JP3332196B2 - Method of manufacturing electrode wire for electric discharge machining - Google Patents

Method of manufacturing electrode wire for electric discharge machining

Info

Publication number
JP3332196B2
JP3332196B2 JP03926996A JP3926996A JP3332196B2 JP 3332196 B2 JP3332196 B2 JP 3332196B2 JP 03926996 A JP03926996 A JP 03926996A JP 3926996 A JP3926996 A JP 3926996A JP 3332196 B2 JP3332196 B2 JP 3332196B2
Authority
JP
Japan
Prior art keywords
wire
electric discharge
discharge machining
electrode wire
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03926996A
Other languages
Japanese (ja)
Other versions
JPH09225746A (en
Inventor
正義 青山
幸一 田村
孝光 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP03926996A priority Critical patent/JP3332196B2/en
Publication of JPH09225746A publication Critical patent/JPH09225746A/en
Application granted granted Critical
Publication of JP3332196B2 publication Critical patent/JP3332196B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ワイヤ放電加工に
用いられる放電加工用電極線の製造方法、特に、Znを
含む放電加工用電極線の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an electrode wire for electric discharge machining used for wire electric discharge machining, and more particularly to a method for producing an electrode wire for electric discharge machining containing Zn.

【0002】[0002]

【従来の技術】ワイヤ放電加工は、電極線となる細い金
属ワイヤ(放電加工用電極線)を巻き取りつつ被加工物
に対して三次元の送りをかけ、金属ワイヤと被加工物と
の間に放電を行いながら被加工物を溶断して糸鋸式の加
工を行うもので、特定形状の電極を使用しないで高精度
に三次元形状の製品を作成することができる。特に、加
工の困難な超硬合金等の加工が高精度に行えるため、近
年、実用範囲が広がりつつある。
2. Description of the Related Art In wire electric discharge machining, a thin metal wire (electrode wire for electric discharge machining) serving as an electrode wire is wound up and three-dimensionally fed to a work to be wound. In this method, a workpiece is melted while performing electric discharge to perform a saw-to-saw process, and a three-dimensional product can be produced with high accuracy without using an electrode having a specific shape. Particularly, since a hard metal or the like that is difficult to machine can be machined with high precision, the practical range has been expanding in recent years.

【0003】従来より用いられている放電加工用電極線
として、例えば、Cu−35重量%Zn黄銅電極線があ
る。「伸銅技術研究会誌」26、(1987)P181
(発表者:折茂、石橋、奥野)に記載のように、組成中
のZn濃度が高いほど、加工速度を向上できることが知
られている。ところが、Zn(亜鉛)の量が40重量%
を越えるとβ相が形成されるため、冷間圧延では伸線加
工が行えない。このように、加工性の問題から、Znを
含む放電加工用電極線においては、Cu−35重量%Z
n黄銅線が標準品として考えられている。
Conventionally used electrode wires for electrical discharge machining include, for example, Cu-35 wt% Zn brass electrode wires. "Journal of Copper and Copper Technology", 26, (1987) P181
(Presenters: Orimo, Ishibashi, Okuno) It is known that the higher the Zn concentration in the composition, the higher the processing speed can be. However, the amount of Zn (zinc) is 40% by weight.
If β exceeds, a β phase is formed, so that wire drawing cannot be performed by cold rolling. Thus, due to the problem of workability, in the electrode wire for electric discharge machining containing Zn, Cu-35% by weight Z
An n-brass wire is considered as a standard product.

【0004】しかし、加工速度の向上は、生産性の向上
につながることから、Znを含みながら加工速度を高め
るための提案が種々なされている。例えば、50%以上
のZnを含む合金を芯材に被覆した電極線(特公昭57
−5648号公報)がある。更に、芯材に被覆するタイ
プには、銅合金にZn(又はZn合金)を浸漬焼鈍させ
て表面にZn富化層を形成した電極線(特開昭62−2
18026号公報)、銅被覆鋼線に通電性の良い金属を
被覆した複合電極線(特公昭57−57211号公
報)、銅合金線の表面に所定の厚みのCu−Zn合金層
を設け、更にCu−Zn合金層の表面に所定厚のZn層
を設けた電極線(特開昭61−117021号公報)等
がある。また、銅被覆鋼線の表面に合金層を設け、その
Znの濃度が外表面に向かって高くなるようにした電極
線(特公平2−49849号公報)も提案されている。
However, since an improvement in the processing speed leads to an improvement in productivity, various proposals have been made to increase the processing speed while containing Zn. For example, an electrode wire in which a core material is coated with an alloy containing 50% or more of Zn (Japanese Patent Publication No.
-5648). Further, for the type of coating on a core material, an electrode wire having a Zn-enriched layer formed on the surface by immersion annealing of Zn (or Zn alloy) in a copper alloy (Japanese Patent Application Laid-Open No. Sho 62-2)
No. 18026), a composite electrode wire in which a copper-coated steel wire is coated with a metal having good electrical conductivity (Japanese Patent Publication No. 57-57211), and a Cu-Zn alloy layer having a predetermined thickness provided on the surface of a copper alloy wire. There is an electrode wire in which a Zn layer having a predetermined thickness is provided on the surface of a Cu-Zn alloy layer (Japanese Patent Application Laid-Open No. 61-117021). Also, an electrode wire (JP-B 2-49849) has been proposed in which an alloy layer is provided on the surface of a copper-coated steel wire so that the concentration of Zn increases toward the outer surface.

【0005】更には、Cr、Zr、Fe、Be、Co、
Ti等のいずれか1つが0.03〜5.0重量%である
合金を芯材に用い、この表面にZnを95%以上含む金
属を溶融メッキし、この後、5%以上の冷間加工を施し
た電極線(特開昭59−134629号公報)も提案さ
れている。ところで、この提案において、芯材を構成す
る合金の中でCu−Zr合金は、所望の抗張力を得るた
めには溶体化処理が不可欠であるが、一般にCu−Zr
合金の溶体化熱処理は、通常、8〜13mmφの線材に
対し、950°C、3時間の加熱処理後、急冷を行う方
法で行われている。
Further, Cr, Zr, Fe, Be, Co,
An alloy in which any one of Ti or the like is 0.03 to 5.0% by weight is used as a core material, and a metal containing 95% or more of Zn is hot-dip plated on the surface thereof, and then cold-worked to 5% or more. (JP-A-59-134629) has also been proposed. By the way, in this proposal, among the alloys constituting the core material, a solution treatment is indispensable for a Cu-Zr alloy in order to obtain a desired tensile strength.
The solution heat treatment of the alloy is usually performed by heating the wire rod of 8 to 13 mmφ at 950 ° C. for 3 hours and then quenching.

【0006】[0006]

【発明が解決しようとする課題】このため、従来の放電
加工用電極線の製造方法として、Cu−Zr合金の溶体
化を、950°Cで3時間という条件で行うとすれば、
コストアップの原因になることは避けられず、もし、走
行溶体化が可能になれば、溶体化におけるコストダウン
が可能になる。また、従来の放電加工用電極線によれ
ば、一応の加工速度及び加工特性は得られるものの、更
なる加工速度の向上、耐断線性の向上が望まれている。
For this reason, as a conventional method of manufacturing an electrode wire for electric discharge machining, if the solution of a Cu-Zr alloy is performed at 950 ° C. for 3 hours,
It is unavoidable that this will cause an increase in cost, and if traveling solution solution becomes possible, cost reduction in solution solution becomes possible. Further, according to the conventional electrode wire for electric discharge machining, although a certain machining speed and machining characteristics can be obtained, it is desired to further improve the machining speed and the disconnection resistance.

【0007】そこで本発明は、加工速度及び加工特性の
向上を図りながら、走行溶体化を可能にする放電加工用
電極線の製造方法を提供することを目的としている。
Accordingly, an object of the present invention is to provide a method of manufacturing an electrode wire for electric discharge machining, which enables a running solution while improving the machining speed and machining characteristics.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、芯材としてのCu−Zr系合金線にZ
n又はZnを含む金属材料を被覆した走行溶体化が可能
な中間サイズの線材を700〜950℃で加熱しながら
不活性ガス雰囲気中を走行させ、前記不活性ガス雰囲気
を通過後に直ちに水冷して走行溶体化を行い、この水冷
後に冷間伸線する方法にしている。
In order to achieve the above object, the present invention provides a Cu-Zr alloy wire as a core material.
Possible to form traveling solution coated with metallic material containing n or Zn
A method in which a medium-sized wire rod is run in an inert gas atmosphere while being heated at 700 to 950 ° C., and immediately after passing through the inert gas atmosphere, is subjected to solution cooling by water cooling, followed by cold drawing after the water cooling. I have to.

【0009】この方法によれば、アーク放電による加熱
及び加工時の張力に耐える芯材及び加工速度の向上を目
的とした高濃度のZnを含む表面合金層から構成された
線材7に対し、線材を走行させながらCu−Zr合金の
溶体化が行われる。この結果、生産性が向上し、設備コ
スト及び生産コストを低減することができる。この場
合、Zrの含有量を0.02〜0.16重量%にするこ
とで、加工速度の向上、被加工物の表面粗さ及び限界電
流印加時間の改善が顕著に現れる。
According to this method, a wire rod made of a core material that withstands the tension caused by heating and processing by arc discharge and a surface alloy layer containing Zn at a high concentration for the purpose of improving the processing speed is used. The solution of the Cu-Zr alloy is performed while traveling. As a result, productivity is improved, and equipment costs and production costs can be reduced. In this case, by setting the Zr content to 0.02 to 0.16% by weight, the processing speed, the surface roughness of the workpiece, and the limit current application time are remarkably improved.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を基に説明する。図1は本発明による放電加工用
電極線の製造方法を達成するための製造設備を示す概略
構成図である。図1に示す製造設備は、ラインの流れ方
向にペイオフ1、加熱電気炉2、冷却水槽3、定速巻取
機4及び整列巻取機5が順次直列的に配置した構成にな
っている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic configuration diagram showing a manufacturing facility for achieving a method for manufacturing an electrode wire for electric discharge machining according to the present invention. The manufacturing equipment shown in FIG. 1 has a configuration in which a payoff 1, a heating electric furnace 2, a cooling water tank 3, a constant-speed winder 4, and an alignment winder 5 are sequentially arranged in series in the flow direction of the line.

【0011】ペイオフ1は2つのプーリ6a,6bを備
え、加工後に放電加工用電極線となる線材7の巻き取り
やガイドに用いられている。加熱電気炉2は不図示のヒ
ータによって内部が加熱されており、両端には線材7を
挿通するための開口(不図示)が設けられている。そし
て、内部には線材7の表面に酸化等が生じるのを防止す
るための不活性(N2 、Ar等)ガスが循環供給され、
この不活性ガス雰囲気中にペイオフ1からの線材7(こ
の線材7の構成については後記する)が挿通される。不
活性ガスを循環させるために、加熱電気炉2にはガス供
給口8及びガス排出口9が設けられている。
The payoff 1 has two pulleys 6a and 6b, and is used for winding and guiding a wire 7 to be an electrode wire for electric discharge machining after machining. The inside of the heating electric furnace 2 is heated by a heater (not shown), and openings (not shown) for inserting the wires 7 are provided at both ends. Then, an inert (N 2 , Ar, etc.) gas for preventing oxidation or the like from being generated on the surface of the wire 7 is circulated and supplied inside,
The wire 7 from the payoff 1 (the configuration of the wire 7 will be described later) is inserted into the inert gas atmosphere. The heating electric furnace 2 is provided with a gas supply port 8 and a gas discharge port 9 for circulating the inert gas.

【0012】冷却水槽3は内部に所定量の冷却水10が
満たされ、この冷却水10中を加熱電気炉2からの線材
7が通過できるように、ガイド用の複数のプーリ11
a,11b,11c,11dが設置されている。更に、
定速巻取機4は複数のプーリ12a,12bを内蔵し、
冷却水槽3からの線材7を後段に一定速度で送るための
機能を有している。整列巻取機5は、定速巻取機4から
の線材7をガイドするプーリ13及び線材7を巻き取る
プーリ14を内蔵している。
The cooling water tank 3 is filled with a predetermined amount of cooling water 10 and a plurality of guide pulleys 11 so that the wire 7 from the heating electric furnace 2 can pass through the cooling water 10.
a, 11b, 11c, and 11d are provided. Furthermore,
The constant-speed winding machine 4 has a plurality of built-in pulleys 12a and 12b,
It has a function of sending the wire 7 from the cooling water tank 3 to the subsequent stage at a constant speed. The aligning winder 5 has a built-in pulley 13 for guiding the wire 7 from the constant speed winder 4 and a pulley 14 for winding the wire 7.

【0013】図1の放電加工用電極線の製造設備におけ
る加工対象の線材7は、例えば、芯材に0.9mmφの
Cu−(0.02〜0.16)重量%Zr(ジルコニウ
ム)が用いられ、その表面には表面合金層が施されてい
る。芯材にCu−Zr線を用いる理由は、放電加工の
際、電極線にアーク放電が生じ、このために放電時に熱
が発生し、加工時の張力に耐えられずに断線が生じるの
を防止するためである。
The wire 7 to be machined in the facility for manufacturing an electrode wire for electric discharge machining shown in FIG. 1 uses, for example, 0.9 mmφ Cu— (0.02 to 0.16) wt% Zr (zirconium) as a core material. The surface is provided with a surface alloy layer. The reason for using Cu-Zr wire as the core material is that during electric discharge machining, arc discharge occurs in the electrode wire, which generates heat at the time of electric discharge and prevents breakage due to withstanding the tension during machining. To do that.

【0014】上記したように、Zn濃度が高いほど加工
速度が早い点に着目し、芯材の表面にはZn又はZn濃
度の高いCu−Zn層を表面合金層として設けている。
放電加工時に消耗する厚さは約5μmであるので、表面
合金層は5μm以上にすればよい(この場合、特公平4
−35543号公報や特公平2−49849号公報に記
載の表面層のように高いZn濃度にする必要はない)。
As described above, paying attention to the fact that the processing speed increases as the Zn concentration increases, a Cu—Zn layer having a high Zn or Zn concentration is provided as a surface alloy layer on the surface of the core material.
Since the thickness consumed at the time of electric discharge machining is about 5 μm, the surface alloy layer may be made 5 μm or more.
It is not necessary to make the Zn concentration as high as in the surface layers described in JP-A-35543 and JP-B-2-49849).

【0015】以上の如き構成の線材7はペイオフ1から
引き出され、加熱電気炉2の不活性ガス雰囲気中を1m
/分程度の搬送速度で走行させながら700°C〜95
0°Cに加熱して溶体化する。この溶体化処理により、
Zrを固溶させることができ、電極線に耐熱性を持たせ
ることが可能になる。加熱電気炉2で加熱された線材7
は、加熱電気炉2を出た直後に冷却水槽3に搬入され、
槽内の冷却水10で急冷される。この後、冷却された線
材7は定速巻取機4を経て整列巻取機5のプーリ14に
巻き取られる。
The wire 7 having the above-described structure is drawn out of the payoff 1 and is moved for 1 m in the inert gas atmosphere of the heating electric furnace 2.
700 ° C to 95 while running at a transport speed of about
Heat to 0 ° C to form a solution. By this solution treatment,
Zr can be dissolved as a solid solution, and the electrode wire can have heat resistance. Wire 7 heated by heating electric furnace 2
Is carried into the cooling water tank 3 immediately after leaving the heating electric furnace 2,
It is rapidly cooled by the cooling water 10 in the tank. Thereafter, the cooled wire 7 is wound on the pulley 14 of the aligning winder 5 via the constant speed winder 4.

【0016】Cu−Zr合金線は、従来、8〜13mm
φ程度の銅線に950°Cで3時間、その後に急冷する
溶体化熱処理を行って耐熱性を付加している。しかし、
このような従来方式の熱処理は費用がかかり、放電加工
用電極線の生産コストを低減することができない。そこ
で、本発明では、低コストで溶体化が可能な中間サイズ
(例えば、0.9mmφ)で700〜950°Cの走行
加熱後に水冷し、以上説明した様に、ライン中の熱処理
で耐熱性を付加できるようにした。
Conventionally, a Cu—Zr alloy wire has a thickness of 8 to 13 mm.
A copper wire having a diameter of about φ is subjected to a solution heat treatment at 950 ° C. for 3 hours and then rapidly cooled to add heat resistance. But,
Such a conventional heat treatment is expensive and cannot reduce the production cost of the electrode wire for electric discharge machining. Therefore, in the present invention, water-cooling is performed after heating at 700 to 950 ° C. at an intermediate size (for example, 0.9 mmφ) at which solution can be formed at low cost, and as described above, heat resistance is achieved by heat treatment in the line. It can be added.

【0017】[0017]

【実施例】図2は図1に示した設備構成により放電加工
用電極線を製造した実施例(以下、「本発明材」とい
う)を示している。また、比較のために従来方法で製造
した放電加工用電極線を比較材として示している。本発
明材は芯材のZr濃度が0.16重量%の場合について
4例、0.02重量%の場合について1例を示してい
る。また、比較材(vi)として0.16重量%Zr濃度
の芯材を950°C、3時間により溶体化した例、及び
比較材(vii)としてCu−35重量%Zn合金線を用い
ている。Cu−Zrの芯材に対しては、その表面には3
5重量%の合金層を表面に設けている。
FIG. 2 shows an embodiment (hereinafter referred to as "material of the present invention") in which an electrode wire for electric discharge machining is manufactured by the equipment configuration shown in FIG. For comparison, an electrode wire for electric discharge machining manufactured by a conventional method is shown as a comparative material. The present invention material shows four examples when the Zr concentration of the core material is 0.16% by weight and one example when the Zr concentration is 0.02% by weight. Further, an example in which a core material having a 0.16 wt% Zr concentration was solution-treated at 950 ° C. for 3 hours as a comparative material (vi), and a Cu-35 wt% Zn alloy wire was used as a comparative material (vii). . For the Cu-Zr core material, 3
An alloy layer of 5% by weight is provided on the surface.

【0018】図1の設備に搬入する前に、7.4mmφ
のCu−0.16重量%Zr線材を溶体化処理せずに酸
洗い及び水洗を行った後、内径8mmφ、肉厚1mmの
Cu−35重量%Znのパイプに挿入した。この後、外
径10〜8mmφまでについてはスエージャ加工し、そ
の後に8〜5.5mmφまではドローベンチで引き抜き
加工し、5.5〜0.9mmφまでは冷間伸線した。こ
のように、0.9mmφにした線材7を図2のラインに
1m/分で流し、溶体化処理を行い、0.2mmφの電
極線を作製した。
Before loading into the equipment shown in FIG.
Was subjected to pickling and water washing without solution treatment, and then inserted into a Cu-35 wt% Zn pipe having an inner diameter of 8 mm and a wall thickness of 1 mm. Thereafter, swaging was performed for the outer diameter of 10 to 8 mmφ, followed by drawing with a draw bench to 8 to 5.5 mmφ, and cold drawing to 5.5 to 0.9 mmφ. In this way, the wire 7 having a diameter of 0.9 mm was flowed through the line of FIG. 2 at a rate of 1 m / min, and a solution treatment was performed to produce an electrode wire having a diameter of 0.2 mm.

【0019】なお、Cu−35重量%Znの表面合金層
は、Zn及びCu−Zn粉を用いた加熱焼結法によって
も形成することができる。以上のようにして作製された
放電加工用電極線について、放電加工性の評価を行った
ところ、図3に示す結果が得られた。被加工物として厚
さ40mmのSKD−11を用いて断線限界速度を測定
した。また、被加工物の表面粗さの評価も実施した。
The Cu-35 wt% Zn surface alloy layer can also be formed by a heat sintering method using Zn and Cu-Zn powder. When the electric discharge machining property was evaluated for the electrode wire for electric discharge machining produced as described above, the result shown in FIG. 3 was obtained. The breaking limit speed was measured using a 40 mm thick SKD-11 as a workpiece. In addition, the surface roughness of the workpiece was evaluated.

【0020】図2より明らかなように、本発明によれ
ば、従来の比べてCu−35重量%Znの線材に比べ、
17〜18%の加工速度の増加が見られた。また、被加
工物の表面粗さ(μm)は従来に比べて小さくなってい
ることが確かめられた。なお、比較材(vi) は諸特性の
改善は顕著であるが、加熱電気炉2に3時間も滞在させ
る必要があり、生産性に劣る。また、Zrの含有量は、
0.02〜0.16で最良の結果が得られた。
As is apparent from FIG. 2, according to the present invention, compared to the conventional wire rod of Cu-35 wt% Zn,
A 17-18% increase in processing speed was observed. Further, it was confirmed that the surface roughness (μm) of the workpiece was smaller than that of the related art. Although the comparative material (vi) has remarkable improvements in various properties, it needs to stay in the heating electric furnace 2 for three hours, and is inferior in productivity. The content of Zr is:
Best results were obtained with 0.02 to 0.16.

【0021】図3は図2に示した各試料の放電加工性を
評価するための放電加工時のパルス波形を示す波形図で
ある。放電電流を36Aにし、オフ時間(電流休止時
間)を一定(2.8μs)としながら、オン時間(電流
印加時間)を変えて加工可能な速度(ワイヤが切れない
限界速度)を測定した。この加工電流印加時間と加工速
度の関係を示したのが図3である。
FIG. 3 is a waveform diagram showing a pulse waveform at the time of electric discharge machining for evaluating the electric discharge machinability of each sample shown in FIG. The discharge current was set to 36 A, and the off-time (current pause time) was kept constant (2.8 μs) while the on-time (current application time) was changed to measure the speed at which machining was possible (the limit speed at which the wire could not be cut). FIG. 3 shows the relationship between the processing current application time and the processing speed.

【0022】図4は、図2の本発明材(i)、及び比較
材(vi)とCu−35重量%Znによる比較材(vii) に
ついての測定結果を示している。本発明材(i)による
走行溶体化材は、通常行われている溶体化処理を行った
比較材(Vi)とほぼ同様の耐断線性を示している。比較
材 (vii)が1.2μsの放電時間で断線したのに対し、
本発明によれば溶体化処理した比較材(vi)と同様に
1.5μsの放電時間まで断線限界が延びていることが
わかる。
FIG. 4 shows the measurement results of the inventive material (i) of FIG. 2, the comparative material (vi), and the comparative material (vii) using Cu-35 wt% Zn. The running solution heat-treated material according to the material (i) of the present invention shows almost the same resistance to disconnection as the comparative material (Vi) that has been subjected to the usual solution treatment. While the comparative material (vii) broke with a discharge time of 1.2 μs,
According to the present invention, like the comparative material (vi) subjected to the solution treatment, it can be seen that the disconnection limit is extended up to the discharge time of 1.5 μs.

【0023】図2に示すように、本発明材(i)〜(i
v)は700°C以上の走行加熱温度において、断線限
界速度に対応する限界電流印加時間(μs)が1.5μ
sであり、比較材(vii) の1.2μsに比べて改善され
ている。これはCu−Zr合金においてZrの固溶によ
る耐熱性の向上があった為である。本発明材(v)は、
Zrが0.02%と少ないものであるが、それでも限界
電流印加時間が1.4μsに改善されていた。
As shown in FIG. 2, the materials (i) to (i) of the present invention
v) shows that at a running heating temperature of 700 ° C. or more, the limit current application time (μs) corresponding to the disconnection limit speed is 1.5 μm.
s, which is an improvement over the comparison material (vii) of 1.2 μs. This is because the heat resistance of the Cu-Zr alloy was improved by the solid solution of Zr. The material (v) of the present invention
Although the Zr was as small as 0.02%, the limiting current application time was still improved to 1.4 μs.

【0024】なお、Cu−35重量%Znの融点は約9
00°Cであるが、走行加熱では電気炉温度が融点温度
以上でも製造可能である。しかし、電気炉温度が950
°C以上であると脱Znが激しくなる傾向を示すので、
900°C近傍が望ましい。更に、表面合金層のZn濃
度は高いほど加工速度が早くなるので、Zn濃度を高く
するのが望ましい。
The melting point of Cu-35 wt% Zn is about 9
Although the temperature is 00 ° C., it can be manufactured even when the temperature of the electric furnace is equal to or higher than the melting point temperature by traveling heating. However, if the electric furnace temperature is 950
If the temperature is higher than ° C, the Zn removal tends to increase.
A temperature around 900 ° C. is desirable. Further, the higher the Zn concentration of the surface alloy layer, the faster the processing speed becomes. Therefore, it is desirable to increase the Zn concentration.

【0025】[0025]

【発明の効果】以上より明らかな如く、本発明によれ
ば、Cu−Zr系合金線にZn又はZnを含む金属材料
を被覆した線材を加熱しながら不活性ガス雰囲気中に走
行させ、この不活性ガス雰囲気を通過後に水冷し、つい
で冷間伸線を行う本発明方法によれば、線材を走行させ
ながらの溶体化が可能になるので、耐熱性を有する電極
線に対し、生産性の向上及び設備コストと生産コストの
低減が可能になる。
As is clear from the above, according to the present invention, a Cu-Zr-based alloy wire coated with Zn or a metal material containing Zn is run in an inert gas atmosphere while heating. According to the method of the present invention in which water cooling is performed after passing through an active gas atmosphere and then cold drawing is performed, the solution can be formed while the wire is running, so that the productivity can be improved with respect to the electrode wire having heat resistance. In addition, equipment costs and production costs can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による放電加工用電極線の製造設備を示
す概略構成図である。
FIG. 1 is a schematic configuration diagram showing a facility for manufacturing an electrode wire for electric discharge machining according to the present invention.

【図2】図1に示した設備構成により放電加工用電極線
を製造した結果及び従来技術により製造した結果を示す
説明図である。
FIG. 2 is an explanatory view showing a result of manufacturing an electrode wire for electric discharge machining by the equipment configuration shown in FIG. 1 and a result of manufacturing by a conventional technique.

【図3】図2に示した各試料の放電加工性を評価するた
めの放電加工時のパルス波形を示す波形図である。
FIG. 3 is a waveform diagram showing a pulse waveform at the time of electric discharge machining for evaluating electric discharge machinability of each sample shown in FIG. 2;

【図4】本発明による放電加工用電極線と従来技術によ
る放電加工用電極線の加工電流印加時間と加工速度の関
係を示す特性図である。
FIG. 4 is a characteristic diagram showing a relationship between a machining current application time and a machining speed of the electric discharge machining electrode wire according to the present invention and the conventional electric discharge machining electrode wire.

【符号の説明】[Explanation of symbols]

1 ペイオフ 2 加熱電気炉 3 冷却水槽 4 整列巻取機 7 線材 10 冷却水 DESCRIPTION OF SYMBOLS 1 Payoff 2 Heating electric furnace 3 Cooling water tank 4 Aligning winder 7 Wire rod 10 Cooling water

フロントページの続き (56)参考文献 特開 平4−176849(JP,A) 特開 昭59−134624(JP,A) 特開 平5−177443(JP,A) 特開 昭61−136733(JP,A) 特開 昭62−4834(JP,A) 特開 平3−68734(JP,A) 特開 平5−287413(JP,A) 特開 昭59−153805(JP,A) 特開 昭55−131441(JP,A) (58)調査した分野(Int.Cl.7,DB名) B23H 7/08 Continuation of front page (56) References JP-A-4-176849 (JP, A) JP-A-59-134624 (JP, A) JP-A-5-177443 (JP, A) JP-A-61-136733 (JP) JP-A-62-4834 (JP, A) JP-A-3-68734 (JP, A) JP-A-5-287413 (JP, A) JP-A-59-153805 (JP, A) 55-131441 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) B23H 7/08

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】芯材としてのCu−Zr系合金線にZn又
はZnを含む金属材料を被覆した走行溶体化が可能な中
間サイズの線材を700〜950℃で加熱しながら不活
性ガス雰囲気中を走行させ、前記不活性ガス雰囲気を通
過後に直ちに水冷して走行溶体化を行い、前記水冷後に
冷間伸線することを特徴とする放電加工用電極線の製造
方法。
1. A traveling solution in which Cu or a metal material containing Zn is coated on a Cu—Zr alloy wire as a core material.
The intermediate-sized wire rod is run in an inert gas atmosphere while being heated at 700 to 950 ° C., and immediately after passing through the inert gas atmosphere, is cooled with water to perform a running solution, and then cold drawn after the water cooling. A method for producing an electrode wire for electric discharge machining, which is characterized by the following.
【請求項2】前記Zrは、含有量が0.02〜0.16
重量%であることを特徴とする請求項1記載の放電加工
用電極線の製造方法。
2. The Zr content is 0.02 to 0.16.
The method for producing an electrode wire for electric discharge machining according to claim 1, wherein the weight is% by weight.
JP03926996A 1996-02-27 1996-02-27 Method of manufacturing electrode wire for electric discharge machining Expired - Fee Related JP3332196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03926996A JP3332196B2 (en) 1996-02-27 1996-02-27 Method of manufacturing electrode wire for electric discharge machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03926996A JP3332196B2 (en) 1996-02-27 1996-02-27 Method of manufacturing electrode wire for electric discharge machining

Publications (2)

Publication Number Publication Date
JPH09225746A JPH09225746A (en) 1997-09-02
JP3332196B2 true JP3332196B2 (en) 2002-10-07

Family

ID=12548433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03926996A Expired - Fee Related JP3332196B2 (en) 1996-02-27 1996-02-27 Method of manufacturing electrode wire for electric discharge machining

Country Status (1)

Country Link
JP (1) JP3332196B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102016538B1 (en) * 2017-08-30 2019-08-30 주식회사 풍국 Electrode wire for use in electric discharge machining process for preparing same

Also Published As

Publication number Publication date
JPH09225746A (en) 1997-09-02

Similar Documents

Publication Publication Date Title
JP4012895B2 (en) Structure of porous electrode wire for electric discharge machining
KR100740188B1 (en) Electrode for machining a piece by electro-erosion and its process for production
JP3332196B2 (en) Method of manufacturing electrode wire for electric discharge machining
JPS61136733A (en) Electrode wire for wire-cut spark erosion work and preparation thereof
JPH0755407B2 (en) Method for manufacturing electrode wire for wire electric discharge machining
JP3332197B2 (en) Method of manufacturing electrode wire for electric discharge machining
JP3405069B2 (en) Electrode wire for electric discharge machining
JPS5914429A (en) Composite wire for wire-cut electric discharge machining electrode wire and manufacturing method thereof
JP3005742B2 (en) Method for manufacturing tin-covered rectangular copper wire
JP3087552B2 (en) Electrode wire for electric discharge machining
JP2002356741A (en) Wire rod for steel code and method for producing steel code
JP2006159304A (en) Electrode wire for wire electric discharge machining and its manufacturing method
JPS61109623A (en) Electrode wire for wire electric spark spark machining and its manufacturing method
JPH07100687A (en) Wire for arc welding
JP3319497B2 (en) Method of manufacturing electrode wire for electric discharge machining
JPS6366892B2 (en)
JPH09225747A (en) Electrode wire for electrical discharge machining
JP2002137123A (en) Electrode wire for wire electric discharge machining
JP2003291030A (en) Electrode wire for wire electrical discharge machining
JP7260267B2 (en) Electrode wire for wire electric discharge machining
JPH05337742A (en) Manufacture of electrode wire for wire electrodischarge machining
JPS59110516A (en) Electrode wire for wire-cut electric discharge machining and its manufacturing method
JP2000198027A (en) Electrode wire for electric discharge machining and manufacture of it
JP2004188522A (en) Manufacturing method of electrode wire for wire electric discharge machining
JPS62255015A (en) Electrode wire for wire electric discharge and method for manufacturing thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees