JP2002137123A - Electrode wire for wire electric discharge machining - Google Patents

Electrode wire for wire electric discharge machining

Info

Publication number
JP2002137123A
JP2002137123A JP2000333298A JP2000333298A JP2002137123A JP 2002137123 A JP2002137123 A JP 2002137123A JP 2000333298 A JP2000333298 A JP 2000333298A JP 2000333298 A JP2000333298 A JP 2000333298A JP 2002137123 A JP2002137123 A JP 2002137123A
Authority
JP
Japan
Prior art keywords
zinc
wire
electrode wire
electric discharge
discharge machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000333298A
Other languages
Japanese (ja)
Inventor
Isao Izui
功夫 伊豆井
Shigemi Hasegawa
茂巳 長谷川
Masakazu Yoshimoto
雅一 吉本
Yoichiro Kimoto
洋一郎 木本
Kazutaka Hayasaka
和毅 早坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Cable Co Ltd
Original Assignee
Oki Electric Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Cable Co Ltd filed Critical Oki Electric Cable Co Ltd
Priority to JP2000333298A priority Critical patent/JP2002137123A/en
Publication of JP2002137123A publication Critical patent/JP2002137123A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an electrode wire for wire electric discharge machining capable of realizing a higher speed than a conventional electrode wire to reduce machining cost. SOLUTION: In this electrode wire for wire electric discharge machining in which a core member is made of copper zinc alloy containing zinc of 15 to 30 wt.%, an outer layer 3 is formed with a thickness of 6% or more of a finish outside diameter of high zinc brass having zinc concentration of 48 to 68 wt.% on a surface of the core member, and a zinc covered layer is provided with a thickness of 0.5 to 2% of a total finish outside diameter as an outermost layer 4 at its outer periphery furthermore, it is possible to realize a higher machining speed at which a workpiece is cut by 20% or more than the conventional wire when, in particular, a dielectric constant of the electrode wire calculated according to an calculation expression of electrode wire dielectric constant becomes 23% or more, preferably, it becomes 29% or more in the case of copper alloy when the core member contains zinc of 15 wt.%, and it becomes 27% or more in the case of copper alloy when the core member contains zinc of 20 wt.%, and it becomes 24% or more in the case of copper alloy when the core member contains zinc of 30 wt.%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、ワイヤ放電加工用
電極線に関するもので、特に、加工コストを低く抑える
ために切削物を削り取る加工速度を速くし、従来のワイ
ヤよりも高速化をはかることが可能なワイヤ放電加工用
電極線に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode wire for wire electric discharge machining, and in particular, to increase the machining speed for cutting a cutting object in order to keep machining costs low, and to achieve a higher speed than a conventional wire. The present invention relates to an electrode wire for wire electric discharge machining capable of performing the following.

【0002】[0002]

【従来の技術】ワイヤ放電加工とは、ワイヤ放電加工用
電極線と切削物との間で放電現象を起こさせ、切削物を
糸のこ式に加工する加工方法で、複雑な形状の加工に適
した加工方法である。この様なワイヤ放電加工用電極線
には、加工コストを抑えることが出来るように高速加工
が可能で、かつ安価な電極線が望まれてきた。また、使
い勝手という面からは、無人加工に対応出来得るような
自動結線が出来るワイヤや電極線断線等の発生のない電
極線も望まれてきた。従来の放電加工用電極線1′は、
図2(イ)に示すように、十分な特性が得られないまで
もそのコストメリットの良さから亜鉛35〜40wt%、
を含有する銅亜鉛合金心材2′の単層構造からなるワイ
ヤ放電加工用電極線1′が主流となり、広く一般的に使
用されてきた。しかし、亜鉛35〜40wt%、を含有す
る銅亜鉛合金からなる電極線1′は、構造が単層である
がゆえにコスト的には申し分はないが、切削物を削り取
る加工速度という面においては多少難点があった。一般
に、亜鉛含有量が高くなればなる程、切削物を削り取る
加工速度が速くなるといわれている。しかしながら、亜
鉛濃度が40%を越えてしまうと伸線加工性が極端に悪
くなり伸線加工が困難となってしまう。一部、この伸線
加工性を解決した提案も提出されているが、まだ実用化
はなされてはいない。近年、金型納期の短縮化をはかる
ため、高速加工の可能なワイヤとして図2(ロ)に示す
ような心材2″と高亜鉛黄銅からなる外層3″の2層構
造のワイヤ放電加工用電極線1″が提案されている。
2. Description of the Related Art Wire electric discharge machining is a machining method in which a discharge phenomenon is caused between an electrode wire for wire electric discharge machining and a cut object, and the cut object is machined into a thread saw. It is a suitable processing method. For such an electrode wire for wire electric discharge machining, an inexpensive electrode wire capable of high-speed machining so as to reduce machining cost has been desired. Further, from the viewpoint of ease of use, there has been a demand for a wire capable of automatic connection and an electrode wire free from occurrence of disconnection of the electrode wire, which can cope with unmanned processing. Conventional electric discharge machining electrode wire 1 ′
As shown in FIG. 2 (a), even if sufficient characteristics cannot be obtained, zinc is 35 to 40% by weight because of its cost merit.
The electrode wire 1 'for wire electric discharge machining having a single-layer structure of a copper-zinc alloy core material 2' containing iron has become mainstream and has been widely and generally used. However, the electrode wire 1 'made of a copper-zinc alloy containing 35 to 40% by weight of zinc is satisfactory in cost because of a single-layer structure, but has a slight increase in the processing speed for shaving a cut object. There were difficulties. In general, it is said that the higher the zinc content, the faster the processing speed for shaving a cut object. However, if the zinc concentration exceeds 40%, the wire drawing workability becomes extremely poor, and the wire drawing becomes difficult. Some proposals for solving this drawability have been submitted, but they have not been put to practical use yet. 2. Description of the Related Art In recent years, as a wire capable of high-speed machining, a two-layer wire electric discharge electrode having a core material 2 ″ and an outer layer 3 ″ made of high zinc brass as shown in FIG. Line 1 "has been proposed.

【0003】[0003]

【発明が解決しようとする課題】このような2層構造の
電極線1″は、単一構造の電極線(亜鉛35〜40wt%
含有する銅亜鉛合金の電極線)に比べて、切削物を削り
取る加工速度は、速くなっているがユーザーからは、切
削物を削り取る加工速度が、より高速な電極線の出現が
要望されてきている。
The electrode wire 1 "having such a two-layer structure is a single-structure electrode wire (35 to 40% by weight of zinc).
The processing speed for shaving the cuttings is higher than that of the containing copper-zinc alloy electrode wire), but users have demanded the emergence of electrode wires with higher cutting speeds for shaving the cuttings. I have.

【0004】[0004]

【課題を解決するための手段】本発明は、これらの問題
を解決するために、鋭意検討した結果、心材の上の高亜
鉛黄銅層は、銅合金からなる心材に亜鉛めっきを施し、
これを熱処理することによって形成することが出来る。
この高亜鉛黄銅層の組成や厚さは、心材の組成や外径、
亜鉛めつきの厚さ、熱処理の条件によって大きく変わる
が、これらを適切に選ぶことにより導電率が特に高くな
る領域があることを本発明者等は見つけた。更に、この
導電率の高いものはワイヤ放電加工において切削物を削
り取る加工速度も速くなることもわかった。本発明は、
亜鉛15〜30wt%を含有する銅亜鉛合金を心材とし、
この心材表面に外層3として亜鉛濃度48〜68wt%の
高亜鉛黄銅を前記仕上がり外径の6%以上の厚さで形成
し、更にその外周に最外層4として亜鉛被覆層をトータ
ル仕上がり外径の0.5〜2%の厚さで設けたワイヤ放
電加工用電極線で、特に電極線導電率の算出式で算出さ
れた電極線の導電率が23%以上になること、願わく
ば、心材が亜鉛15wt%を含有する銅合金の場合は29
%以上、心材が亜鉛20wt%を含有する銅合金の場合は
27%以上、心材が亜鉛30wt%を含有する銅合金の場
合は24%以上にすることで、切削物を削り取る加工速
度が、従来のワイヤよりも20%以上高速化をはかるこ
とが可能なワイヤ放電加工用電極線である。
In order to solve these problems, the present invention has made intensive studies. As a result, a high zinc brass layer on a core material is formed by subjecting a core material made of a copper alloy to galvanization,
This can be formed by heat treatment.
The composition and thickness of this high zinc brass layer depends on the composition and outer diameter of the core material,
The present inventors have found that, depending on the thickness of the zinc plating and the conditions of the heat treatment, there is a region where the conductivity is particularly high by appropriately selecting these. Furthermore, it was also found that a material having a high conductivity has a high machining speed for cutting a cutting object in wire electric discharge machining. The present invention
The core material is a copper-zinc alloy containing 15 to 30 wt% zinc,
On the surface of the core material, high zinc brass having a zinc concentration of 48 to 68 wt% is formed as an outer layer 3 with a thickness of 6% or more of the finished outer diameter. In the electrode wire for wire electric discharge machining provided with a thickness of 0.5 to 2%, particularly, the conductivity of the electrode wire calculated by the formula for calculating the electrode wire conductivity is 23% or more. 29 for copper alloy containing 15 wt% zinc
% Or more, if the core material is copper alloy containing 20 wt% zinc, it is 27% or more, and if the core material is copper alloy containing 30 wt% zinc, it is 24% or more. This is an electrode wire for wire electric discharge machining that can achieve a speed increase of 20% or more than that of the above-mentioned wire.

【0005】[0005]

【発明の実施の形態】以下、本発明のワイヤ放電加工用
電極線1の実施形態について添付書面を参照して詳細に
説明する。図1(イ)は、本発明のワイヤ放電加工用電
極線1の断面図である。図から明らかなように、中心に
心材2を施し、その周りに外層3を施し、更にその周り
に最外層4を施した構造からなる。本発明のワイヤ放電
加工用電極線1は、亜鉛15〜30wt%を含有する銅亜
鉛合金を心材2とし、この心材表面に外層3として亜鉛
濃度48〜68wt%の高亜鉛黄銅を前記仕上がり外径の
6%以上の厚さで形成し、更にその外周に最外層8とし
て亜鉛被覆層をトータル仕上がり外径の0.5〜2%の
厚さで設けたワイヤ放電加工用電極線で、特に、下記の
数式1に示す電極線導電率の算出式で算出された電極線
の導電率が23%以上になることを特徴としたワイヤ放
電加工用電極線である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the electrode wire 1 for wire electric discharge machining according to the present invention will be described below in detail with reference to the attached documents. FIG. 1A is a sectional view of an electrode wire 1 for wire electric discharge machining according to the present invention. As is clear from the figure, the core 2 is provided at the center, the outer layer 3 is provided around the core 2, and the outermost layer 4 is provided therearound. The electrode wire 1 for wire electric discharge machining according to the present invention has a core 2 made of a copper-zinc alloy containing 15 to 30% by weight of zinc, and a high zinc brass having a zinc concentration of 48 to 68% by weight as an outer layer 3 on the surface of the core. And a zinc coating layer provided on the outer periphery thereof as an outermost layer 8 with a thickness of 0.5 to 2% of the total finished outer diameter. An electrode wire for wire electric discharge machining, wherein the conductivity of the electrode wire calculated by the following formula 1 for calculating the electrode wire conductivity is 23% or more.

【0006】[0006]

【数1】 (Equation 1)

【0007】切削物を削り取る放電加工速度の高速化に
寄与する外層3の厚さを、前記仕上がり外径の6%以上
としたのは、6%未満だと高亜鉛黄銅層が放電で消耗す
る厚さより薄いため、結果として切削物を削り取る加工
速度が低下してしまうためである。最外層4の厚さをト
ータル仕上がり外径の0.5〜2%としたのは、0.5%
以下だと最外層を設ける効果があまりなく、2%以上だ
と放電加工の際、スラッジが大量に発生してしまい様々
な弊害が出るためである。
[0007] The thickness of the outer layer 3 which contributes to an increase in the electric discharge machining speed for cutting a cut object is set to 6% or more of the finished outer diameter. If the thickness is less than 6%, the high zinc brass layer is consumed by electric discharge. This is because, since the thickness is smaller than the thickness, the processing speed for shaving the cut object is reduced as a result. The reason why the thickness of the outermost layer 4 is set to 0.5 to 2% of the total finished outer diameter is 0.5%.
If it is less than the above, there is not much effect of providing the outermost layer, and if it is more than 2%, a large amount of sludge is generated at the time of electric discharge machining, causing various adverse effects.

【0008】[0008]

【実施例1】亜鉛20wt%を含有するφ0.78mmの
銅亜鉛合金ワイヤの外層に亜鉛被覆層を厚さ25μmで
設け、次にそのワイヤを850℃の雰囲気中に一定時間
ワイヤを走行させながら熱処理し高亜鉛黄銅層を生成す
る。更にそのワイヤ表面に最外層として亜鉛めつきを厚
さ9μmでめつきする。最後にこのワイヤを母線として
冷間伸線加工を行い、外径がφ0.3mmのワイヤ放電
加工用電極線を製造した。この様にして得られた数種類
の熱処理時間の異なるワイヤ放電加工用電極線の導電率
を測定した。また、同電極線をワイヤ放電加工機にセッ
トし、下記の表1記載の条件で加工し、切削物を削り取
る加工速度を計測した。それとは別に、亜鉛35wt%を
含有する銅亜鉛合金をφ0.3mmまで伸線加工を施し
て得られた従来の電極線の切削物を削り取る加工速度も
併せて計測した。
EXAMPLE 1 A zinc coating layer having a thickness of 25 μm was provided on the outer layer of a copper-zinc alloy wire having a diameter of 0.78 mm containing 20 wt% of zinc, and then the wire was run in an atmosphere at 850 ° C. for a certain period of time. Heat treated to produce high zinc brass layer. Further, zinc plating is applied to the wire surface as an outermost layer at a thickness of 9 μm. Finally, cold drawing was performed using this wire as a bus bar to produce an electrode wire for wire electric discharge machining having an outer diameter of 0.3 mm. The conductivity of the thus obtained electrode wires for wire electric discharge machining having different heat treatment times was measured. The electrode wire was set in a wire electric discharge machine, processed under the conditions shown in Table 1 below, and the processing speed at which a cut object was cut was measured. Separately, the processing speed for shaving a conventional electrode wire obtained by drawing a copper-zinc alloy containing 35 wt% of zinc to φ0.3 mm was also measured.

【0009】[0009]

【表1】 [Table 1]

【0010】[0010]

【実施例2】亜鉛30wt%を含有するφ0.78mmの
銅亜鉛合金ワイヤの外層に亜鉛被覆層を厚さ17μmで
設け、次にそのワイヤを850℃の雰囲気中に一定時間
ワイヤを走行させながら熱処理し高亜鉛黄銅層を生成す
る。更にそのワイヤ表面に最外層として亜鉛めつきを厚
さ9μmでめつきする。最後にこのワイヤを母線として
冷間伸線加工を行い、外径がφ0.3mmのワイヤ放電
加工用電極線を製造した。この様にして得られた電極線
の導電率と切削物を削り取る加工速度を実施例1と同様
に計測した。
EXAMPLE 2 A zinc coating layer having a thickness of 17 μm was provided on the outer layer of a copper-zinc alloy wire having a diameter of 0.78 mm containing 30% by weight of zinc, and then the wire was run in an atmosphere at 850 ° C. for a certain period of time. Heat treated to produce high zinc brass layer. Further, zinc plating is applied to the wire surface as an outermost layer at a thickness of 9 μm. Finally, cold drawing was performed using this wire as a bus bar to produce an electrode wire for wire electric discharge machining having an outer diameter of 0.3 mm. The electrical conductivity of the electrode wire thus obtained and the processing speed for shaving the cut object were measured in the same manner as in Example 1.

【0011】[0011]

【実施例3】亜鉛15wt%を含有するφ0.9mmの銅
亜鉛合金ワイヤの外層に亜鉛被覆層を厚さ35μmで設
け、次にそのワイヤを850℃の雰囲気中に一定時間ワ
イヤを走行させながら熱処理し高亜鉛黄銅層を生成す
る。更にそのワイヤ表面に最外層として亜鉛めつきを厚
さ10μmでめっきする。最後にこのワイヤを母線とし
て冷間伸線加工を行い、外径がφ0.3mmのワイヤ放
電加工用電極線を製造した。この様にして得られた電極
線の導電率と切削物を削り取る加工速度を実施例1と同
様に計測した。図1(ロ)〜図1(ニ)は、実施例1〜
3の電極線の熱処理時間と導電率の関係、および同じく
熱処理時間と切削物を削り取る加工速度の関係をグラフ
化したものである。なお、グラフ中の加工速度比とは従
来品である亜鉛35wt%を含有する銅亜鉛合金をφ0.
3mmまで伸線加工を施して得られた電極線との速度比
であり、数値が大きい方が加工速度が速いということに
なる。図1(ロ)〜図1(ニ)から明らかなように、熱
処理時間が長くなるにつれて得られる電極線の導電率は
高くなっていき、ある熱処理時間の時、極大値に達す
る。更に、それ以上熱処理時間を長くすると今度は導電
率が熱処理時間と共に低くなっていく。また、加工速度
も導電率と同調し、熱処理時間と共に速くなっていき、
ある熱処理条件で極大値に達し、更に、熱処理時間を長
くすると速度が低下する。
Example 3 A zinc coating layer having a thickness of 35 μm was provided on the outer layer of a copper-zinc alloy wire of φ0.9 mm containing 15 wt% of zinc, and then the wire was run in an atmosphere at 850 ° C. for a certain period of time. Heat treated to produce high zinc brass layer. Further, the surface of the wire is plated with a zinc plating having a thickness of 10 μm as an outermost layer. Finally, cold drawing was performed using this wire as a bus bar to produce an electrode wire for wire electric discharge machining having an outer diameter of 0.3 mm. The electrical conductivity of the electrode wire thus obtained and the processing speed for shaving the cut object were measured in the same manner as in Example 1. 1 (b) to 1 (d) show Examples 1 to 4.
3 is a graph showing the relationship between the heat treatment time and the electrical conductivity of the electrode wire of No. 3 and the relationship between the heat treatment time and the processing speed for shaving a cut object. The processing speed ratio in the graph refers to a conventional copper-zinc alloy containing 35 wt% of zinc, which is φ0.
This is the speed ratio with the electrode wire obtained by wire drawing up to 3 mm. The larger the value, the faster the working speed. As is clear from FIGS. 1 (b) to 1 (d), the conductivity of the obtained electrode wire increases as the heat treatment time increases, and reaches a maximum value during a certain heat treatment time. Further, if the heat treatment time is further increased, the conductivity will decrease with the heat treatment time. Also, the processing speed is synchronized with the conductivity, and it increases with the heat treatment time,
The maximum value is reached under certain heat treatment conditions, and when the heat treatment time is prolonged, the speed decreases.

【0012】[0012]

【実施例4】亜鉛20wt%を含有するφ0.78mmの
銅亜鉛合金ワイヤの外層に亜鉛被覆層を厚さ25μmで
設けた実施例1と同一の熱処理前ワイヤに実施例1で導
電率が極大値に達し、熱処理条件(850℃の雰囲気中
に17秒間)で高亜鉛黄銅層を生成した。このワイヤを
母線として冷間伸線加工を行い、外径が、φ0.3mm
のワイヤ放電加工用電極線の製造を試みたが、伸線中に
ワイヤの断線が発生した。断線点を観察した結果、ワイ
ヤ表面に発生したクラックが起点となり断線に至ったこ
とががわかった。また、断線せずに伸線出来た部分のワ
イヤ表面も観察した結果、電極線表面に無数のクラック
が発生していることが観察された。実施例1〜3の導電
率が極大値に達した熱処理条件で製造された電極線と実
施例4の電極線の高亜鉛黄銅層をEPMA(電子線マイ
クロアナライザ)にて分析した結果、亜鉛48〜68w
t%を含有する銅亜鉛合金であることがわかった。亜鉛
48〜68wt%で示す領域は、銅亜鉛合金の状態図で
いうβ+γの混晶域若しくはγ相域であり、この相は伸
線加工性が困難な相である。実施例4のクラックは、こ
れらの相が伸線加工の際に伸びきれずクラックという形
で表面に現れたものである。これに対して、実施例1〜
3の高亜鉛黄銅層の組成もβ+γの混晶域若しくはγ相
域であるにもかかわらず、ワイヤ表面にクラックが観察
されないのは、この相の外側に亜鉛被覆層があるため伸
線加工が可能となっているものである。つまりこの程度
の加工度であれば伸線加工が困難なβ+γの混晶域若し
くはγ域の相が心材の外側にあっても、更に外側にある
伸線加工が可能な層がβ+γ混晶相若しくはγ相の伸線
加工性を補って伸線加工が可能になるためである。
Example 4 The same pre-heat treatment wire as in Example 1 except that a zinc coating layer having a thickness of 25 μm was provided on the outer layer of a copper-zinc alloy wire having a diameter of 0.78 mm containing 20 wt% of zinc and having the maximum conductivity in Example 1 And a high zinc brass layer was formed under heat treatment conditions (at 850 ° C. in an atmosphere for 17 seconds). Cold drawing is performed using this wire as a bus bar, and the outer diameter is φ0.3 mm.
The production of the electrode wire for wire electric discharge machining was attempted, but the wire was broken during the wire drawing. As a result of observing the disconnection point, it was found that a crack generated on the surface of the wire was a starting point and the wire was disconnected. In addition, as a result of observing the wire surface in a portion where the wire could be drawn without disconnection, it was observed that countless cracks were generated on the electrode wire surface. As a result of analyzing the high zinc brass layer of the electrode wire manufactured under the heat treatment condition in which the conductivity of Examples 1 to 3 reached the maximum value and the electrode wire of Example 4 by EPMA (electron beam microanalyzer), zinc 48 was obtained. ~ 68w
It was found to be a copper-zinc alloy containing t%. The region indicated by 48 to 68 wt% of zinc is a mixed crystal region of β + γ or a γ phase region in the phase diagram of the copper-zinc alloy, and this phase is a phase in which wire drawing is difficult. The cracks of Example 4 were such that these phases could not be fully expanded during wire drawing and appeared on the surface in the form of cracks. In contrast, Examples 1 to
Despite the fact that the composition of the high zinc brass layer of No. 3 is also a β + γ mixed crystal region or a γ phase region, no cracks are observed on the wire surface because the zinc coating layer exists outside this phase to perform wire drawing. It is possible. In other words, even if a phase in the β + γ mixed crystal region or γ region where wire drawing is difficult at this level of workability is outside the core material, the layer that can be drawn further outside is a β + γ mixed crystal phase. Alternatively, it is because the wire drawing process can be performed by supplementing the wire drawing processability of the γ phase.

【0013】従来より製品化されている、心材に亜鉛2
0%を含有した銅亜鉛合金を使用し外層に高亜鉛黄銅層
を設けた電極線は、この伸線加工が困難なβ+γの混晶
域若しくはγ相域を避けるため電極線の導電率が26%
程度になっていた。
Conventionally commercialized, zinc 2
An electrode wire made of a copper-zinc alloy containing 0% and provided with a high zinc brass layer as an outer layer has a conductivity of 26% in order to avoid a β + γ mixed crystal region or a γ phase region in which wire drawing is difficult. %
It was about.

【0014】今迄、心材は、亜鉛15〜30wt%を含
有する銅亜鉛合金について説明してきたが、これ以外の
変形例でも一向に構わない。また、最外層は亜鉛被覆層
について説明してきたが、銅やその他の伸線加工が可能
な金属でも一向に構わない。このように熱処理条件によ
っては導電率が極大になる条件が存在し、その部分は切
削物を加工する加工速度も極大値を示すという作用を利
用したワイヤ放電加工用電極線は、本考案の範囲内であ
ることはいうまでもない
Until now, the core material has been described as a copper-zinc alloy containing 15 to 30 wt% of zinc, but other modifications may be used. In addition, although the outermost layer has been described with reference to the zinc coating layer, copper or other metal capable of wire drawing may be used. As described above, depending on the heat treatment conditions, there are conditions under which the electrical conductivity is maximized, and in that part, the electrode wire for wire electric discharge machining utilizing the effect that the processing speed for processing the cut object also shows the maximum value is within the scope of the present invention. It goes without saying that

【0015】以上のような構造であるため、本発明のワ
イヤ放電加工用電極線1は、信頼性試験や導通試験を行
った結果、既存製品より良好な結果を示した。
Due to the above structure, the electrode wire 1 for wire electric discharge machining of the present invention showed better results than existing products as a result of a reliability test and a continuity test.

【0016】[0016]

【発明の効果】以上説明の様に、本発明のワイヤ放電加
工用電極線1は、加工コストを低く抑えるために、切削
物を削り取る加工速度が、従来のワイヤよりも20%以
上も高速化をはかることが可能なワイヤ放電加工用電極
線であり、その工業的価値は非常に大きい。
As described above, according to the electrode wire 1 for wire electric discharge machining of the present invention, in order to keep machining costs low, the machining speed for shaving a cut material is 20% or more higher than that of a conventional wire. It is an electrode wire for wire electric discharge machining that can be measured, and its industrial value is very large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(イ)は、本発明のワイヤ放電加工用電極線1
の断面図である。(ロ)は、本発明のワイヤ放電加工用
電極線1の第1実施例で、電極線の熱処理時間に対する
導電率と従来品との加工速度比との関係を示す図であ
る。(ハ)は、本発明のワイヤ放電加工用電極線1の第
2実施例で、電極線の熱処理時間に対する導電率と従来
品との加工速度比との関係を示す図である。(ニ)は、
本発明のワイヤ放電加工用電極線1の第3実施例で、電
極線の熱処理時間に対する導電率と従来品との加工速度
比との関係を示す図である。
FIG. 1A is an electrode wire 1 for wire electric discharge machining according to the present invention.
FIG. (B) is a diagram showing the relationship between the electrical conductivity and the machining speed ratio with respect to a conventional product with respect to the heat treatment time of the electrode wire in the first embodiment of the electrode wire for wire electric discharge machining 1 of the present invention. (C) is a view showing the relationship between the conductivity with respect to the heat treatment time of the electrode wire and the machining speed ratio with the conventional product in the second embodiment of the electrode wire 1 for wire electric discharge machining of the present invention. (D)
It is a figure which shows the relationship between the electric conductivity with respect to the heat processing time of an electrode wire, and the machining speed ratio with the conventional product in 3rd Example of the electrode wire 1 for wire electric discharge machining of the present invention.

【図2】(イ)は、従来のワイヤ放電加工用電極線1′
の第1実施例で、亜鉛35〜40wt%を有する銅亜鉛
合金からなる心材2′の単層構造からなる断面図であ
る。(ロ)は、従来のワイヤ放電加工用電極線1″の第
2実施例で、心材2″と外層3″の2層構造からなる断
面図である。
FIG. 2A shows a conventional electrode wire 1 ′ for wire electric discharge machining.
FIG. 4 is a cross-sectional view of a first embodiment of the present invention, which has a single-layer structure of a core material 2 ′ made of a copper-zinc alloy containing 35 to 40 wt% of zinc. (B) is a cross-sectional view of a second embodiment of the conventional electrode wire 1 "for wire electric discharge machining, having a two-layer structure of a core 2" and an outer layer 3 ".

【符号の説明】[Explanation of symbols]

1 本発明のワイヤ放電加工用電極線 2 心材 3 外層 4 最外層 1′ 従来のワイヤ放電加工用電極線 2′ 亜鉛35〜40wt%を有する銅亜鉛合金から
なる心材 1″ 従来のワイヤ放電加工用電極線 2″ 心材 3″ 外層
DESCRIPTION OF SYMBOLS 1 Electrode wire for wire electric discharge machining of the present invention 2 Core material 3 Outer layer 4 Outermost layer 1 'Electrode wire for conventional wire electric discharge machining 2' Core material made of copper-zinc alloy having 35 to 40 wt% of zinc 1 "Conventional wire electric discharge machining Electrode wire 2 "core material 3" outer layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木本 洋一郎 神奈川県川崎市中原区下小田中2丁目12番 8号 沖電線株式会社内 (72)発明者 早坂 和毅 神奈川県川崎市中原区下小田中2丁目12番 8号 沖電線株式会社内 Fターム(参考) 3C059 AA01 AB05 DB03 DC02  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yoichiro Kimoto 2-12-8 Shimoodanaka, Nakahara-ku, Kawasaki City, Kanagawa Prefecture Inside the Oki Electric Cable Co., Ltd. (72) Inventor Kazuki Hayasaka 2 Shimoodanaka, Nakahara-ku, Kawasaki City, Kanagawa Prefecture Chome 12-8 Oki Electric Cable Co., Ltd. F term (reference) 3C059 AA01 AB05 DB03 DC02

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】亜鉛15〜30wt%を含有する銅亜鉛合金
を心材とし、この心材表面に亜鉛濃度48〜68wt%の
高亜鉛黄銅を前記仕上がり外径の6%以上の厚さで形成
し、更にその外周に亜鉛被覆層をトータル仕上がり外径
の0.5〜2%の厚さで設け、23%以上の導電率を有
することを特徴とするワイヤ放電加工用電極線。
1. A core material made of a copper-zinc alloy containing 15 to 30% by weight of zinc, and high zinc brass having a zinc concentration of 48 to 68% by weight formed on the surface of the core material to a thickness of 6% or more of the finished outer diameter. Further, an electrode wire for wire electric discharge machining, wherein a zinc coating layer is provided on the outer periphery with a thickness of 0.5 to 2% of a total finished outer diameter and has a conductivity of 23% or more.
【請求項2】亜鉛15wt%を含有する銅亜鉛合金を心材
とし、この心材表面に亜鉛濃度48〜68wt%の高亜鉛
黄銅を前記仕上がり外径の6%以上の厚さで形成し、更
にその外周に亜鉛被覆層をトータル仕上がり外径の0.
5〜2%の厚さで設け、29%以上の導電率を有するこ
とを特徴とするワイヤ放電加工用電極線。
2. A copper-zinc alloy containing 15% by weight of zinc is used as a core material, and high zinc brass having a zinc concentration of 48 to 68% by weight is formed on the surface of the core material at a thickness of 6% or more of the finished outer diameter. Zinc coating layer on the outer circumference
An electrode wire for wire electric discharge machining, which is provided with a thickness of 5 to 2% and has a conductivity of 29% or more.
【請求項3】亜鉛20wt%を含有する銅亜鉛合金を心材
とし、この心材表面に亜鉛濃度48〜68wt%の高亜鉛
黄銅を前記仕上がり外径の6%以上の厚さ形成し、更に
その外周に亜鉛被覆層をトータル仕上がり外径の0.5
〜2%の厚さで設け、27%以上の導電率を有すること
を特徴とするワイヤ放電加工用電極線。
3. A core material made of a copper-zinc alloy containing 20% by weight of zinc, and high zinc brass having a zinc concentration of 48 to 68% by weight is formed on the surface of the core material to a thickness of 6% or more of the finished outer diameter. With a zinc coating layer of 0.5
An electrode wire for wire electric discharge machining, wherein the electrode wire has a thickness of about 2% and a conductivity of 27% or more.
【請求項4】亜鉛30wt%を含有する銅亜鉛合金を心材
とし、この心材表面に亜鉛濃度48〜68wt%の高亜鉛
黄銅を前記仕上がり外径の6%以上の厚さで形成し、更
にその外周に亜鉛被覆層をトータル仕上がり外径の0.
5〜2%の厚さで設け、24%以上の導電率を有するこ
とを特徴とするワイヤ放電加工用電極線。
4. A copper-zinc alloy containing 30% by weight of zinc is used as a core material, and high zinc brass having a zinc concentration of 48 to 68% by weight is formed on the surface of the core material to a thickness of 6% or more of the finished outer diameter. Zinc coating layer on the outer circumference
An electrode wire for wire electric discharge machining, which is provided with a thickness of 5 to 2% and has a conductivity of 24% or more.
JP2000333298A 2000-10-31 2000-10-31 Electrode wire for wire electric discharge machining Pending JP2002137123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000333298A JP2002137123A (en) 2000-10-31 2000-10-31 Electrode wire for wire electric discharge machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000333298A JP2002137123A (en) 2000-10-31 2000-10-31 Electrode wire for wire electric discharge machining

Publications (1)

Publication Number Publication Date
JP2002137123A true JP2002137123A (en) 2002-05-14

Family

ID=18809401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000333298A Pending JP2002137123A (en) 2000-10-31 2000-10-31 Electrode wire for wire electric discharge machining

Country Status (1)

Country Link
JP (1) JP2002137123A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005074396A2 (en) * 2004-02-05 2005-08-18 Pung Kuk Edm Wire Manufacturing Co., Ltd Electrode wire with multi-coated layers for electrical discharge machining and method of manufacturing the same
JP2008296298A (en) * 2007-05-30 2008-12-11 Oki Electric Cable Co Ltd Electrode wire for wire electric discharge machining
WO2009028117A1 (en) * 2007-12-10 2009-03-05 Oki Electric Cable Co., Ltd. Electrode wire for wire electric discharging, method for manufacturing the electrode wire, and apparatus for manufacturing bus line there of
JP2012510378A (en) * 2008-12-03 2012-05-10 ベルケンホフ ゲーエムベーハー Wire electrode for electrical discharge cutting
JP2017030134A (en) * 2015-07-30 2017-02-09 寧波博威麦特莱科技有限公司Ningbo Powerway Materialise Co., Ltd. Electrode wire having high performance and low consumption for electric discharge corrosion processing and method for manufacturing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005074396A2 (en) * 2004-02-05 2005-08-18 Pung Kuk Edm Wire Manufacturing Co., Ltd Electrode wire with multi-coated layers for electrical discharge machining and method of manufacturing the same
WO2005074396A3 (en) * 2004-02-05 2005-10-06 Pung Kuk Edm Wire Mfg Co Ltd Electrode wire with multi-coated layers for electrical discharge machining and method of manufacturing the same
JP2008296298A (en) * 2007-05-30 2008-12-11 Oki Electric Cable Co Ltd Electrode wire for wire electric discharge machining
WO2009028117A1 (en) * 2007-12-10 2009-03-05 Oki Electric Cable Co., Ltd. Electrode wire for wire electric discharging, method for manufacturing the electrode wire, and apparatus for manufacturing bus line there of
JP5042229B2 (en) * 2007-12-10 2012-10-03 沖電線株式会社 Electrode wire for wire electric discharge machining, its manufacturing method and its bus bar manufacturing apparatus
JP2012510378A (en) * 2008-12-03 2012-05-10 ベルケンホフ ゲーエムベーハー Wire electrode for electrical discharge cutting
JP2017030134A (en) * 2015-07-30 2017-02-09 寧波博威麦特莱科技有限公司Ningbo Powerway Materialise Co., Ltd. Electrode wire having high performance and low consumption for electric discharge corrosion processing and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP6029778B1 (en) High-precision zinc-based alloy electrode wire and manufacturing method thereof
CA2401102C (en) Wire electrode for spark erosion cutting
JP5845326B2 (en) Electrode wire for wire electrical discharge machining
JP2002018649A (en) Structure for porous electrode wire for electric discharge machining
JP2008296298A (en) Electrode wire for wire electric discharge machining
JP2002137123A (en) Electrode wire for wire electric discharge machining
JPS62218026A (en) Electrode wire for wire cut spark discharge machining
JPS6336889B2 (en)
JP3087552B2 (en) Electrode wire for electric discharge machining
JP2003291030A (en) Electrode wire for wire electrical discharge machining
JP2006159304A (en) Electrode wire for wire electric discharge machining and its manufacturing method
JPS59110517A (en) Electrode wire for wire-cut electric discharge machining and its manufacturing method
JPS6254382B2 (en)
JPS59129624A (en) Electrode wire for wire cut electro-discharge machining and its manufacture
JP2004082246A (en) Electrode wire for wire electric discharge machining
KR20140100796A (en) Wire electrode for electro discharge machining and thesame methode
JPS58197244A (en) Alloy wire for electrode wire for wire-cut electric spark machining
JPS58197242A (en) Alloy wire for electrode wire for wire-cut electric spark machining
JPH11320270A (en) Electrode wire with high strength and high conductivity for wire electric discharge machining
JP2001334415A (en) Electrode wire for wire cutting electric discharge machining
JP2003039246A (en) Electrode wire for wire electric discharge machining
JP4323704B2 (en) Electrode wire for wire electrical discharge machining
JP3948166B2 (en) Electrode wire for electric discharge machining
KR20200049183A (en) Electric discharge machining wire electrode and manufacturing method thereof
JPS59110516A (en) Electrode wire for wire-cut electric discharge machining and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090909

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100107