2 (de) 1998-07-15 1999-07-14 Brennkraftmaschine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20065198A JP3341683B2 (ja) 1998-07-15 1998-07-15 内燃機関

Publications (2)

Publication Number Publication Date
JP2000027698A JP2000027698A (ja) 2000-01-25
JP3341683B2 true JP3341683B2 (ja) 2002-11-05

Family

ID=16427957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20065198A Expired - Fee Related JP3341683B2 (ja) 1998-07-15 1998-07-15 内燃機関

Country Status (1)

Country Link
JP (1) JP3341683B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101405805B1 (ko) 2008-06-10 2014-06-12 현대자동차주식회사 질소산화물 후처리 장치의 흡기 제어방법

Also Published As

Publication number Publication date
JP2000027698A (ja) 2000-01-25

Similar Documents

Publication Publication Date Title
JP2000145509A (ja) 内燃機関
JP3356075B2 (ja) 内燃機関
JP2000130270A (ja) 内燃機関
JP3551794B2 (ja) 内燃機関
JP3405217B2 (ja) 内燃機関
JP3344334B2 (ja) 内燃機関
JP3331974B2 (ja) 内燃機関
JP3341683B2 (ja) 内燃機関
JP3331981B2 (ja) 内燃機関
JP2000179411A (ja) 排気ガス再循環量制御弁
JP3424571B2 (ja) 内燃機関
JP3341686B2 (ja) 内燃機関
JP3092597B2 (ja) 内燃機関
JP3156674B2 (ja) 内燃機関
JP3551768B2 (ja) 内燃機関
JP3424554B2 (ja) 内燃機関
JP3331991B2 (ja) 内燃機関
JP3341685B2 (ja) 内燃機関の気筒間吸気量ばらつき検出装置
JP3409717B2 (ja) 内燃機関
JP3358551B2 (ja) 内燃機関
JP3331986B2 (ja) 多気筒内燃機関
JP3551793B2 (ja) 内燃機関
JP3551799B2 (ja) 内燃機関
JP3061035B2 (ja) 内燃機関
JP3348663B2 (ja) 内燃機関

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070823

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080823

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080823

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090823

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100823

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100823

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110823

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110823

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120823

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130823

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees