JP3338071B2 - Battery - Google Patents

Battery

Info

Publication number
JP3338071B2
JP3338071B2 JP26375991A JP26375991A JP3338071B2 JP 3338071 B2 JP3338071 B2 JP 3338071B2 JP 26375991 A JP26375991 A JP 26375991A JP 26375991 A JP26375991 A JP 26375991A JP 3338071 B2 JP3338071 B2 JP 3338071B2
Authority
JP
Japan
Prior art keywords
electrode
battery
positive electrode
negative electrode
electrode body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26375991A
Other languages
Japanese (ja)
Other versions
JPH05101830A (en
Inventor
正隆 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP26375991A priority Critical patent/JP3338071B2/en
Publication of JPH05101830A publication Critical patent/JPH05101830A/en
Application granted granted Critical
Publication of JP3338071B2 publication Critical patent/JP3338071B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電池の電極体の構造に
関し、特に、急速充電、大電流放電が可能な高エネルギ
ー密度の電池の構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of an electrode body of a battery, and more particularly to a structure of a high energy density battery capable of rapid charging and large current discharge.

【0002】[0002]

【従来の技術】一般に、大電流で充電および放電するた
めには、正極と負極の相対する面積を広くとる必要あ
り、また、電池を機器に組み込んだ状態で、電池の体積
エネルギー密度を高めるためには、角形の電池外装缶に
正極と負極を対にして高密度に充填するのが有利であ
る。特に、近年薄型の携帯機器用途の需要から扁平な形
状の高エネルギー密度の電池に対する要望が強い。
2. Description of the Related Art Generally, in order to charge and discharge a battery with a large current, it is necessary to increase the area between the positive electrode and the negative electrode, and to increase the volume energy density of the battery while the battery is incorporated in equipment. In this case, it is advantageous to fill a prismatic battery outer can at a high density with a pair of the positive electrode and the negative electrode. Particularly, in recent years, there is a strong demand for a flat-shaped battery having a high energy density due to a demand for a thin portable device.

【0003】電解液の電導度が高い水系の電解液の電
池、例えば、ニッケル−カドニウム電池等では、電極面
積が比較的狭くとも大きな電流が取り出すことができ、
厚さが比較的厚い電極を用いてスパイラル構造の円筒形
電池が作られている。さらに、鉛蓄電池、ニッケル−カ
ドニウム電池等では、板状の正極と負極をセパレータを
介して重ね合わせ、角形の電池が作られている。
In an aqueous electrolyte battery having a high electrolyte conductivity, for example, a nickel-cadmium battery, a large current can be taken out even if the electrode area is relatively small.
Spiral cylindrical batteries have been made using relatively thick electrodes. Further, in a lead storage battery, a nickel-cadmium battery, and the like, a plate-shaped positive electrode and a plate-shaped negative electrode are overlapped with a separator interposed therebetween to produce a square battery.

【0004】一方、一般に電解液の電導度が低い非水系
の電解液の電池等では、電極の単位面積あたりから取り
出せる電流の大きさは小さい。すなわち、大電流を取り
出すためには、正極と負極の相対する面積を広くとる必
要性があり、通常、薄く大面積の正極と負極をセパレー
タを介してうず巻き状に巻き込んだスパイラル構造が採
られており、円筒形電池ばかりではなく、特開昭57−
163965、特開昭58−218768等には楕円形
渦巻電極体を用いた電池が提案されている。
On the other hand, in a battery or the like of a non-aqueous electrolyte in which the conductivity of the electrolyte is generally low, the amount of current that can be extracted from a unit area of the electrode is small. In other words, in order to take out a large current, it is necessary to increase the opposed area of the positive electrode and the negative electrode, and a spiral structure in which a thin large-sized positive electrode and a negative electrode are spirally wound through a separator is usually employed. Not only cylindrical batteries, but also
163965 and JP-A-58-218768 propose a battery using an elliptical spiral electrode body.

【0005】ところで、薄く大面積の電極を製作する方
法の中でも薄い金属箔を集電体とし、これに活物質を添
着せしめてなる極薄い電極が有効である。例えば、特開
昭60−253157には厚さ1〜100μmのアルミ
ニウム箔を用いた非水系二次電池が開示されており、特
開昭55−136131号公報で開示されている正極活
物質にリチウム複合酸化物を用いた非水系電解液電池、
もしくは、特開昭62−90863号公報、特開昭63
−299056号公報で開示されている非水系電解液電
池、すなわち、正極活物質にリチウム複合酸化物を用
い、負極活物質に炭素質材料を用いる非水系電解液の電
池において、急速充電、大電流放電が可能な高エネルギ
ー密度の電池が開発されている。
By the way, among the methods for manufacturing a thin and large-area electrode, an extremely thin electrode in which a thin metal foil is used as a current collector and an active material is attached thereto is effective. For example, Japanese Patent Application Laid-Open No. Sho 60-253157 discloses a non-aqueous secondary battery using an aluminum foil having a thickness of 1 to 100 μm. Lithium is used as a positive electrode active material disclosed in Japanese Patent Application Laid-Open No. 55-136131. Non-aqueous electrolyte battery using composite oxide,
Alternatively, JP-A-62-90863, JP-A-63
In the non-aqueous electrolyte battery disclosed in Japanese Patent Application No. 2999056, that is, a battery of a non-aqueous electrolyte using a lithium composite oxide as a positive electrode active material and a carbonaceous material as a negative electrode active material, rapid charging and large current High energy density batteries capable of discharging have been developed.

【0006】そこで、薄く大面積の正極と負極をセパレ
ータを介して相対して電極体を形成し、角形の電池外装
缶に充填するためには、短冊状の電極を積層して電極体
を形成するのがよいが、薄い電極では電極自体に剛性が
なく、枚数が増加して電極の接続が繁雑になるために、
電極体の形成が難しく、さらに、形成した電極体を電池
外装缶に高い充填率で挿入するのが容易ではなかった。
そのため、短冊状の電極を積層して電極体を形成する方
法に比べて充填率は低下するにもかかわらず、扁平な形
状の電池を製作するためには、通常、楕円形状の芯体に
正極と負極をセパレータを介して相対して巻き込んだス
パイラル構造の電極体、もしくは、太軸の巻軸で捲回し
て中空の大きい円筒形のスパイラル構造のコイルを形成
した後に押し潰して形成した扁平な長円の断面のスパイ
ラル構造の電極体を、角形の電池外装缶、もしくは、扁
平な長円の断面の電池外装缶に挿入する方法等が採られ
ている。
Therefore, in order to form a thin and large-area positive electrode and negative electrode facing each other with a separator interposed therebetween, and to fill a rectangular battery outer can, a strip-shaped electrode is laminated to form an electrode body. Although it is better to use thin electrodes, the electrodes themselves do not have rigidity, and the number of electrodes increases, making connection of the electrodes complicated.
It was difficult to form the electrode body, and it was not easy to insert the formed electrode body into the battery outer can at a high filling rate.
For this reason, in order to manufacture a flat-shaped battery, a positive electrode is usually attached to an elliptical core, although the filling factor is lower than a method of forming an electrode body by laminating strip-shaped electrodes. And a negative electrode with a spiral structure in which a negative electrode is wound with a separator interposed therebetween, or a flat coil formed by crushing after forming a coil with a large hollow cylindrical spiral structure by winding it around a thick shaft. A method of inserting an electrode body having a spiral structure with an elliptical cross section into a rectangular battery outer can or a battery outer can having a flat elliptical cross section has been adopted.

【0007】[0007]

【発明が解決しようとする課題】本発明は、急速充電、
大電流放電が可能な高エネルギー密度の電池の構造を提
供することを目的とする。すなわち、薄く大面積の正極
と負極をセパレータを介して相対し、且つ、角形の電池
外装缶に高い充填率で充填するための電極体の構造およ
び電池の内部構造を提供することにある。
SUMMARY OF THE INVENTION The present invention provides a quick charging,
It is an object of the present invention to provide a structure of a high energy density battery capable of discharging a large current. That is, an object of the present invention is to provide a structure of an electrode body and an internal structure of a battery in which a thin and large-area positive electrode and a negative electrode face each other with a separator interposed therebetween and fill a rectangular battery outer can at a high filling rate.

【0008】[0008]

【課題を解決するための手段】本発明では、かかる目的
を達成するために、セパレータを介して相対して配置
し、正極は正極に且つ負極は負極に重なるように、少な
くとも一回以上折り畳んでなる電極体の構造を採る。従
って、帯状の正極と帯状の負極が、セパレータを介して
相対して配置したものを正極は正極に、または、負極は
負極に重なるように二つ折りにした電極体を、更に、正
極は正極に、又は、負極は負極に重なるように、折り畳
んでなる電極体の構造も本発明の電池の構造の一つであ
る。本発明で用いられるセパレータの縦横共の幅は、少
なくとも一方の極の縦横共の幅より広いことが好まし
い。すなわち、電極体の折り畳み構造を採ることによっ
て、薄く面積の広い正極と負極をセパレータを介して相
対せしめ、且つ、電極体として取り扱いが容易で、角形
の電池に適した構造を提供できる。
According to the present invention, in order to achieve the above object, the present invention is arranged at least once at least so that the positive electrode and the negative electrode overlap each other so as to overlap with the positive electrode and the negative electrode. The structure of the electrode body is adopted. Therefore, a strip-shaped positive electrode and a strip-shaped negative electrode, which are disposed opposite to each other with a separator interposed therebetween, have a positive electrode as the positive electrode, or a negative electrode as an electrode body folded in two so as to overlap the negative electrode. Alternatively, the structure of the electrode body which is folded so that the negative electrode overlaps the negative electrode is also one of the structures of the battery of the present invention. The width of both sides of the separator used in the present invention is preferably wider than the width of at least one pole. That is, by adopting the folded structure of the electrode body, a positive electrode and a negative electrode having a small area and a large area can be opposed to each other via the separator, and can be easily handled as the electrode body, and a structure suitable for a square battery can be provided.

【0009】本発明には電極体の二種類の基本となる構
造がある。まず、第1の構造は帯状の正極と帯状の負極
がセパレータを介して相対して配置する構造である。第
2の基本となる構造は、第1の基本となる構造をもとに
した最も簡単な折り畳み構造でもあり、第1の基本とな
る構造の電極体を、正極もしくは負極いずれかの極が重
なり合うように半分に折る構造である。本発明は上記基
本構造を更に折り畳む事によって成るものである。尚、
上記にいう二つ折り等は、必ずしも厳密な意味では無
く、容器の形状等により多少ずらすことも可能である。
In the present invention, there are two basic structures of the electrode body. First, the first structure is a structure in which a band-shaped positive electrode and a band-shaped negative electrode are arranged to face each other with a separator interposed therebetween. The second basic structure is also the simplest folded structure based on the first basic structure, and the electrode body of the first basic structure is overlapped with either the positive electrode or the negative electrode. It is a structure that is folded in half. The present invention is obtained by further folding the above basic structure. still,
The two-folding or the like mentioned above is not always strictly meaning, and may be slightly shifted depending on the shape of the container.

【0010】電極としては、第1の基本構造および第2
の基本構造においては、金属箔の片面にのみ活物質を添
着せしめた電極を、活物質を添着せしめた面が相対する
ように使用するのが好ましい。しかしながら、片方の面
からイオンの授受が可能であれば、集電体の両面に活物
質を添着せしめた構造であっても構わない。すなわち、
活物質自体が集電体を兼ねる場合、もしくは、集電体が
メッシュ構造等を採り、片方の面からイオンの授受が可
能であって、且つ、活物質層の伝導性がある程度高く、
もしくは、活物質層がある程度薄ければ良い。例えば、
ニッケル、水素吸蔵合金等の焼結金属、発泡金属もしく
は金属繊維等、もしくは、リチウム、ナトリウム等の金
属箔等を電極として使用する場合である。
As the electrodes, the first basic structure and the second basic structure are used.
In the above basic structure, it is preferable to use an electrode in which the active material is attached to only one surface of the metal foil so that the surfaces to which the active material is attached face. However, a structure in which an active material is attached to both surfaces of the current collector may be used as long as ions can be transferred from one surface. That is,
When the active material itself also serves as the current collector, or the current collector adopts a mesh structure or the like, and can transmit and receive ions from one surface, and the conductivity of the active material layer is somewhat high,
Alternatively, the active material layer may be thin to some extent. For example,
This is a case where a sintered metal such as nickel or a hydrogen storage alloy, a foamed metal or a metal fiber, or a metal foil such as lithium or sodium is used as an electrode.

【0011】また、電極の折り畳み方は様々なパターン
があるが、電極の折り畳み方として最も簡単な折り畳み
方は、九十九折りの構造を採ることであるが、詳しくは
実施例にて図を用いて説明する。ところで、第1の基本
構造をもとにして出発する場合では、正極もしくは負極
いずれかの電極一方のみを露出させることも可能である
が、正極が露出する部分と負極が露出する部分に分割す
ることができる。
Although there are various patterns of electrode folding, the simplest method of electrode folding is to adopt a ninety-nine fold structure. It will be described using FIG. By the way, when starting based on the first basic structure, it is possible to expose only one of the positive electrode and the negative electrode, but it is divided into a part where the positive electrode is exposed and a part where the negative electrode is exposed. be able to.

【0012】しかしながら、第2の基本構造をもとにす
る場合では、折り畳んでなる電極体の外側に露出する電
極は、必ず基本構造において外側に位置する電極のみと
なる。ところで、電極体の作成の手順は特に限定されな
い。すなわち、まず所定のサイズの正極と負極をセパレ
ータを介して相対して全体の位置を合わせて重ねた後
に、所定の構造に折り畳んでいってもよいし、電極の一
方の端から位置を合わせ、折り畳みながら重ねていって
もよい。
However, in the case of using the second basic structure, the only electrodes exposed outside the folded electrode body are only the electrodes located outside in the basic structure. By the way, the procedure for producing the electrode body is not particularly limited. That is, first, a positive electrode and a negative electrode of a predetermined size may be folded into a predetermined structure after overlapping and aligning the whole position relative to each other via a separator, or may be positioned from one end of the electrode, They may be folded and stacked.

【0013】さらに、折り畳んで構成された電極体の端
面に絶縁粘着テープを貼り付けると、電極体の形状がよ
り安定し好ましい。電池缶の形状は特に制限されるもの
ではないが、一般に、角形の電池外装容器に本発明によ
る電極体を充填することによって、電池容器の容積に占
める電極体の割合を大きくとることができるので、角形
の電池外装容器を用いるのが好ましいことは前述の通り
である。
Further, it is preferable to attach an insulating adhesive tape to the end face of the folded electrode body because the shape of the electrode body is more stable. The shape of the battery can is not particularly limited, but generally, by filling the electrode body according to the present invention in a rectangular battery outer container, the ratio of the electrode body to the volume of the battery container can be increased. As described above, it is preferable to use a rectangular battery outer container.

【0014】また、外装缶の材質は特に限定されない
が、鋼、ニッケルメッキを施した鋼、ステンレススチー
ル等金属を有利に用いることができる。さらに、ポリエ
チレン、ポリプロピレン等のポリオレフィン樹脂等の熱
可塑性樹脂に電極引き出し用のリードを埋め込んだ構造
の容器が使用可能であり、この場合、超音波溶接を用い
て容器を密閉するのが特に好ましい。
The material of the outer can is not particularly limited, but metals such as steel, nickel-plated steel, and stainless steel can be advantageously used. Furthermore, a container having a structure in which leads for extracting electrodes are embedded in a thermoplastic resin such as a polyolefin resin such as polyethylene or polypropylene can be used. In this case, it is particularly preferable to seal the container using ultrasonic welding.

【0015】すなわち、本発明の電池は基本的構造要素
として、正極、負極およびセパレータから構成されれ
ば、特に、制限されるものではないが、高エネルギー密
度の電池が容易に得られる観点からは、非水系電解液の
電池に適用できる公知の各要素が適宜使用できる。例え
ば、正極活物質としては、リチウムを脱ドープし、且
つ、ドープし得るものが使用できる。例えば、LiCo
2のようなリチウムコバルト酸化物、LiMnO2、L
iMn22のようなリチウムマンガン酸化物等の複合金
属酸化物等が有利に用いることができる。
That is, the battery of the present invention is not particularly limited as long as it is composed of a positive electrode, a negative electrode and a separator as basic structural elements, but from the viewpoint of easily obtaining a high energy density battery. Known elements applicable to non-aqueous electrolyte batteries can be appropriately used. For example, as the positive electrode active material, those capable of dedoping and doping lithium can be used. For example, LiCo
Lithium cobalt oxide such as O 2 , LiMnO 2 , L
Composite metal oxides such as lithium manganese oxide such as iMn 2 O 2 can be advantageously used.

【0016】この種の正極に対しては、リチウムをドー
プし、且つ、脱ドープし得るものが負極活物質として有
利に使用でき、例えば、グラファイト、熱分解炭素、ピ
ッチコークス、ニードルコークス、有機高分子の焼結体
(フェノール樹脂、アクリル樹脂等の焼結体)等の炭素
質材料が負極活物質として利用できる。
For this kind of positive electrode, a material which can be doped and dedoped with lithium can be advantageously used as a negative electrode active material. For example, graphite, pyrolytic carbon, pitch coke, needle coke, organic high A carbonaceous material such as a molecular sintered body (a sintered body such as a phenol resin and an acrylic resin) can be used as the negative electrode active material.

【0017】集電体としての金属箔としては、厚さ1〜
50μmであり、銅、ニッケル、アルミニュウム、ステ
ンレススチール等を用いることができる。
The metal foil as the current collector has a thickness of 1 to
It is 50 μm, and copper, nickel, aluminum, stainless steel or the like can be used.

【0018】本発明に用いる電解液としては、例えば、
LiClO4、LiBF4、LiAsF6、LiPF6、L
iCF3SO3、LiN(CF3SO22等のアルカリ金
属塩を単独もしくは組み合わせて、プロピレンカーボネ
イト、エチレンカーボネイト、1,2−ジメトキシメタ
ン、1,2−ジメトキシエタン、γ−2ブチルラクト
ン、テトラヒドロフラン、アセトニトリル、ギ酸ビニル
等の1種もしくは2種以上を混合した溶媒に溶解したも
の等を用いることができる。
Examples of the electrolyte used in the present invention include:
LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , L
Alkali metal salts such as iCF 3 SO 3 and LiN (CF 3 SO 2 ) 2 are used alone or in combination to form propylene carbonate, ethylene carbonate, 1,2-dimethoxymethane, 1,2-dimethoxyethane, γ-2 butyl lactone, It is possible to use one dissolved in one or more solvents such as tetrahydrofuran, acetonitrile, and vinyl formate.

【0019】セパレータとしては、ポリエチレン、ポリ
プロピレン等のポリオレフィン微多孔膜の1種の単独
膜、もしくは、それら1種もしくは2種の貼り合わせ膜
を使用できる。また、ポリオレフィン、ポリエステル、
ポリアミド、セルロース等の不織布も単独あるいは上記
微多孔膜等と組み合わせて用いることができる。また、
ポリエチレンオキサイド(PEO)、もしくは、PEO
−PPO(ポリプロピレンオキサイド)−PEOの共重
合体等とLiI、LiClO4、LiBF4、LiAsF
6、LiPF6、LiCF3SO3、LiN(CF3SO2
2等のアルカリ金属塩との複塩等を固体電解質として用
いてもよい。固体電解質を用いる場合については、本発
明でいうセパレータを固体電解質層で置き換える構造を
採る。
As the separator, a single film of a microporous film of polyolefin such as polyethylene or polypropylene, or one or two kinds of bonded films thereof can be used. Also, polyolefin, polyester,
Non-woven fabrics such as polyamide and cellulose can be used alone or in combination with the above microporous membrane. Also,
Polyethylene oxide (PEO) or PEO
PPO (polypropylene oxide) -PEO of copolymers and LiI, LiClO 4, LiBF 4, LiAsF
6 , LiPF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 )
A double salt with an alkali metal salt such as 2 may be used as the solid electrolyte. When a solid electrolyte is used, a structure in which the separator according to the present invention is replaced with a solid electrolyte layer is employed.

【0020】[0020]

【作用】本発明によれば、薄く面積の広い正極と負極を
セパレータを介して相対せしめることのできる、角形の
電池に適した電極体の構造を容易に実現できることによ
って、急速充電、大電流放電が可能な高エネルギー密度
の電池の構造を提供することができる。
According to the present invention, it is possible to easily realize a structure of an electrode body suitable for a rectangular battery in which a positive electrode and a negative electrode having a small area and a large area can be opposed to each other via a separator. It is possible to provide a structure of a battery having a high energy density capable of performing the above.

【0021】[0021]

【実施例】次に、実施例を挙げて本発明を説明する。正
極は活物質LiCoO2に対して、5%の炭素系導電フ
ィラーを加えてなるコンパウンドに、ポリビニリデンフ
ルオライドの5%DMF溶液を等量加えて懸濁液とし、
これを厚さ15μmのアルミニウム箔の片面に均一に塗
布して作成する。正極塗膜の総厚さは116μmであ
る。
Next, the present invention will be described with reference to examples. A positive electrode is a suspension obtained by adding an equal amount of a 5% solution of polyvinylidene fluoride to a compound obtained by adding a carbon-based conductive filler of 5% to the active material LiCoO 2 ,
This is uniformly coated on one side of an aluminum foil having a thickness of 15 μm. The total thickness of the positive electrode coating is 116 μm.

【0022】負極は活物質として、真比重2.3の炭素
質材料を平均粒径10μm前後に粉砕したものに、ポリ
ビニリデンフルオライドの5%DMF溶液を等量加えて
懸濁液とし、これを厚さ10μmの銅箔あるいはニッケ
ル箔に均一に塗布し作成する。負極塗膜の総厚さは13
9μmである。セパレータは35μmのポリエチレン微
多孔膜を用いる。
The negative electrode was used as an active material. A suspension was prepared by adding an equal amount of a 5% solution of polyvinylidene fluoride in DMF to a material obtained by grinding a carbonaceous material having a true specific gravity of 2.3 to an average particle size of about 10 μm. Is uniformly applied to a copper foil or nickel foil having a thickness of 10 μm. The total thickness of the negative electrode coating is 13
9 μm. As the separator, a 35 μm polyethylene microporous membrane is used.

【0023】以下の実施例において、特に断りがなけれ
ば、上記正極と負極を上記セパレータを介して活物質塗
工面を対向して重ね合わせ、折り畳んで電極体を構成
し、電解液として1mol/lのLiClO4−プロピ
レンカーボネイト溶液を使用して電池を作成する。
In the following examples, unless otherwise specified, the positive electrode and the negative electrode were overlapped with the active material coated surface facing each other with the separator interposed therebetween, and folded to form an electrode body. A battery is made using a LiClO 4 -propylene carbonate solution of

【0024】[0024]

【実施例1】本発明による電極体の基本となる第1の構
造は、帯状の正極と帯状の負極がセパレータを介して相
対して配置する構造であり、図1にその断面構造を示
す。図の上では、正極、負極、セパレータ等の厚さは誇
張して書いてあり、比率も実際とは異なっている。以下
に示す図においても、同様である。
Embodiment 1 A first structure which is a basic structure of an electrode body according to the present invention is a structure in which a band-shaped positive electrode and a band-shaped negative electrode are arranged to face each other with a separator interposed therebetween. FIG. 1 shows a cross-sectional structure thereof. In the figure, the thicknesses of the positive electrode, the negative electrode, the separator, and the like are exaggerated, and the ratios are different from the actual ones. The same applies to the drawings shown below.

【0025】本発明による最も簡単な構造は、図1に示
す構造の電極体を1回折る構造であり、図2にその断面
構造を示す。この図2に示す構造は、図1に示す構造と
共にフィルム状の電池を製作するのに適しており、図2
に示す構造においては、内側に正極、外側に負極がくる
ように折り畳んでいるが、内側もしくは外側いずれの位
置に正極もしくは負極のいずれの電極を配置するかは、
正極および負極の活物質の構成、電池外装容器の構造等
を性能、安全性等の面から考慮のうえ決定するのが好ま
しい。また、図2の構造が第2の基本構造でもある。
The simplest structure according to the present invention is a structure in which the electrode body having the structure shown in FIG. 1 is diffracted once, and FIG. 2 shows a sectional structure thereof. The structure shown in FIG. 2 is suitable for manufacturing a film-shaped battery together with the structure shown in FIG.
In the structure shown in the figure, the inside is folded so that the positive electrode and the outside have the negative electrode.However, whether the positive electrode or the negative electrode is to be arranged at any position inside or outside,
It is preferable that the configurations of the active materials of the positive electrode and the negative electrode, the structure of the battery outer container, and the like be determined in consideration of performance, safety, and the like. The structure in FIG. 2 is also a second basic structure.

【0026】ところで、図2においてはちょうど半分に
折っているが、必ずしもきっちりと重ねる必要性はな
い。電池外装缶の構造によっては、逆に、少しずらして
折り畳むことによって、内側の電極からの電流の取り出
しを容易にすることができる場合もある。
By the way, in FIG. 2, it is folded in half, but it is not always necessary to overlap exactly. Conversely, depending on the structure of the battery outer can, on the contrary, it may be possible to facilitate the extraction of the current from the inner electrode by folding the battery outer can slightly.

【0027】[0027]

【実施例2】図1の構造を基本構造とした場合につい
て、折り畳み回数が奇数回の場合の九十九折りの例の断
面構造を図3に示す。さらに、図4、図5および図6
は、図3の構造の電極体の折り畳み方を変えて、電極体
の外最周における正極と負極の露出する割合、電極の端
の位置等の変更を行った例である。
Second Embodiment FIG. 3 shows a cross-sectional structure of a ninety-nine fold example in which the number of times of folding is an odd number when the structure of FIG. 1 is used as a basic structure. Further, FIGS. 4, 5 and 6
Is an example in which the way of folding the electrode body having the structure shown in FIG. 3 is changed, and the ratio of the exposed outermost periphery of the positive electrode and the negative electrode, the position of the end of the electrode, and the like are changed.

【0028】図3の九十九折り構造を採った電極体をも
とに、電池にした場合の例を図7に示す。角形の金属製
の外装缶に図3のBの方向が底になるように挿入し、負
極の集電体と電池外装缶との接触によって負極からの電
流の取り出しを行い、Aの側に露出した正極の集電体か
ら、電池外装蓋のガラス−メタルハウメチックシールの
正極リードピンに抵抗溶接して取り付けたスプリング状
の正極集電リードを介して電流の取り出しを行ってい
る。もちろん、正極と正極リードピンを正極リードタブ
等を用いて接続してもよい。電池の外装缶と外装蓋はレ
ーザー溶接にて密閉している。
FIG. 7 shows an example in which a battery is formed based on the electrode body having the 99-fold structure shown in FIG. The battery is inserted into a rectangular metal outer can such that the direction of B in FIG. 3 becomes the bottom, and the current is taken out from the negative electrode by contact between the current collector of the negative electrode and the battery outer can. The current is taken out from the positive electrode current collector through a spring-shaped positive electrode current collector lead which is attached by resistance welding to the positive electrode lead pin of the glass-metal housing seal of the battery outer cover. Of course, the positive electrode and the positive electrode lead pin may be connected using a positive electrode lead tab or the like. The battery outer can and outer lid are sealed by laser welding.

【0029】外装缶として角形の14mm×41mm×
66mmのステンレススチール製の深絞り缶を用いて試
作した電池は、1600mAに電流値を制限した4.2
Vの定電圧充電5時間後、1600mA定電流で2.7
Vまで放電した場合、25℃で初期容量は3200mA
hを有し、6400mAで放電した場合でも、1600
mAの放電容量の約85%の容量がある。同様に、64
00mAに電流値を制限した4.2Vの定電圧充電1時
間で、1600mAに電流値を制限した4.2Vの定電
圧充電5時間に比べて、約90%の充電が可能である。
A square 14 mm × 41 mm ×
A battery prototyped using a 66 mm stainless steel deep drawn can had a current value of 1600 mA 4.2.
5 hours after charging at a constant voltage of V, 2.7 at 1600 mA constant current
When discharged to V, the initial capacity is 3200 mA at 25 ° C.
h and 1600 even when discharged at 6400 mA.
There is about 85% capacity of the mA discharge capacity. Similarly, 64
One hour of 4.2 V constant voltage charging with a current value limited to 00 mA allows about 90% charging compared to 5 hours of 4.2 V constant voltage charging with a current value limited to 1600 mA.

【0030】[0030]

【実施例3】次に、図1の構造を基本構造とした場合に
ついて、折り畳み回数が偶数回の場合の九十九折りの例
の断面構造を図8に示す。図9は図8の構造の電極体の
折り畳み方を変えて、外最周における正極と負極の露出
する割合、電極の端の位置等の変更を行った1例であ
る。
Third Embodiment Next, FIG. 8 shows a cross-sectional structure of a ninety-nine fold example in which the number of times of folding is an even number when the structure of FIG. 1 is used as a basic structure. FIG. 9 shows an example in which the way of folding the electrode body having the structure shown in FIG. 8 is changed to change the ratio of the exposed outermost circumference of the positive electrode and the negative electrode, the position of the end of the electrode, and the like.

【0031】図8の九十九折り構造を採った電極体をも
とに、角形の電池にした場合の例を図10に示す。電極
引き出し用の金属製のリードを埋め込んだ構造のポリプ
ロピレンを主成分とする材質でなる角形の20mm×5
0mm×80mmの電池外装容器を超音波溶接で密閉し
ている。容器の最も広い面に金属製のリードを埋め込む
ことによって、容器の最も広い面の強度を補強でき肉厚
を薄くすることが可能であり、高エネルギー密度の電池
の構造として有効である。また、容器の一部分の肉厚を
薄くしておくことによって、電池内部の圧力が上昇した
場合の安全弁として機能させることができる。このよう
にして試作した電池は、初期容量は25℃で3300m
Ahを有し、充電特性および放電特性に関しては、実施
例2の場合とほとんど差異はない。
FIG. 10 shows an example in which a rectangular battery is formed based on the electrode body having the 99-fold structure shown in FIG. Square 20 mm × 5 made of a material mainly composed of polypropylene with a structure in which metal leads for extracting electrodes are embedded.
A battery outer container of 0 mm × 80 mm is sealed by ultrasonic welding. By embedding metal leads in the widest surface of the container, the strength of the widest surface of the container can be reinforced and the wall thickness can be reduced, which is effective as a structure of a high energy density battery. In addition, by reducing the thickness of a part of the container, the container can function as a safety valve when the pressure inside the battery increases. The initial capacity of the prototype battery was 3300 m at 25 ° C.
Ah, and there is almost no difference from the case of Example 2 in charge characteristics and discharge characteristics.

【0032】[0032]

【実施例4】図11は図2の構造を基本構造とした場合
について、九十九折りにした場合の例の断面構造であ
る。電極体の外周は正極もしくは負極のいずれかの電極
で覆われる構造となっている。図11の九十九折り構造
を採った電極体をもとに、電池にした場合の例を図12
に示す。負極の集電体と電池外装缶との接触によって負
極からの電流の取り出しを行っており、電池外装蓋のガ
ラス−メタルハウメチックシールの正極リードピンと正
極の集電体を正極リードタブで、抵抗溶接にて接続し、
正極からの電流の取り出しを行っており、図11には示
してないが、正極リードタブには絶縁粘着テープを貼り
付けてある。また、電池の外装缶と外装蓋はレーザー溶
接にて密閉している。
Fourth Embodiment FIG. 11 shows a cross-sectional structure of a case where the structure shown in FIG. The outer periphery of the electrode body is covered with either a positive electrode or a negative electrode. FIG. 12 shows an example in which a battery is formed based on the electrode body having the 99-fold structure shown in FIG.
Shown in The current is taken out of the negative electrode by contact between the current collector of the negative electrode and the battery outer can.The positive electrode lead pin of the glass-metal housing seal of the battery outer cover and the current collector of the positive electrode are connected by a positive lead tab. Connect by welding,
An electric current is taken out from the positive electrode. Although not shown in FIG. 11, an insulating adhesive tape is attached to the positive electrode lead tab. The outer can and outer lid of the battery are sealed by laser welding.

【0033】[0033]

【発明の効果】本発明によれば、薄く面積の広い正極と
負極をセパレータを介して相対せしめることのできる、
角形の電池に適した電極体の構造を容易に実現できるこ
とによって、急速充電、大電流放電が可能な高エネルギ
ー密度の電池の構造を提供することができる。
According to the present invention, a positive electrode and a negative electrode having a small area and a large area can be opposed to each other via a separator.
By easily realizing the structure of the electrode body suitable for a prismatic battery, it is possible to provide a high energy density battery structure capable of rapid charging and large current discharge.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電極の第1の基本構造の断面図を示
す。
FIG. 1 shows a sectional view of a first basic structure of an electrode of the present invention.

【図2】第1の基本構造をもとにする、実施例1に従う
電極体の断面図であり、本発明の電極の第2の基本構造
である。
FIG. 2 is a cross-sectional view of the electrode body according to the first embodiment based on the first basic structure, which is a second basic structure of the electrode of the present invention.

【図3】第1の基本構造をもとにする、実施例2に従う
折り畳み構造の電極体の断面図を示す。
FIG. 3 shows a sectional view of a folded electrode body according to a second embodiment based on the first basic structure.

【図4】第1の基本構造をもとにする、実施例2に従う
折り畳み構造の電極体の断面図を示す。
FIG. 4 shows a sectional view of a folded electrode body according to a second embodiment based on the first basic structure.

【図5】第1の基本構造をもとにする、実施例2に従う
折り畳み構造の電極体の断面図を示す。
FIG. 5 shows a sectional view of a folded electrode body according to the second embodiment based on the first basic structure.

【図6】第1の基本構造をもとにする、実施例2に従う
折り畳み構造の電極体の断面図を示す。
FIG. 6 shows a sectional view of a folded electrode body according to the second embodiment based on the first basic structure.

【図7】第1の基本構造をもとにする、実施例2に従う
折り畳み構造の角形の電池の縦断面図を示す。
FIG. 7 shows a longitudinal sectional view of a rectangular battery having a folded structure according to Example 2 based on the first basic structure.

【図8】第1の基本構造をもとにする、実施例3に従う
折り畳み構造の電極体の断面図を示す。
FIG. 8 shows a sectional view of a folded electrode body according to the third embodiment based on the first basic structure.

【図9】第1の基本構造をもとにする、実施例3に従う
折り畳み構造の電極体の断面図を示す。
FIG. 9 shows a sectional view of a folded electrode body according to the third embodiment based on the first basic structure.

【図10】第1の基本構造をもとにする、実施例3に従
う折り畳み構造の角形の電池の縦断面図を示す。
FIG. 10 shows a longitudinal sectional view of a rectangular battery having a folded structure according to Example 3 based on the first basic structure.

【図11】第2の基本構造をもとにする、実施例4に従
う折り畳み構造の電極体の断面図を示す。
FIG. 11 is a sectional view of a folded electrode body according to the fourth embodiment based on the second basic structure.

【図12】第2の基本構造をもとにする、実施例4に従
う折り畳み構造の角形の電池の縦断面図を示す。
FIG. 12 shows a longitudinal sectional view of a prismatic battery having a folded structure according to Example 4 based on the second basic structure.

【符号の説明】[Explanation of symbols]

1.負極。2.セパレータ。3.正極。4.電池外装
缶。5.ガラス−メタルハウメチックシール付きの電池
外装蓋。6.絶縁板。7.スペーサ。8.正極リードピ
ン。9.正極集電リード。10.負極集電リード。1
1.正極リードタブ。12.負極リードタブ。13.負
極リードピン。14.絶縁粘着テープ。
1. Negative electrode. 2. Separator. 3. Positive electrode. 4. Battery outer can. 5. Battery outer lid with glass-metal housing seal. 6. Insulating plate. 7. Spacer. 8. Positive lead pin. 9. Positive current collecting lead. 10. Negative current collecting lead. 1
1. Positive lead tab. 12. Negative lead tab. 13. Negative lead pin. 14. Insulating adhesive tape.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 10/38 - 10/40 H01M 10/00 - 10/30 H01M 4/64 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01M 10/38-10/40 H01M 10/00-10/30 H01M 4/64

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 正極がリチウムを脱ドープし、且つ、ド
ープし得る複合金属酸化物を金属箔の片面のみに添着し
たものであり、負極がリチウムを脱ドープし、且つ、ド
ープし得る炭素質材料を金属箔の片面に添着したもので
ある電池において、帯状の正極と帯状の負極が、セパレ
ータを介して相対して配置し、正極は正極に且つ負極は
負極に重なるように少なくとも1回以上折り畳んでなる
電極体の構造を特徴とする非水電解液電池。
1. A positive electrode in which lithium is undoped and a composite metal oxide capable of being doped is attached to only one surface of a metal foil, and a negative electrode is a carbonaceous material in which lithium is undoped and doped. In a battery in which a material is adhered to one side of a metal foil, a band-shaped positive electrode and a band-shaped negative electrode are arranged to face each other with a separator interposed therebetween, and the positive electrode overlaps the positive electrode and the negative electrode overlaps the negative electrode at least once. A non-aqueous electrolyte battery characterized by a structure of a folded electrode body.
JP26375991A 1991-10-11 1991-10-11 Battery Expired - Lifetime JP3338071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26375991A JP3338071B2 (en) 1991-10-11 1991-10-11 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26375991A JP3338071B2 (en) 1991-10-11 1991-10-11 Battery

Publications (2)

Publication Number Publication Date
JPH05101830A JPH05101830A (en) 1993-04-23
JP3338071B2 true JP3338071B2 (en) 2002-10-28

Family

ID=17393887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26375991A Expired - Lifetime JP3338071B2 (en) 1991-10-11 1991-10-11 Battery

Country Status (1)

Country Link
JP (1) JP3338071B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1257567C (en) 1999-10-22 2006-05-24 三洋电机株式会社 Electrode for lithium cell and lithium secondary cell
JP3733070B2 (en) 1999-10-22 2006-01-11 三洋電機株式会社 Electrode for lithium secondary battery and lithium secondary battery
JP3733065B2 (en) * 1999-10-22 2006-01-11 三洋電機株式会社 Lithium battery electrode and lithium secondary battery
US7241533B1 (en) 1999-10-22 2007-07-10 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
US7235330B1 (en) 1999-10-22 2007-06-26 Sanyo Electric Co., Ltd. Electrode for use in lithium battery and rechargeable lithium battery
CN100421284C (en) 2000-04-26 2008-09-24 三洋电机株式会社 Lithium secondary battery-use electrode and lithium secondary battery
JP2002270240A (en) * 2001-03-13 2002-09-20 Osaka Gas Co Ltd Nonaqueous secondary cell
JP3998428B2 (en) * 2001-03-27 2007-10-24 日産ディーゼル工業株式会社 Electric double layer capacitor
JP5081348B2 (en) * 2001-05-02 2012-11-28 トータル ワイヤレス ソリューショオンズ リミテッド Sheet type battery
JP4513124B2 (en) * 2004-05-31 2010-07-28 Tdk株式会社 ELECTROCHEMICAL DEVICE, ITS MANUFACTURING METHOD, AND ELECTRODE USED FOR THE DEVICE
JP4513125B2 (en) * 2004-07-22 2010-07-28 Tdk株式会社 Electrochemical device and manufacturing method thereof
JP4880224B2 (en) * 2005-01-05 2012-02-22 Necエナジーデバイス株式会社 Manufacturing method of secondary battery
US7794873B2 (en) 2005-04-26 2010-09-14 Panasonic Corporation Battery including strip-shaped electrode group folded in a zigzag pattern
JP2008041522A (en) * 2006-08-09 2008-02-21 Kawasaki Heavy Ind Ltd Battery
JP5016866B2 (en) * 2006-08-09 2012-09-05 川崎重工業株式会社 battery
JP5157244B2 (en) * 2007-05-11 2013-03-06 Tdk株式会社 Electrochemical device and manufacturing method thereof
CN110495045B (en) 2017-04-07 2023-09-22 株式会社村田制作所 Secondary battery and method for manufacturing same

Also Published As

Publication number Publication date
JPH05101830A (en) 1993-04-23

Similar Documents

Publication Publication Date Title
JP3964521B2 (en) Assembled battery
US7384705B2 (en) Electrode and battery, and methods of producing the same
JP3338071B2 (en) Battery
JP4075034B2 (en) Nonaqueous electrolyte battery and manufacturing method thereof
JP4293501B2 (en) Electrochemical devices
JP3932653B2 (en) Non-aqueous electrolyte secondary battery
JP5541957B2 (en) Multilayer secondary battery
JP4670275B2 (en) Bipolar battery and battery pack
JP5937969B2 (en) Non-aqueous secondary battery
EP0910131A1 (en) Lithium secondary battery
JPH1167281A (en) Battery
JP4245205B2 (en) Non-aqueous electrolyte battery
JP2001202931A (en) Thin battery
JP2006260990A (en) Stacked battery
JP2004039651A (en) Battery
JP5298815B2 (en) Lithium ion secondary battery manufacturing method, electrolytic solution, and lithium ion secondary battery
CN111033857B (en) Lithium ion secondary battery
JPH1131523A (en) Nonaqueous electrolyte secondary battery and manufacture thereof
JP7003775B2 (en) Lithium ion secondary battery
JP6178183B2 (en) Nonaqueous electrolyte battery, assembled battery and storage battery device
JP3583589B2 (en) Sheet type battery
JP3457856B2 (en) Polymer electrolyte secondary battery
CN110676517B (en) Battery cell and battery
JP2003346768A (en) Non-aqueous electrolyte secondary battery
JPH1167276A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020730

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090809

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090809

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100809

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100809

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100809

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110809

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110809

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120809

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120809

Year of fee payment: 10