JP2653596B2 - Electrode for electrolysis and method for producing the same - Google Patents

Electrode for electrolysis and method for producing the same

Info

Publication number
JP2653596B2
JP2653596B2 JP4025403A JP2540392A JP2653596B2 JP 2653596 B2 JP2653596 B2 JP 2653596B2 JP 4025403 A JP4025403 A JP 4025403A JP 2540392 A JP2540392 A JP 2540392A JP 2653596 B2 JP2653596 B2 JP 2653596B2
Authority
JP
Japan
Prior art keywords
electrode
electrolysis
insoluble metal
wire
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4025403A
Other languages
Japanese (ja)
Other versions
JPH05222591A (en
Inventor
誠 島田
孝之 島宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PERUMERETSUKU DENKYOKU KK
Original Assignee
PERUMERETSUKU DENKYOKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PERUMERETSUKU DENKYOKU KK filed Critical PERUMERETSUKU DENKYOKU KK
Priority to JP4025403A priority Critical patent/JP2653596B2/en
Publication of JPH05222591A publication Critical patent/JPH05222591A/en
Application granted granted Critical
Publication of JP2653596B2 publication Critical patent/JP2653596B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、各種の物質の電解製造
や金属の電解採取、めっき等に使用される電解用電極お
よびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode for electrolysis used for electrolytic production of various substances, electrolytic extraction of metal, plating, and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】電解用電極としては、古くは炭素質電極
が使用されていたが、近年、チタンに代表される弁金属
を基体とし、その表面に、白金族金属を含む酸化物被覆
を施した、本出願人らがDSA、又はDSEの商品名で
提供している不溶性金属電極が使用されるようになって
きた。
2. Description of the Related Art As an electrode for electrolysis, a carbonaceous electrode has been used for a long time. However, in recent years, a valve metal represented by titanium has been used as a base, and an oxide coating containing a platinum group metal has been applied to the surface thereof. As a result, insoluble metal electrodes provided by the present applicant under the trade name of DSA or DSE have been used.

【0003】これらは、比較的小型軽量であり使用中の
寸法変化は実質的になく、また極めてすぐれた耐食性、
耐久性を有するとともに、電極触媒作用を有する電極物
質も用途に応じて任意に選択できるので広く使用されて
おり、現在では、最大の工業的な電解分野である食塩の
電気分解ではほとんど全てがこの不溶性金属電極に置き
換わっている。
[0003] These are relatively small and lightweight, have substantially no dimensional change during use, and have extremely good corrosion resistance,
Electrodes having durability and electrode catalysis can be arbitrarily selected according to the application, and are widely used.Currently, almost all of this is performed in the electrolysis of salt, which is the largest industrial electrolysis field. It has been replaced by insoluble metal electrodes.

【0004】一方、酸素発生用の陽極分野においては、
炭素は発生する酸素と反応して急速に消耗し、さらに電
気伝導性が不十分であることから不溶性で安定している
鉛や鉛合金が使用されているが、近年の環境問題から鉛
や鉛合金電極は鉛の廃水中への混入、製品中への混入問
題といった欠点を有している。すなわち、鉛や鉛合金は
工業用電極として導電性、加工性は満足されているもの
の、電解時の消耗が数mg/Ahという大きく、電解液
中へ溶出した鉛が廃水中あるいは製品中へ混入するので
ある。
On the other hand, in the field of anodes for generating oxygen,
Carbon is rapidly consumed by reacting with generated oxygen, and lead and lead alloys, which are insoluble and stable due to insufficient electrical conductivity, are used. Alloy electrodes have drawbacks such as the problem of mixing lead into wastewater and mixing into products. In other words, although lead and lead alloys are satisfactory in conductivity and workability as industrial electrodes, their consumption during electrolysis is as large as several mg / Ah, and lead eluted into the electrolyte is mixed into wastewater or products. You do it.

【0005】これらの解決策として、古くより知られて
いる白金めっきチタン電極、又は白金めっきニオブ電極
が実験室規模、あるいは特殊な分野では用いられている
が、高価であり、工業用として用いるには耐久性が不十
分なことから、一般に広く使われるには至っていない
し、今後とも拡大していく可能性はないものとみられ
る。
As a solution to these problems, a platinum-plated titanium electrode or a platinum-plated niobium electrode, which has been known for a long time, is used on a laboratory scale or in a special field, but is expensive and is not suitable for industrial use. Because of its insufficient durability, it has not been widely used in general and is unlikely to expand in the future.

【0006】そこで、鋼板の連続めっきや、金属採取等
の酸素発生用陽極を使用する分野で現在でも主体となっ
ている鉛や鉛合金陽極についても、既に食塩電解などに
おいて広く用いられているチタン等の弁金属の基体上に
電極被覆を形成した不溶性金属陽極への転換が進むもの
とみられる。
[0006] Therefore, the lead and lead alloy anodes which are still mainly used in the field of using an anode for oxygen generation such as continuous plating of a steel sheet and metal sampling, etc., are also widely used in salt electrolysis and the like. It is expected that the conversion to an insoluble metal anode having an electrode coating formed on a base of a valve metal such as the above will proceed.

【0007】不溶性金属陽極は、液体、気体の化学物質
を製造する目的の電解槽では、電極も平面状のものが一
般に用いられており、電解槽の構造に応じた任意の形状
あるいは大きさのものを製造することが容易であり、電
極の特性を十分に利用することができた。ところが、鋼
板のめっきや金属の採取等の電解装置に使用する場合に
は、不溶性金属陽極は単に対極としての作用を果たすの
みであるが、製品がめっき鋼板であったり銅箔等の金属
箔であり、大きさあるいは形状が制限されてくる。この
ため、極めて大きな電極とこれに平均に均一に給電する
ために、陽極には大型の給電体を装備する必要が起こっ
ている。現在では直径3mの半円筒状の内側に電極被覆
を行ったものも使用されており、1つの電極の重量が5
00kgを越えるという巨大なものまで現れている。
In the case of an insoluble metal anode, a flat electrode is generally used in an electrolytic cell for the purpose of producing a liquid or gaseous chemical substance, and the electrode has an arbitrary shape or size depending on the structure of the electrolytic cell. The electrode was easy to manufacture, and the characteristics of the electrode could be fully utilized. However, when used in electrolysis equipment such as plating steel sheets or collecting metals, the insoluble metal anode merely acts as a counter electrode, but the product is a plated steel sheet or a metal foil such as copper foil. Yes, the size or shape is limited. For this reason, it is necessary to equip the anode with a large-sized power supply in order to supply an extremely large electrode and an average and uniform power supply thereto. At present, an electrode coated inside a semi-cylindrical shape having a diameter of 3 m is also used, and the weight of one electrode is 5
A huge thing over 100 kg has appeared.

【0008】[0008]

【発明が解決しようとする課題】電極基体表面への電極
触媒物質の被覆の形成は、通常はチタンなどの弁金属の
電極基体上に白金族の金属を含む溶液を塗布し、酸素含
有雰囲気中において焼成し白金族の金属酸化物を含有す
る被覆を形成するという操作を繰り返し行い、所定の厚
みの被覆を形成する熱分解法によって作成されている。
The formation of the coating of the electrode catalyst substance on the surface of the electrode substrate is usually carried out by applying a solution containing a platinum group metal on an electrode substrate of a valve metal such as titanium, and subjecting it to an oxygen-containing atmosphere. , And a coating containing a platinum group metal oxide is repeatedly performed to form a coating having a predetermined thickness.

【0009】この方法では電極の構造体の加熱と冷却を
繰り返さなければならないが、大型の電極構造体を均一
に加熱することは困難であった。
In this method, heating and cooling of the electrode structure must be repeated, but it has been difficult to uniformly heat a large electrode structure.

【0010】また、大型の鋼板の連続めっき装置や電解
による銅箔の連続製造装置においては、高品質の製品を
得るためには、電解部位によって電流密度を調整するこ
とが必要となるが、従来の大型の電極では、電極面の部
位に電流密度の調整する機能を付与することは極めて困
難であった。
In a continuous plating apparatus for a large steel plate or a continuous production apparatus for a copper foil by electrolysis, it is necessary to adjust the current density depending on the electrolysis site in order to obtain a high quality product. In the case of the large-sized electrode, it was extremely difficult to provide a function of adjusting the current density to a portion on the electrode surface.

【0011】[0011]

【課題を解決するための手段】本発明は、電極基体上に
線材上に電極物質を被覆した不溶性金属電極を取り付け
た電解用電極において、電流が集中する部分には間隔を
密に配置し、電流の少ない部分には間隔を疎にして配置
して取り付けた電解用電極である。
According to the present invention, there is provided an electrode for electrolysis in which an insoluble metal electrode in which a wire material is coated on an electrode substrate is mounted on an electrode substrate, and a space where a current is concentrated is densely arranged. The electrode for electrolysis is attached at a portion where the current is small, with a small interval.

【0012】すなわち、チタンまたはその合金などの弁
金属又は弁金属合金からなる金属基体表面に、線状の不
溶性金属電極を電流が集中する部分には相互の間隔を密
として、電流が小さな部分には相互の間隔を疎として取
り付けた電解用電極である。また、本発明は直径0.2
〜1mmのチタン又はチタン合金製の線材の表面をブラ
スト及び/又は酸洗によって表面処理した後、白金族の
金属を含む溶液を塗布した後に熱分解し電極物質の被覆
を形成し不溶性金属電極とした後、それを弁金属又は弁
金属基合金からなる基材表面に間隔に設けて並べなが
ら、溶接して固定していくことを特徴とする電解用電極
の製造方法である。本発明の線材は、断面が円形のもの
に限らず、楕円、多角形等の任意のものを用いることが
できる。
That is, a linear insoluble metal electrode is formed on the surface of a metal substrate made of a valve metal or a valve metal alloy such as titanium or its alloy at a portion where the current is concentrated, and at a portion where the current is concentrated, the interval between the electrodes is reduced. Is an electrode for electrolysis mounted with sparse intervals between them. In addition, the present invention has a diameter of 0.2
After the surface of a wire made of titanium or a titanium alloy of about 1 mm is subjected to surface treatment by blasting and / or pickling, a solution containing a platinum group metal is applied and then thermally decomposed to form a coating of an electrode substance to form an insoluble metal electrode. After that, the electrode is provided on the surface of the base material made of a valve metal or a valve metal-based alloy and fixed by welding while being arranged at intervals. The wire rod of the present invention is not limited to a circular cross-section, and may be an arbitrary one such as an ellipse or a polygon.

【0013】金属箔の電解製造用の電極に用いた鋼板の
高速連続電気めっきや、電解金属箔製造に用いられる不
溶性金属電極は、その電極面積が極めて大きいばかりで
なく、電極作用面への導電性および形状を安定に保持す
るために、電極基体は厚みが厚くて重いものとなる。例
えば、電解銅箔製造用の電極では、板厚が50mm、面
積が3m2 以上のものもあり、重量はチタンを使用して
も500kg以上となる場合がある。
The insoluble metal electrode used for high-speed continuous electroplating of a steel sheet used for an electrode for electrolytic production of a metal foil and the production of an electrolytic metal foil not only has an extremely large electrode area, but also has a large conductive area on the electrode working surface. In order to stably maintain the properties and shape, the electrode substrate is thick and heavy. For example, some electrodes for producing electrolytic copper foil have a plate thickness of 50 mm and an area of 3 m 2 or more, and the weight may be 500 kg or more even when titanium is used.

【0014】したがって、通常の熱分解法でその表面に
電極物質の被覆を行うには、これ全体を加熱し、又冷却
をくりかえさねばならず、多大の時間と燃料を消費し、
電極の被覆を完成させるためには多大な労力と時間を要
した。
Therefore, in order to coat the surface of the electrode material with the usual pyrolysis method, the whole must be heated and cooled repeatedly, consuming a lot of time and fuel,
A great deal of labor and time was required to complete the electrode coating.

【0015】本発明は、電極基体については何等の処理
を行うことなく電極基体の表面にチタンなどの弁金属ま
たはその合金からなる線状の部材上に電極被覆を形成し
た不溶性金属電極を取り付けたものであり、大型で重量
も大きな電極基体は、単に導電部材あるいは構造体と
し、その表面に線状の電極を取りつけるようにしたもの
である。さらに、線状の不溶性電極間の間隔を適宜調整
することによって、電極表面上に任意の電流分布を与え
ることでき、電流が集中する部分には不溶性電極を密に
配置し、電流が小さな部分には間隔を大きくして配置す
るならば、電流が集中する部分の実質的な電極表面積が
大きくなり、電流集中部分での電流密度を低下して、電
流集中部分の早期の劣化を防止し、電極の長寿命化が可
能である。本発明の電極は、陽極として使用した場合に
耐食性のあるチタンあるいはその合金などの弁金属、あ
るいは弁金属合金を電極基体とすることが好ましいが、
電極被覆物質の形成等を行わないので、熱処理等に対す
る形状、構造の問題を考慮する必要はない。また、電極
基体には、既に電極として使用して電極活性の低下した
部材を使用し、線状の不溶性金属電極を溶接等の手段に
よって取り付けることによって、電極基体の熱処理等を
ともなう電極被覆の再生を行わずに電極の再生が可能で
ある。
According to the present invention, an insoluble metal electrode having an electrode coating formed on a linear member made of a valve metal such as titanium or an alloy thereof is attached to the surface of the electrode substrate without performing any treatment on the electrode substrate. The large and heavy electrode base is simply a conductive member or structure, and a linear electrode is attached to the surface thereof. Furthermore, by appropriately adjusting the interval between the linear insoluble electrodes, an arbitrary current distribution can be given on the electrode surface, and the insoluble electrodes are densely arranged in a portion where the current is concentrated, and in a portion where the current is small. If the distance is increased, the substantial electrode surface area of the portion where the current is concentrated increases, the current density in the current concentrated portion is reduced, and the early deterioration of the current concentrated portion is prevented. Life can be extended. The electrode of the present invention is preferably a valve metal such as titanium or its alloy having corrosion resistance when used as an anode, or a valve metal alloy as an electrode base.
Since the formation of the electrode covering material is not performed, it is not necessary to consider the problem of the shape and structure for the heat treatment and the like. For the electrode substrate, a member having reduced electrode activity that has already been used as an electrode is used, and a linear insoluble metal electrode is attached by welding or other means, thereby regenerating the electrode coating accompanied by heat treatment of the electrode substrate. It is possible to regenerate the electrode without performing the above.

【0016】また、電極基体は、清浄にし溶接の障害と
ならないように脱脂などを行うのみで十分であり、電極
物質の被覆の際のような、酸洗処理や活性化処理を行わ
なくてもよい。
Further, it is sufficient that the electrode substrate is cleaned and degreased so as not to disturb welding, and it is not necessary to perform pickling treatment or activation treatment as in the case of coating an electrode substance. Good.

【0017】電極基体上に取り付ける不溶性金属電極の
線材には、耐食性があり、熱分解法による電極被覆の形
成時にも安定した性能を発揮し、弁金属の中では安価で
あるチタン又はチタン基合金が好ましい。また、線材の
太さは、0.2〜1mmが適当であり、とくに0.4〜
0.6mmとすることが好ましい。0.2mmより細い
と熱変形が起こりやすく、熱分解被覆の再現性が劣り、
更に電極基体への溶接による取付に手数を要してしま
う。また、1mmより大きくても電解目的によっては有
効な場合もあるが、線材の頂点と側面との距離が大きく
なり、実質的に電極表面に大きな凹凸を有する電極が形
成されることとなる。
The wire of the insoluble metal electrode to be mounted on the electrode substrate has corrosion resistance, exhibits stable performance even when the electrode coating is formed by a pyrolysis method, and is inexpensive among valve metals. Is preferred. The thickness of the wire is suitably 0.2 to 1 mm, especially 0.4 to 1 mm.
It is preferably 0.6 mm. If it is thinner than 0.2 mm, thermal deformation tends to occur, and the reproducibility of the thermal decomposition coating is poor.
In addition, it takes time and effort to mount the electrode base by welding. Although it may be effective depending on the purpose of electrolysis even if it is larger than 1 mm, the distance between the vertex and the side surface of the wire becomes large, and an electrode having substantially large irregularities on the electrode surface is formed.

【0018】この不溶性金属電極用の線材は、通常の電
極基体の調整方法を適宜採用することができるが、微細
粒による低圧ブラストで表面組織の調整を行い、表面形
状は酸洗等によって行うことが適当である。表面の調整
方法の一例を示せば、直径0.1mmの炭化ケイ素粒子
を用いて低圧ブラストを行い表面組織を破壊して均質に
した後に、シュウ酸によって酸洗を行い表面粗度の調整
を行うと共に、表面を活性化する方法が挙げられる。
For the wire for the insoluble metal electrode, a normal electrode substrate adjustment method can be appropriately adopted, but the surface texture is adjusted by low pressure blasting with fine particles, and the surface shape is adjusted by pickling or the like. Is appropriate. As an example of a method for adjusting the surface, low-pressure blasting is performed using silicon carbide particles having a diameter of 0.1 mm to break the surface structure to homogeneity, and then the surface is adjusted by pickling with oxalic acid. In addition, there is a method of activating the surface.

【0019】表面処理を施した線材を電極基材の大きさ
に合わせて予め線材を切断し、それらを並べて白金族の
金属を含有する溶液を塗布し、酸素含有雰囲気において
焼成して、電極被覆物質を形成するが、長尺の線材を自
動送り装置等を使用して、塗布−乾燥−焼成炉による焼
成の工程を繰り返し行って連続的に処理をしても良い。
焼成の条件は電極被覆の成分によって異なるが、線材の
径が小さい場合には、熱容量が小さく熱集中が起こりや
すいので、一般的には厚みの厚いものに比べて焼成温度
を20℃程度低下させることが適当である。
The surface-treated wire is cut in advance in accordance with the size of the electrode base material, the wires are arranged in advance, a solution containing a platinum group metal is applied, and the solution is fired in an oxygen-containing atmosphere to form an electrode coating. Although a substance is formed, a continuous process may be performed by repeatedly performing a coating-drying-firing process using a firing furnace by using an automatic feeder or the like for a long wire.
The firing conditions vary depending on the components of the electrode coating. However, when the diameter of the wire is small, the heat capacity is small and heat concentration tends to occur. Therefore, the firing temperature is generally lowered by about 20 ° C. as compared with a thick wire. Is appropriate.

【0020】電極物質としては、硫酸、硝酸またはそれ
らの両者を含む電解液中において使用する陽極のように
酸素発生陽極とする場合には、酸化イリジウムと酸化タ
ンタルからなる電極物質が好ましい。
The electrode material is preferably an electrode material composed of iridium oxide and tantalum oxide when an oxygen generating anode is used such as an anode used in an electrolytic solution containing sulfuric acid, nitric acid or both of them.

【0021】このようにして作製した線材状の不溶性金
属電極を電極基体上に並べて溶接によって取り付ける。
直径0.5mmの線材状電極を1mm間隔で並べると、
電極としての有効面積は電極基体の表面積の約1.5倍
に、1.5mm間隔で並べるともとの電極基体の面積と
同等となるが、不溶性金属電極の間隔は電極面での電流
集中の度合いに応じて間隔を調整して並べるとよい。
The insoluble metal electrodes in the form of wires thus produced are arranged on an electrode substrate and attached by welding.
When 0.5mm diameter wire electrodes are arranged at 1mm intervals,
The effective area as an electrode is approximately 1.5 times the surface area of the electrode substrate, and when arranged at 1.5 mm intervals, it is equivalent to the area of the original electrode substrate, but the interval between the insoluble metal electrodes increases the current concentration on the electrode surface. The intervals may be adjusted according to the degree and arranged.

【0022】溶接は不溶性金属電極の間隔を所定の間隔
として固定する治具によって複数の不溶性金属電極を固
定して溶接を行っても良いし、不溶性金属電極を1本ず
つ溶接して取り付けても良い。溶接方法は、電極表面か
ら抵抗溶接で固定する方法でも可能であるが、電極表面
から抵抗溶接をすると、溶接電流の通電用電極が接触し
た分の電極物質が失活することがあるので、溶接部分の
みの加熱溶接が可能なレーザービームによる溶接が望ま
しい。また、その溶接箇所の間隔は不溶性金属電極の大
きさ、電極としての使用電流の大小によって決めるが、
通常は2〜3cmの間隔とすることが好ましい。
The welding may be performed by fixing a plurality of insoluble metal electrodes by a jig for fixing the interval of the insoluble metal electrodes at a predetermined interval, or by welding the insoluble metal electrodes one by one. good. The welding method can be a method in which the electrodes are fixed by resistance welding from the electrode surface.However, if resistance welding is performed from the electrode surface, the electrode material may be deactivated as much as the electrode for welding current contact may be deactivated. Welding with a laser beam that can heat weld only a part is desirable. The distance between the welding points is determined by the size of the insoluble metal electrode and the current used as the electrode.
Usually, it is preferable to set the interval to 2 to 3 cm.

【0023】[0023]

【作用】電極基体上に線材状の不溶性金属電極電流を取
り付けた電解用電極において、電流が集中する部分には
その他の部分に比して密に線状の不溶性金属電極部を取
り付けた電極であるので、電流が集中する部分での電極
として作用する面積を増大することができ、電流集中部
分での実質的な電流密度を低下させることができる。
In the electrode for electrolysis in which a wire-shaped insoluble metal electrode current is mounted on an electrode substrate, an electrode in which a linear insoluble metal electrode portion is mounted densely in a portion where the current is concentrated compared to other portions. Therefore, the area which acts as an electrode in a portion where the current is concentrated can be increased, and the substantial current density in the portion where the current is concentrated can be reduced.

【0024】[0024]

【実施例】以下、実施例によりさらに詳細に説明する。
本発明の1実施例を図面を用いて説明する。図1は、銅
箔製造用の電解装置において、円筒状陰極に対向して用
いられる陽極である。陽極1は円筒の1部の曲面の形状
であり、通常の電解装置では円筒の4分の1の大きさの
ものを2個用いている。チタン等の弁金属製の電極基体
2に、電極物質を被覆した線材状の不溶性金属電極3を
溶接によって取り付けたものである。
The present invention will be described in more detail with reference to the following examples.
An embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an anode used to face a cylindrical cathode in an electrolytic apparatus for producing a copper foil. The anode 1 has a shape of a curved surface of a part of a cylinder. In a usual electrolytic device, two anodes having a size of a quarter of the cylinder are used. A wire-shaped insoluble metal electrode 3 coated with an electrode substance is attached to an electrode base 2 made of a valve metal such as titanium by welding.

【0025】不溶性金属電極の取り付け間隔は、電解銅
箔の製造の場合の電流集中部4には密に配置したもので
ある。その結果、電流集中部分での実質的な電流密度を
低下させることができ、電極の寿命を長寿命化すること
ができる。
The intervals at which the insoluble metal electrodes are mounted are closely arranged in the current concentrating portion 4 in the case of manufacturing an electrolytic copper foil. As a result, the substantial current density in the current concentrated portion can be reduced, and the life of the electrode can be extended.

【0026】実施例1 銅箔製造用試験電解槽として、円筒状の陰極、および陽
極に代えて、平板状の陰極および陽極を平行に傾斜させ
て設置した電解槽を使用して電解試験を行った。
Example 1 An electrolytic test was conducted using a test cell for producing copper foil, instead of a cylindrical cathode and an anode, an electrolytic cell in which a plate-shaped cathode and an anode were installed in parallel and inclined. Was.

【0027】電解槽の高さを50cmとして、80cm
の長さの電極を電極間距離を10mmとして傾斜して設
置した。
Assuming that the height of the electrolytic cell is 50 cm, 80 cm
The electrode having a length of 10 mm was inclined and set with a distance between the electrodes of 10 mm.

【0028】陰極にはステンンレススチール、陽極には
チタン板上に直径0.5mmのチタン線を基材とする不
溶性金属電極を長さ方向に溶接したものを使用した。不
溶性金属電極は、基材のチタン線を脱脂後85℃の25
重量%の硫酸中で、2時間酸洗後、550℃で仮焼し、
その上に塩化イリジウムをイリジウムとして50g/l
となるように10重量%塩酸に溶解した塗布液を用い
て、基体表面に塗布し、500℃で10分間焼成し、塗
布と焼成の操作を10回繰り返した。
As the cathode, stainless steel was used, and as the anode, an insoluble metal electrode having a titanium wire having a diameter of 0.5 mm as a base material welded on a titanium plate in a length direction was used. The insoluble metal electrode was prepared by degreasing the titanium wire of the
After pickling for 2 hours in sulfuric acid of weight%, calcined at 550 ° C,
50 g / l of iridium chloride as iridium
Was applied to the substrate surface using a coating solution dissolved in 10% by weight hydrochloric acid and baked at 500 ° C. for 10 minutes, and the operation of coating and baking was repeated 10 times.

【0029】電極基体上に、線状の不溶性金属電極をレ
ザー溶接により溶接した。線材の溶接間隔は、電解槽の
下部では1mm間隔とし、最上部では1.2mm間隔と
なるように連続的に変化させた。
A linear insoluble metal electrode was welded on the electrode substrate by laser welding. The welding interval of the wires was continuously changed so as to be 1 mm at the lower part of the electrolytic cell and 1.2 mm at the uppermost part.

【0030】銅めっきは、電解液として銅イオンを50
g/l、硫酸を200g/l含む水溶液を用い、添加剤
としてゼラチンを50mg/lの濃度となるように加え
た。電解槽下方から流速30cm/秒の速度で電解液を
上方に供給した。電解液温度は60℃であり、電流密度
を100A/dm2 とした。
In the copper plating, 50 ions of copper are used as an electrolytic solution.
Using an aqueous solution containing 200 g / l of sulfuric acid and 200 g / l of sulfuric acid, gelatin was added as an additive to a concentration of 50 mg / l. The electrolytic solution was supplied upward from the lower part of the electrolytic cell at a flow rate of 30 cm / sec. The electrolyte temperature was 60 ° C., and the current density was 100 A / dm 2 .

【0031】その結果、陰極のステンレス電極上に析出
した銅の厚さには分布が生じ、液入り口の銅の厚さに対
して、液出口の銅の厚さは約20%薄いものであった。
As a result, there is a distribution in the thickness of the copper deposited on the stainless steel electrode of the cathode, and the thickness of the copper at the liquid outlet is about 20% thinner than the thickness of the copper at the liquid inlet. Was.

【0032】比較例1 陽極として、厚さ3mmのチタン板に実施例1と同様の
電極被覆を形成した点を除いて実施例1と同様の条件で
電解したところ、陰極のステンレス電極の銅の厚みは実
施例1と同様に電解液の入り口部の厚みに対して、液出
口の銅の厚みは20%薄いものであり、陽極の電極とし
ての分布には起因していないことがわかった。なお、こ
の分布は電解液中に混入した陽極より発生した酸素ガス
気泡によるものであり、上部ほど気泡率が高くなり、液
の実質的な抵抗が増大したためと考えられる。
COMPARATIVE EXAMPLE 1 Electrolysis was performed under the same conditions as in Example 1 except that a 3 mm-thick titanium plate was provided with an electrode coating as in Example 1 as an anode. As in Example 1, the thickness of the copper at the liquid outlet was 20% thinner than the thickness of the inlet of the electrolytic solution as in Example 1, and it was found that the thickness was not due to the distribution of the anode as an electrode. Note that this distribution is due to oxygen gas bubbles generated from the anode mixed in the electrolytic solution, and it is considered that the bubble ratio becomes higher toward the upper part, and the substantial resistance of the liquid increases.

【0033】実施例2 無水硫酸ナトリウム160g/l、硫酸20g/l、並
びに添加剤としてゼラチンを50mg/lを含む電解液
を使用し、実施例1で作製した電極の寿命試験を行っ
た。
Example 2 An electrode prepared in Example 1 was subjected to a life test using an electrolyte containing 160 g / l of anhydrous sodium sulfate, 20 g / l of sulfuric acid, and 50 mg / l of gelatin as an additive.

【0034】試験した電極は1850時間で寿命に達し
たが、その時には、電解面全面にわたり活性が低下して
いることがわかった。
The electrode tested reached its life in 1850 hours, at which time it was found that the activity was reduced over the entire electrolytic surface.

【0035】比較例2 比較例1の電極を用いた点を除いて実施例2と同一の条
件で電極寿命の試験を行ったところ、電極下部は160
0時間で活性を失い電解電圧が上昇した。
Comparative Example 2 An electrode life test was performed under the same conditions as in Example 2 except that the electrode of Comparative Example 1 was used.
At 0 hours, the activity was lost and the electrolytic voltage increased.

【0036】[0036]

【発明の効果】本発明の電極は、電極に通電する電流の
大小に応じて、電極基体上に取り付ける不溶性金属電極
の配置間隔を部分的に変更することによって、一部分の
電流密度の上昇を防止することができ、電極を長寿命化
させることが可能となる。また、電極被覆を電極基体上
に直接に形成していないので、大型の電極であっても製
造が容易となり、電極基体としては電解に使用して活性
が低下した電極を使用することができる、また性能の低
下した電極の再活性化には、不溶性金属電極を電極基体
上に取り付けるのみで実現できるので、再活性化が短時
間に容易に可能となった。
According to the electrode of the present invention, an increase in the current density in a part of the electrode is prevented by partially changing the arrangement interval of the insoluble metal electrodes mounted on the electrode base according to the magnitude of the current flowing through the electrode. And it is possible to extend the life of the electrode. In addition, since the electrode coating is not formed directly on the electrode substrate, even a large electrode can be easily manufactured, and the electrode substrate can be an electrode whose activity has been reduced by electrolysis. In addition, the reactivation of the electrode whose performance has deteriorated can be realized only by mounting the insoluble metal electrode on the electrode substrate, so that the reactivation can be easily performed in a short time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電解用電極の1実施例を示す図であ
る。
FIG. 1 is a view showing one embodiment of an electrode for electrolysis of the present invention.

【符号の説明】[Explanation of symbols]

1…陽極、2…電極基体、3…不溶性金属電極、4…電
流集中部
DESCRIPTION OF SYMBOLS 1 ... Anode, 2 ... Electrode base, 3 ... Insoluble metal electrode, 4 ... Current concentration part

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電極基体面に、電極触媒物質からなる電
極物質を被覆した線材状の不溶性金属電極を配置した電
解用電極において、電流集中部分には間隔を小さくして
密に配置し、電流の小さな部分には間隔を疎に配置して
取り付けたことを特徴とする電解用電極。
An electrode for electrolysis in which a wire-shaped insoluble metal electrode coated with an electrode material made of an electrode catalyst material is arranged on the surface of an electrode substrate, and the current concentration portion is densely arranged with a small interval. An electrode for electrolysis characterized by being sparsely arranged and attached to a small part of.
【請求項2】 不溶性金属電極がチタンまたはチタン合
金の表面にイリジウム酸化物を含む電極物質を被覆した
ものであることを特徴とする請求項1の電解用電極。
2. The electrolytic electrode according to claim 1, wherein the insoluble metal electrode is formed by coating a surface of titanium or a titanium alloy with an electrode material containing iridium oxide.
【請求項3】 チタン又はチタン合金線の表面をブラス
ト及び/又は酸洗処理によって活性化した後、熱分解法
で電極物質を被覆して得られた不溶性金属電極を、弁金
属又は弁金属基合金からなる基材表面に電流の集中の大
小に応じて間隔を調整して、溶接により取り付けること
を特徴とする電解用電極の製造方法。
3. An insoluble metal electrode obtained by activating the surface of a titanium or titanium alloy wire by blasting and / or pickling treatment and coating the electrode material by a pyrolysis method to form a valve metal or a valve metal base. A method for producing an electrode for electrolysis, characterized in that the distance is adjusted according to the magnitude of current concentration on a surface of a base material made of an alloy, and the gap is attached by welding.
【請求項4】 不溶性金属電極を線材表面への電極触媒
物質の塗布液の塗布、乾燥、焼成の一連の操作を、連続
的に配置した処理工程に長尺の線材を供給しながら製造
することを特徴とする請求項3記載の電解用電極製造方
法。
4. A method of manufacturing an insoluble metal electrode by supplying a long wire to a series of processing steps of applying, drying, and firing a coating solution of an electrode catalyst substance on the surface of the wire. The method for producing an electrode for electrolysis according to claim 3, characterized in that:
【請求項5】 不溶性金属電極の溶接を、レーザービー
ム溶接で行うことを特徴とする請求項3記載の電解用電
極の製造法。
5. The method for producing an electrode for electrolysis according to claim 3, wherein the welding of the insoluble metal electrode is performed by laser beam welding.
JP4025403A 1992-02-12 1992-02-12 Electrode for electrolysis and method for producing the same Expired - Fee Related JP2653596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4025403A JP2653596B2 (en) 1992-02-12 1992-02-12 Electrode for electrolysis and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4025403A JP2653596B2 (en) 1992-02-12 1992-02-12 Electrode for electrolysis and method for producing the same

Publications (2)

Publication Number Publication Date
JPH05222591A JPH05222591A (en) 1993-08-31
JP2653596B2 true JP2653596B2 (en) 1997-09-17

Family

ID=12164945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4025403A Expired - Fee Related JP2653596B2 (en) 1992-02-12 1992-02-12 Electrode for electrolysis and method for producing the same

Country Status (1)

Country Link
JP (1) JP2653596B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009215652A (en) * 2009-03-19 2009-09-24 Nippon Mining & Metals Co Ltd Electrolytic copper powder and its production method
KR101990129B1 (en) * 2017-10-19 2019-06-18 (주)메코텍티타늄 Manufacturing method for Wire fixing type cylinder electrode

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01157167U (en) * 1988-04-22 1989-10-30
IT238288Y1 (en) * 1997-02-12 2000-10-16 Teseo Srl CONNECTION JOINT FOR DUCTS FOR FLUID DISTRIBUTION SYSTEMS

Also Published As

Publication number Publication date
JPH05222591A (en) 1993-08-31

Similar Documents

Publication Publication Date Title
US7229536B2 (en) Electrode for use in hydrogen generation
US4116804A (en) Catalytically active porous nickel electrodes
US4169025A (en) Process for making catalytically active Raney nickel electrodes
US3055811A (en) Electrolysis with improved platinum plated titanium anode and manufacture thereof
JP2963266B2 (en) Insoluble electrode structure
JP2617496B2 (en) Permanent anode for high current density galvanizing process
US3350294A (en) Electrodes
EP0031948B1 (en) A hydrogen-evolution electrode
JP2653596B2 (en) Electrode for electrolysis and method for producing the same
JP2023523690A (en) Method for the treatment of metal substrates for the production of electrodes
JP3332264B2 (en) Electrode for electrolysis
US5626730A (en) Electrode structure
EP0129231B1 (en) A low hydrogen overvoltage cathode and method for producing the same
JP3468545B2 (en) Electrode for electrolysis
JP2006265649A (en) Method for producing electrode for generating hydrogen
JP3458781B2 (en) Manufacturing method of metal foil
US6551476B1 (en) Noble-metal coated inert anode for aluminum production
JP2675219B2 (en) Method for reactivating anode for continuous production of metal foil
JP2774209B2 (en) Anode for continuous metal foil production equipment
JP2002038291A (en) Anode for manufacturing metallic foil
US3878084A (en) Bipolar electrode
JPH10330998A (en) Electroplating method
Rezaei et al. A new Co-doped PbO2 anode for copper electrowinning: Electrochemical and morphological characterization
JPS6364518B2 (en)
JPH0885894A (en) Electrode

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees