JP3332264B2 - Electrode for electrolysis - Google Patents

Electrode for electrolysis

Info

Publication number
JP3332264B2
JP3332264B2 JP14584993A JP14584993A JP3332264B2 JP 3332264 B2 JP3332264 B2 JP 3332264B2 JP 14584993 A JP14584993 A JP 14584993A JP 14584993 A JP14584993 A JP 14584993A JP 3332264 B2 JP3332264 B2 JP 3332264B2
Authority
JP
Japan
Prior art keywords
electrode
insoluble metal
metal
electrolysis
aperture ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14584993A
Other languages
Japanese (ja)
Other versions
JPH0741980A (en
Inventor
誠 島田
孝之 島宗
保夫 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP14584993A priority Critical patent/JP3332264B2/en
Publication of JPH0741980A publication Critical patent/JPH0741980A/en
Application granted granted Critical
Publication of JP3332264B2 publication Critical patent/JP3332264B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、各種の物質の電解製造
や金属の電解採取、メッキ等に使用される電解用電極お
よびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode for electrolysis used for electrolytic production of various substances, electrowinning of metal, plating, and the like, and a method of producing the same.

【0002】[0002]

【従来の技術】電解用電極としては、古くは炭素質電極
が使用されていたが、近年、チタンに代表される弁金属
を基体とし、その表面に、白金族金属を含む酸化物被覆
を施した、本出願人がDSA、又はDSEの商品名で提
供している不溶性金属電極が使用されるようになってき
た。これらは、比較的小型軽量であり使用中の寸法変化
は実質的になく、また極めてすぐれた耐食性、耐久性を
有するとともに、電極触媒作用を有する電極物質も用途
に応じて任意に選択できるので広く使用されており、現
在では、最大の工業的な電解分野である食塩の電気分解
ではほとんど全てがこの不溶性金属電極に置き換わって
いる。
2. Description of the Related Art As an electrode for electrolysis, a carbonaceous electrode has been used for a long time. However, in recent years, a valve metal represented by titanium has been used as a base, and an oxide coating containing a platinum group metal has been applied to the surface thereof. Thus, insoluble metal electrodes provided by the applicant under the trade name of DSA or DSE have been used. These are relatively small and lightweight, have substantially no dimensional change during use, have extremely good corrosion resistance and durability, and can be arbitrarily selected for electrode materials having an electrode catalytic action according to the application, so that they are widely used. It is now used and almost all of the largest industrial field of electrolysis, salt electrolysis, has been replaced by this insoluble metal electrode.

【0003】一方、酸素発生用の陽極分野においては、
炭素は発生する酸素と反応して急速に消耗するととも
に、電気伝導性が不十分という問題がある。そこで、酸
素発生用には不溶性で安定な鉛や鉛合金が使用されてい
るが、鉛の廃水中への混入、製品中への混入問題といっ
た環境上の問題を有している。すなわち、鉛や鉛合金は
工業用電極として導電性、加工性は満足されているもの
の、電解時の消耗が数mg/Ahと大きく、電解液中へ
溶出した鉛が廃水中あるいは製品中へ混入するのであ
る。これらの解決策として、古くより知られている白金
めっきチタン電極、又は白金めっきニオブ電極が実験室
規模、あるいは特殊な分野では用いられているが、高価
であり、工業用として用いるには耐久性が不十分なこと
から、一般に広く使われるには至っていないし、今後と
も拡大していく可能性はないものとみられる。そこで、
鋼板の連続めっきや、金属採取等の酸素発生用陽極を使
用する分野で現在でも主体となっている鉛や鉛合金陽極
についても、既に食塩電解などにおいて広く用いられて
いるチタン等の弁金属の基体上に電極被覆を形成した不
溶性金属陽極への転換が進むものとみられる。
On the other hand, in the field of anodes for oxygen generation,
Carbon reacts with generated oxygen and is rapidly consumed, and has a problem that electric conductivity is insufficient. Therefore, insoluble and stable lead and lead alloys are used for generating oxygen, but they have environmental problems such as mixing of lead into wastewater and mixing into products. In other words, although lead and lead alloys have satisfactory conductivity and workability as industrial electrodes, their consumption during electrolysis is as large as several mg / Ah, and lead eluted into the electrolyte is mixed into wastewater or products. You do it. As a solution to these problems, a platinum-plated titanium electrode or a platinum-plated niobium electrode, which has been known for a long time, is used on a laboratory scale or in a special field, but is expensive and durable for industrial use. Is not enough for general use, and it is unlikely that it will continue to grow. Therefore,
Lead and lead alloy anodes, which are still mainly used in the field of using anodes for oxygen generation, such as continuous plating of steel sheets and metal sampling, also use valve metals such as titanium, which are already widely used in salt electrolysis. The conversion to an insoluble metal anode having an electrode coating formed on a substrate is expected to proceed.

【0004】不溶性金属陽極は、液体、気体等の化学物
質を製造する目的の電解槽では、電極には平板状のもの
が一般に用いられており、電極の特性を十分に利用する
ことができた。ところが、鋼板のめっきや金属の採取等
の電解装置に使用する場合には、不溶性金属陽極は陽極
での電解反応は重要ではなく、単に対極としての作用を
果たすのみであるが、めっき鋼板、銅箔等の金属箔等を
製品とするために、対極として使用する陽極の大きさ
は、大型のものが必要となり、形状も平板状に限らず、
曲面状等の電極が必要となる。このため、極めて面積の
大きな各種の形状の電極の電極面全体の形状を安定に保
持し、電極面に均一に、あるいは電極面にそれぞれの部
位に必要な電流を給電するために、電極基体の厚みは厚
いものが必要であるとともに大量の給電体を装備するこ
とが必要となる。その結果、電極の重量が大きくなり、
電極の製造および使用における問題となっている。例え
ば、金属箔の電解製造装置に使用する電極には、基体の
板厚が50mm以上のものや、直径3mの半円筒状の曲
面の内側に電極被覆を行ったものも使用されており、1
つの電極の重量が500kgを越えるという巨大なもの
まで現れている。このような大型の電極基体を通常の不
溶性電極の製造において行われているような酸素含有雰
囲気において加熱する熱分解法によって電極触媒被覆を
形成することは、大型の加熱炉が必要となり、また大型
の電極の加熱、冷却の繰り返しには長時間を必要とし
た。
In the case of an insoluble metal anode, in the case of an electrolytic cell for producing a chemical substance such as a liquid or a gas, a plate-like electrode is generally used, and the characteristics of the electrode can be fully utilized. . However, when used in electrolysis equipment such as for plating steel sheets and collecting metals, the insoluble metal anode does not have a significant electrolytic reaction at the anode, and simply acts as a counter electrode. The size of the anode used as a counter electrode is required to be large, and the shape is not limited to a flat plate, in order to make a metal foil or the like as a product.
A curved electrode or the like is required. For this reason, in order to stably maintain the shape of the entire electrode surface of an electrode having various shapes having an extremely large area, and to supply a required current to the electrode surface uniformly or to supply necessary current to each part to the electrode surface, Thickness is required, and it is necessary to equip a large amount of power feeders. As a result, the weight of the electrode increases,
A problem in the manufacture and use of electrodes. For example, as an electrode used in a metal foil electrolytic manufacturing apparatus, a base plate having a plate thickness of 50 mm or more, or a base plate having a semi-cylindrical curved surface with a diameter of 3 m covered with an electrode is also used.
Even huge electrodes with the weight of one electrode exceeding 500 kg have appeared. Forming an electrode catalyst coating by a pyrolysis method in which such a large electrode substrate is heated in an oxygen-containing atmosphere such as that performed in the production of ordinary insoluble electrodes requires a large heating furnace, and a large heating furnace. It took a long time to repeatedly heat and cool the electrode.

【0005】[0005]

【発明が解決しようとする課題】本発明は、電極面積が
大きな電極面に、多数の給電体を用いることなくそれぞ
れの部位に好ましい大きさの電流の供給が可能な電極を
提供することを課題とするものであり、また、電極の形
状が平面状ではない場合にも、電極表面に均一もしくは
それぞれの部位で要求される電流の供給が可能な構造が
簡単な電解用電極を提供することを課題とするものであ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide an electrode capable of supplying a desired amount of current to each portion of an electrode surface having a large electrode area without using a large number of power feeders. In addition, even when the shape of the electrode is not planar, it is necessary to provide an electrode for electrolysis that has a simple structure on the electrode surface or a structure capable of supplying a current required at each part. It is an issue.

【0006】[0006]

【課題を解決するための手段】本発明の課題は、円筒状
の電極に対向する曲面状の電極基体に、開口を有する不
溶性金属の板状体を電極触媒物質で被覆した不溶性金属
電極を取り付けた電解用電極において、電流密度が大き
な部分には、開口率が小さな不溶性金属電極を配置し、
電流密度が小さな部分には開口率が大きな不溶性金属電
極を配置した電解用電極によって解決することができ
る。また、不溶性金属電極がチタンまたはチタン合金の
表面にイリジウム酸化物を含む電極触媒物質を被覆した
電解用電極である。
SUMMARY OF THE INVENTION An object of the present invention is to attach an insoluble metal electrode in which a plate of an insoluble metal having an opening is covered with an electrode catalyst substance on a curved electrode base opposed to a cylindrical electrode. In the electrode for electrolysis, where the current density is large, an insoluble metal electrode with a small aperture ratio is placed,
The problem can be solved by an electrode for electrolysis in which an insoluble metal electrode having a large aperture ratio is arranged in a portion where the current density is small. Further, the insoluble metal electrode is an electrode for electrolysis in which the surface of titanium or a titanium alloy is coated with an electrode catalyst material containing iridium oxide.

【0007】すなわち、チタンまたはその合金などの弁
金属又は弁金属合金からなる電極基体上に、エキスパン
デッドメタル等の開口を有する不溶性金属表面に電極触
媒物質を被覆した不溶性金属電極を取り付けた電解用電
極において、電解電流が集中する電流密度が大きな部分
には、開口率が小さく実質的な通電面積が大きな不溶性
金属電極を取り付け、電流密度が小さな部分には開口率
が大きく、実質的な通電面積が小さな不溶性金属電極を
取り付けた電解用電極である。なお、本発明における電
流密度は、電極面の開口部分も含めた単位面積当たりの
電流値をいう。
That is, an electrolytic method in which an insoluble metal electrode having an opening of an insoluble metal such as an expanded metal or the like coated with an electrode catalyst substance is attached to an electrode substrate made of a valve metal such as titanium or an alloy thereof or a valve metal alloy. At the electrode where the electrolysis current is concentrated, the insoluble metal electrode with a small aperture ratio and a large effective conduction area is attached to the portion where the electrolytic current is concentrated, and the aperture ratio is large and the substantial conduction This is an electrode for electrolysis to which an insoluble metal electrode having a small area is attached. Note that the current density in the present invention refers to a current value per unit area including an opening portion on an electrode surface.

【0008】本発明の電解用電極に使用することが可能
な開口を有する不溶性金属には、薄板に規則的に設けた
切れ目を拡開したエキスパンデッドメタル、薄板にプレ
ス等によって開口を形成したパンチドプレート等を用い
ることができ、開口の形状は任意のものを用いることが
できる。またエキスパンデッドメタルの場合には、拡開
したそのままのものであっても、ロール掛けをして表面
を平坦化したものであってもよい。ロール掛けをする場
合には、完全に平坦にしたものよりも、見かけの厚みが
元の金属の1.2〜2倍程度となるようにロール掛けし
たものの方が電極としての利用部分が多くなるので望ま
しい。
The insoluble metal having an opening which can be used for the electrode for electrolysis according to the present invention includes an expanded metal in which cuts regularly formed in a thin plate are widened, and an opening formed in the thin plate by pressing or the like. A punched plate or the like can be used, and any shape can be used for the opening. In the case of expanded metal, the expanded metal may be used as it is, or may be rolled and flattened. In the case of rolling, a portion that is rolled so that the apparent thickness is about 1.2 to 2 times that of the original metal becomes more than a completely flattened portion, and a portion used as an electrode is increased. So desirable.

【0009】エキスパンデッドメタルの表面積と開口率
の関係について説明すると、例えば、厚さ1mmの板を
エキスパンデッドメタルとした場合の表面積は元の板の
表面積と拡開のために板に形成した切れ目の部分の板の
断面積の和で表され、表面積は開口率を50%とした
時、すなわち元の板を2倍の長さになるように拡げた場
合には、エキスパンデッドメタルの全表面積は投影面の
約2倍である。また、開口率を小さくすると全表面積は
大きく、開口率を大きくすると全表面積は小さくなる。
なお、実際には金属の塑性加工の点から開口率は制限さ
れてくるが、実用上は開口率は30%〜70%位が使用
される。
The relationship between the surface area of the expanded metal and the aperture ratio will be described. For example, when a 1 mm thick plate is used as the expanded metal, the surface area is equal to the surface area of the original plate and formed on the plate for expansion. The surface area is expressed as the sum of the cross-sectional areas of the cut portions, and the surface area when the opening ratio is 50%, that is, when the original plate is expanded to be twice as long, Is about twice the projection surface. Further, when the aperture ratio is reduced, the total surface area is increased, and when the aperture ratio is increased, the total surface area is reduced.
In practice, the aperture ratio is limited from the viewpoint of plastic working of metal, but practically, the aperture ratio is about 30% to 70%.

【0010】また、本発明の電解用電極は、チタン又は
チタン合金製のエキスパンデッドメタルの表面をブラス
ト、酸洗等によって表面処理した後、白金族の金属化合
物を含む溶液を塗布した後に酸素含有雰囲気において、
熱分解し電極触媒物質の被覆を形成することによって得
られた不溶性金属電極を、弁金属又は弁金属基合金から
なる電極基体表面に溶接等の手段によって固定すること
ができる。不溶性金属電極の基材とするエキスパンデッ
ドメタルは、厚みが0.2〜1.5mmの板を材料とし
たものが好ましく、0.5〜1mmの厚みのものがとく
に好ましい。板の厚みが0.2mmより薄いと、その物
理強度が不足すると共にエキスパンデッドメタルを製造
することが困難となる。一方、1.5mmより厚くなる
と、エキスパンデッドメタルの見かけ上の厚みが大きく
なり、電極表面に大きな凹凸を有する電極が形成される
こととなり特殊な用途を除いて好ましくない。
The electrode for electrolysis according to the present invention is characterized in that the surface of an expanded metal made of titanium or a titanium alloy is subjected to a surface treatment by blasting, pickling, or the like, and then a solution containing a platinum group metal compound is applied to the electrode. In the containing atmosphere,
The insoluble metal electrode obtained by thermal decomposition to form a coating of the electrode catalyst material can be fixed to the surface of the electrode base made of a valve metal or a valve metal-based alloy by welding or the like. The expanded metal used as the base material of the insoluble metal electrode is preferably made of a plate having a thickness of 0.2 to 1.5 mm, particularly preferably 0.5 to 1 mm. When the thickness of the plate is smaller than 0.2 mm, its physical strength is insufficient, and it is difficult to manufacture an expanded metal. On the other hand, if the thickness is more than 1.5 mm, the apparent thickness of the expanded metal becomes large, and an electrode having large irregularities is formed on the electrode surface, which is not preferable except for special applications.

【0011】不溶性金属電極の製造は、電極の製造にお
いて通常採用されている方法によって行うことができ、
微細粒による低圧ブラストで表面組織の調整を行い、さ
らに酸洗等によって表面清浄を行う。表面の調整方法の
一例を示せば、直径0.1mmの炭化ケイ素粒子を用い
て低圧ブラストを行い、表面を均質にした後にシュウ酸
によって酸洗を行い、表面粗度の調整を行うと共に、表
面を活性化する方法が挙げられる。この表面処理を施し
たエキスパンデッドメタル表面に白金族金属化合物を含
有する溶液を塗布し、酸素含有雰囲気にて焼成して電極
触媒被覆物質を形成するが、塗布−乾燥−焼成炉による
焼成の工程を繰り返し行って所望の厚さの被覆を形成す
る。焼成の条件は、電極触媒被覆の成分によって異なる
が、450〜550℃とすることが好ましい。また、厚
さが0.2〜0.4mm程度の薄い基材の場合は1mm
以上の物に比較して5〜10℃温度を低下させた方が有
効である。電極触媒物質としては、硫酸、硝酸、または
それらの両者を含む電解液中において使用する陽極のよ
うに酸素発生陽極とする場合には酸化イリジウムと酸化
タンタルからなる電極触媒物質が好ましい。
The production of the insoluble metal electrode can be carried out by a method usually employed in the production of an electrode.
The surface texture is adjusted by low-pressure blasting with fine particles, and the surface is further cleaned by pickling or the like. An example of a method for adjusting the surface is as follows: low-pressure blasting is performed using silicon carbide particles having a diameter of 0.1 mm, and the surface is homogenized, and then pickled with oxalic acid to adjust the surface roughness. Is activated. A solution containing a platinum group metal compound is applied to the surface of the expanded metal subjected to the surface treatment, and fired in an oxygen-containing atmosphere to form an electrode catalyst coating material. The process is repeated to form a coating of the desired thickness. The firing conditions vary depending on the components of the electrode catalyst coating, but are preferably 450 to 550 ° C. In addition, in the case of a thin substrate having a thickness of about 0.2 to 0.4 mm, 1 mm
It is more effective to lower the temperature by 5 to 10 ° C. as compared with the above-mentioned products. As an electrode catalyst material, an electrode catalyst material composed of iridium oxide and tantalum oxide is preferable when an oxygen generating anode is used such as an anode used in an electrolytic solution containing sulfuric acid, nitric acid, or both.

【0012】このようにして作製した電極触媒被覆を有
する不溶性金属電極を電極上での電流の分布に応じて電
流の大きな部分は開口率の小さなものを、電流の小さな
部分は開口率の大きなものを取り付けるが、曲面を有す
る板状体を電極基体とする場合には、曲面状の電極基体
に直接に取り付けても良いが、基体上に結合したリブに
不溶性金属電極を取り付けても良い。不溶性金属電極の
取り付けは、機械的な固着手段、あるいはTIG溶接や
抵抗溶接等の溶接によって行うことができるが、溶接に
よる場合には、TIG溶接や抵抗溶接では、溶接箇所が
大きく溶融し、電極としての作用を果たさない部分の面
積が大きくなるので、溶接部分の局部的な加熱溶融が可
能なレーザービームによって溶接することが望ましい。
また、取付箇所の間隔は不溶性金属電極の大きさ、電極
の使用電流の大小によって決めるが、通常は20〜30
mm間隔で行う。
The insoluble metal electrode having the electrode catalyst coating prepared in this manner has a small opening ratio for a large current portion and a small opening ratio for a small current portion according to the current distribution on the electrode. When a plate-like body having a curved surface is used as the electrode substrate, the electrode substrate may be directly attached to the curved electrode substrate, or an insoluble metal electrode may be attached to a rib bonded on the substrate. Attachment of the insoluble metal electrode can be performed by mechanical fixing means or welding such as TIG welding or resistance welding. However, in the case of welding, in TIG welding or resistance welding, the welded portion is largely melted and the electrode is melted. Therefore, it is desirable to perform welding by using a laser beam capable of locally heating and melting the welded portion, since the area of the portion that does not perform the function becomes large.
The distance between the attachment points is determined by the size of the insoluble metal electrode and the current used by the electrode.
Perform at mm intervals.

【0013】電極基体には、各種の金属を用いることが
できるが、陽極として使用する場合に、耐食性のあるチ
タンあるいはその合金などの弁金属、あるいは弁金属合
金を電極基体とすることが好ましい。そして、電極基体
上には、直接に電極触媒被覆を形成しないので、電極基
体の形状、構造を熱処理を考慮して決定する必要はな
い。また、電極基体には、既に電極として使用して電極
活性の低下した部材を使用し、不溶性金属電極を溶接等
の手段によって取付けることにより、電極基体の熱処理
等を行わずに電極の再生が可能である。さらに、電極基
体は清浄にするのみで良いので、溶接の障害となるよう
な酸洗処理や活性化処理を行わなくてもよい。
Various metals can be used for the electrode substrate, but when used as an anode, it is preferable to use a valve metal such as titanium or its alloy having corrosion resistance, or a valve metal alloy as the electrode substrate. Since the electrode catalyst coating is not directly formed on the electrode substrate, it is not necessary to determine the shape and structure of the electrode substrate in consideration of the heat treatment. In addition, by using a member with reduced electrode activity that has already been used as an electrode for the electrode substrate and attaching an insoluble metal electrode by welding or other means, the electrode can be regenerated without heat treatment etc. It is. Further, since it is only necessary to clean the electrode substrate, it is not necessary to perform the pickling treatment or the activation treatment which may hinder welding.

【0014】[0014]

【作用】電極基体上に開口率の異なる開口部を有する不
溶性金属電極を取りつけた電解用電極において、電流が
集中する部分にはその他の部分に比較して開口率の小さ
な不溶性金属電極を取付けて、電流が集中する部分での
電極として作用する面積を増大させて電流集中部分での
実質的な電流密度を低下させることができ、電極基体と
不溶性金属電極を別個に製造することができるので、任
意の形状あるいは大きさの電極を製造することができ
る。
In an electrode for electrolysis in which an insoluble metal electrode having openings having different aperture ratios is mounted on an electrode substrate, an insoluble metal electrode having a smaller aperture ratio than other portions is attached to a portion where current is concentrated. Since it is possible to increase the area acting as an electrode in the portion where the current is concentrated, to reduce the substantial current density in the portion where the current is concentrated, and to manufacture the electrode base and the insoluble metal electrode separately, Electrodes of any shape or size can be manufactured.

【0015】[0015]

【実施例】以下、実施例によりさらに詳細に説明する。
本発明の1実施例を図面を用いて説明する。図1は、銅
箔製造用の電解装置において、回転する円筒状陰極に対
向して用いられる陽極として用いる電極である。電極1
は円筒の曲面の一部からなり、通常の電解装置では円筒
の4分の1の大きさのものを2個用いている。チタン等
の弁金属からなる電極基体2に電極触媒物質を被覆した
エキスパンデッドメタルの不溶性金属電極3を溶接によ
って取りつけたものであるが、エキスパンデッドメタル
として、開口率が大きな不溶性金属電極31と開口率が
中間の電極32、および開口率が小さな電極33を配置
している。
The present invention will be described in more detail with reference to the following examples.
An embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an electrode used as an anode which is used to face a rotating cylindrical cathode in an electrolytic apparatus for producing a copper foil. Electrode 1
Is composed of a part of a curved surface of a cylinder. In a usual electrolytic apparatus, two pieces each having a size of a quarter of the cylinder are used. An expanded metal insoluble metal electrode 3 in which an electrode catalyst material is coated on an electrode substrate 2 made of a valve metal such as titanium is attached by welding. The expanded metal insoluble metal electrode 31 has a large aperture ratio. And an electrode 32 having an intermediate aperture ratio and an electrode 33 having a small aperture ratio.

【0016】通常、このような円筒状の電極を使用した
電解装置によって、銅箔を製造する場合には、円筒の下
部より電解液を陰極と陽極の電極間隔に供給し、電解液
を上方から排出しながら電解をする。陽極では酸素が発
生し気泡となって電解液中を上昇する。電解液の流速に
よって異なるが、電解槽の上部ほど気泡の量および気泡
の大きさが大きくなり電解槽の下部と上部では電流密度
の差が生じる。そこで、電解槽の下部の電極の開口率を
他の部分の電極の開口率よりも小さくすることによっ
て、それぞれの部分の電流密度に対応した電流を供給す
ることが可能となり、安定な電解を行うことができる。
Normally, when a copper foil is manufactured by an electrolytic apparatus using such a cylindrical electrode, an electrolytic solution is supplied from a lower portion of the cylinder to a space between the cathode and the anode, and the electrolytic solution is supplied from above. Electrolyze while discharging. Oxygen is generated at the anode and becomes bubbles and rises in the electrolyte. Although it depends on the flow rate of the electrolytic solution, the amount of bubbles and the size of the bubbles increase in the upper part of the electrolytic cell, and a difference in current density occurs between the lower part and the upper part of the electrolytic cell. Therefore, by making the opening ratio of the lower electrode of the electrolytic cell smaller than the opening ratio of the electrodes of the other portions, it becomes possible to supply a current corresponding to the current density of each portion, thereby performing stable electrolysis. be able to.

【0017】実施例1 銅箔製造用試験電解槽として、直径1mの円筒状の陰
極、および陰極の下部の半分を取り囲むようにした半円
筒状の陽極を使用して電解試験を行った。電極間距離は
10mmであった。陰極には、ステンレス鋼にクロムめ
っきを行ったドラムを使用し、陽極には曲面状に加工し
たチタン板上に板厚1.0mmのチタンで作ったエキス
パンデッドメタルを基材とする不溶性金属電極を溶接し
たものを使用した。なお、ここで用意したエキスパンデ
ッドメタルは3種類であり、これらは図2のエキスパン
デッドメタルを説明する図におけるLWを10mmで共
通とし、SWを変えて開口率40%、50%、及び60
%としたものを用意した。拡開後、ロールによって厚み
を1.2mmに調整した。これら3種のエキスパンデッ
ドメタルを、開口率の小さいもの(40%)を下方に、
中間(50%)を真中に、大きいもの(60%)を上部
に抵抗溶接により取りつけた。
Example 1 An electrolytic test was conducted using a cylindrical cathode having a diameter of 1 m and a semicylindrical anode surrounding the lower half of the cathode as a test electrolytic cell for producing copper foil. The distance between the electrodes was 10 mm. The cathode is a drum made of chromium-plated stainless steel, and the anode is an insoluble metal made of expanded metal made of titanium with a thickness of 1.0 mm on a titanium plate with a curved surface. The one to which the electrode was welded was used. There are three types of expanded metal prepared here. These are common to the expanded metal of FIG. 2 in which LW is set to 10 mm, and SW is changed to change the aperture ratio to 40%, 50%, and 60
% Was prepared. After the spread, the thickness was adjusted to 1.2 mm by a roll. These three types of expanded metal are placed on the lower one (40%)
The middle (50%) was mounted in the middle and the large one (60%) by resistance welding on top.

【0018】電解液として銅イオンを50g/l、硫酸
を200g/l含む水溶液を用い、添加剤としてゼラチ
ンを50mg/lの濃度となるように加えたものを使用
し、電解槽下方から流速20cm/秒の速度で電解液を
上方に供給した。電解液温度は60℃であり、電流密度
を100A/cm2 とした。なお、実質電流分布を測定
するためドラムの回転は行わなかった。その結果、陰極
のドラム状の電極上に析出した銅の厚さには分布が生
じ、液入口の銅の厚さに対して液出口の銅の厚さは約3
0%薄いものであった。本実施例における下部と上部と
の電極の表面積比は約1:0.65であり、この電流密
度の分布にほぼ対応するもので、陽極表面当たりの電流
負荷はほぼ同じになることが予想された。
An aqueous solution containing 50 g / l of copper ions and 200 g / l of sulfuric acid was used as an electrolytic solution, and gelatin added to a concentration of 50 mg / l as an additive was used. The electrolyte was supplied upward at a rate of / sec. The electrolyte temperature was 60 ° C., and the current density was 100 A / cm 2 . The drum was not rotated to measure the substantial current distribution. As a result, there is a distribution in the thickness of the copper deposited on the drum-shaped electrode of the cathode, and the thickness of the copper at the liquid outlet is about 3 times the thickness of the copper at the liquid inlet.
It was 0% thin. The surface area ratio of the lower electrode and the upper electrode in this example is about 1: 0.65, which substantially corresponds to this current density distribution, and the current load per anode surface is expected to be almost the same. Was.

【0019】比較例1 陽極として、厚さ3mmの曲面状のチタン板に実施例1
と同様の電極被覆を形成した点を除いて、実施例1と同
様の条件で電解したところ、陰極のドラム状電極の銅の
厚みは実施例1と同様に電解液の入口部の厚みに対して
液出口の銅の厚みは30%薄いものであり、陽極の電極
としての表面積分布には起因していないことがわかっ
た。なお、この分布は電解液中に混入した陽極より発生
した酸素ガス気泡によるものであり、上部ほど気泡率が
高くなり、液の実質的な抵抗が増大したためと考えられ
る。
Comparative Example 1 A 3 mm thick curved titanium plate was used as an anode in Example 1.
When electrolysis was performed under the same conditions as in Example 1 except that the same electrode coating was formed as in Example 1, the copper thickness of the cathode drum-shaped electrode was the same as that in Example 1 with respect to the thickness of the electrolyte inlet. It was found that the thickness of the copper at the liquid outlet was 30% thinner and was not due to the surface area distribution of the anode electrode. Note that this distribution is due to oxygen gas bubbles generated from the anode mixed in the electrolytic solution, and it is considered that the bubble ratio becomes higher toward the upper part, and the substantial resistance of the liquid increases.

【0020】実施例2 無水硫酸ナトリウム160g/l、硫酸20g/l、並
びに添加剤としてゼラチンを50mg/l含む電解液を
使用し、実施例1と同様に電極寿命試験を行った。試験
した電極は3700時間で寿命に達したが、その時には
ほぼ電解面全面にわたって活性が低下していた。
Example 2 An electrode life test was performed in the same manner as in Example 1 except that an electrolyte containing 160 g / l of anhydrous sodium sulfate, 20 g / l of sulfuric acid, and 50 mg / l of gelatin as an additive was used. The electrode tested reached its life in 3700 hours, at which time the activity was reduced over almost the entire electrolytic surface.

【0021】比較例2 比較例1の電極を用いた点を除いて実施例2と同一の条
件で電極寿命の試験をお行ったところ、電極下部は16
00時間で活性を失ってしまった。
Comparative Example 2 An electrode life test was performed under the same conditions as in Example 2 except that the electrode of Comparative Example 1 was used.
It lost its activity in 00 hours.

【0022】[0022]

【発明の効果】本発明の電極は、電極基体上に取り付け
る開口を有する電極触媒被覆を形成した不溶性金属電極
の開口率を、電流の大小に応じて部分的に変更したの
で、電極の一部分における電流密度の上昇を防止するこ
とができ、電極を長寿命化させることが可能となる。ま
た、電極被覆を電極基体上に直接に形成していないの
で、大型の電極であっても製造が容易となり、また性能
の低下した電極の再活性化にはこの電極基体上の不溶性
金属電極を取り替えるのみで、再活性化を短時間に容易
に行うことが可能となった。
According to the electrode of the present invention, the aperture ratio of the insoluble metal electrode formed with the electrode catalyst coating having the opening to be mounted on the electrode substrate is partially changed in accordance with the magnitude of the current. An increase in current density can be prevented, and the life of the electrode can be extended. In addition, since the electrode coating is not formed directly on the electrode substrate, it is easy to manufacture even a large electrode, and the insoluble metal electrode on the electrode substrate is used for reactivating the electrode with reduced performance. Reactivation can be easily performed in a short time only by replacement.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電極を説明する図である。FIG. 1 is a diagram illustrating an electrode of the present invention.

【図2】エキスパンデッドメタルを説明する図である。FIG. 2 is a diagram illustrating an expanded metal.

【符号の説明】[Explanation of symbols]

1…電極、2…電極基体、3…不溶性金属電極、31…
開口率が大きな不溶性金属電極、32…中間の開口率の
不溶性金属電極、33…開口率が小さな不溶性金属電極
DESCRIPTION OF SYMBOLS 1 ... electrode, 2 ... electrode base, 3 ... insoluble metal electrode, 31 ...
Insoluble metal electrode with a large aperture ratio, 32... Insoluble metal electrode with an intermediate aperture ratio, 33... Insoluble metal electrode with a small aperture ratio

フロントページの続き (51)Int.Cl.7 識別記号 FI C25D 21/12 C25D 21/12 J (56)参考文献 特開 昭52−114571(JP,A) 特開 平2−30783(JP,A) 特開 昭57−145991(JP,A) 特開 昭57−174476(JP,A) (58)調査した分野(Int.Cl.7,DB名) C25B 1/00 - 15/08 C25D 17/12 C25D 17/10 101 C25D 21/12 C25D 21/00 Continuation of the front page (51) Int.Cl. 7 Identification symbol FI C25D 21/12 C25D 21/12 J (56) References JP-A-52-114571 (JP, A) JP-A-2-30783 (JP, A) JP-A-57-145991 (JP, A) JP-A-57-174476 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C25B 1/00-15/08 C25D 17 / 12 C25D 17/10 101 C25D 21/12 C25D 21/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 円筒状の電極に対向する曲面状の電極基
体に、開口を有する不溶性金属の板状体を電極触媒物質
で被覆した不溶性金属電極を取り付けた電解用電極にお
いて、電流密度が大きな部分には、開口率が小さな不溶
性金属電極を配置し、電流密度が小さな部分には開口率
が大きな不溶性金属電極を配置したことを特徴とする電
解用電極。
An electrolysis electrode in which an insoluble metal electrode in which a plate of an insoluble metal having an opening is covered with an electrode catalyst substance is attached to a curved electrode base opposed to a cylindrical electrode, the current density is large. An electrode for electrolysis, wherein an insoluble metal electrode having a small aperture ratio is arranged in a portion, and an insoluble metal electrode having a large aperture ratio is arranged in a portion having a small current density.
【請求項2】 不溶性金属電極がチタンまたはチタン合
金の表面にイリジウム酸化物を含む電極触媒物質を被覆
したものであることを特徴とする請求項1記載の電解用
電極。
2. The electrode for electrolysis according to claim 1, wherein the insoluble metal electrode is obtained by coating a surface of titanium or a titanium alloy with an electrode catalyst material containing iridium oxide.
JP14584993A 1993-06-17 1993-06-17 Electrode for electrolysis Expired - Fee Related JP3332264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14584993A JP3332264B2 (en) 1993-06-17 1993-06-17 Electrode for electrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14584993A JP3332264B2 (en) 1993-06-17 1993-06-17 Electrode for electrolysis

Publications (2)

Publication Number Publication Date
JPH0741980A JPH0741980A (en) 1995-02-10
JP3332264B2 true JP3332264B2 (en) 2002-10-07

Family

ID=15394521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14584993A Expired - Fee Related JP3332264B2 (en) 1993-06-17 1993-06-17 Electrode for electrolysis

Country Status (1)

Country Link
JP (1) JP3332264B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6139705A (en) * 1998-05-06 2000-10-31 Eltech Systems Corporation Lead electrode
US6183607B1 (en) * 1999-06-22 2001-02-06 Ga-Tek Inc. Anode structure for manufacture of metallic foil
CN100418695C (en) * 2004-09-20 2008-09-17 长春石油化学股份有限公司 Method for mfg. copper foil
JP2009127068A (en) * 2007-11-21 2009-06-11 Akita Prefectural Univ Cathode for electrolytic treatment, and electrolytic cell
JP6062600B2 (en) * 2014-03-31 2017-01-18 株式会社シンク・ラボラトリー Cylinder plating apparatus and method
US9777382B2 (en) 2015-06-03 2017-10-03 Kabushiki Kaisha Toshiba Electrochemical cell, oxygen reduction device using the cell and refrigerator using the oxygen reduction device

Also Published As

Publication number Publication date
JPH0741980A (en) 1995-02-10

Similar Documents

Publication Publication Date Title
US5882723A (en) Durable electrode coatings
US4781803A (en) Electrolytic processes employing platinum based amorphous metal alloy oxygen anodes
JP5616633B2 (en) Anode for electrolysis
EP0163410B1 (en) Electrolysis of halide-containing solutions with platinum based amorphous metal alloy anodes
US3428544A (en) Electrode coated with activated platinum group coatings
US5419821A (en) Process and equipment for reforming and maintaining electroless metal baths
US7001494B2 (en) Electrolytic cell and electrodes for use in electrochemical processes
JPH0694597B2 (en) Electrode used in electrochemical process and manufacturing method thereof
EP0064840B1 (en) Electrode, method for its preparation and its use in electrolysis
EP0031948B1 (en) A hydrogen-evolution electrode
US7211177B2 (en) Electrode for electrolysis in acidic media
JPH0138875B2 (en)
JP2963266B2 (en) Insoluble electrode structure
JP3332264B2 (en) Electrode for electrolysis
US4696731A (en) Amorphous metal-based composite oxygen anodes
JPS59232284A (en) Production and use of electrode
EP0164200A1 (en) Improved electrolytic processes employing platinum based amorphouse metal alloy oxygen anodes
CA1072915A (en) Cathode surfaces having a low hydrogen overvoltage
JP6222121B2 (en) Method for producing insoluble electrode
MX2011003012A (en) Cathode member and bipolar plate for hypochlorite cells.
Pavlović et al. On the use of platinized and activated titanium anodes in some electrodeposition processes
US5626730A (en) Electrode structure
JP3468545B2 (en) Electrode for electrolysis
JP3507278B2 (en) Electroplating method
JP2653596B2 (en) Electrode for electrolysis and method for producing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090726

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090726

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100726

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110726

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees