JP3324251B2 - Seismic isolation device - Google Patents

Seismic isolation device

Info

Publication number
JP3324251B2
JP3324251B2 JP34498593A JP34498593A JP3324251B2 JP 3324251 B2 JP3324251 B2 JP 3324251B2 JP 34498593 A JP34498593 A JP 34498593A JP 34498593 A JP34498593 A JP 34498593A JP 3324251 B2 JP3324251 B2 JP 3324251B2
Authority
JP
Japan
Prior art keywords
seismic isolation
isolation device
flexible bellows
bellows
air storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34498593A
Other languages
Japanese (ja)
Other versions
JPH07173955A (en
Inventor
慶直 大川
陽一 圷
瓊介 佐藤
道明 鈴木
誠一郎 山崎
郁夫 下田
雅良 池永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Corp
Kawasaki Motors Ltd
Original Assignee
Oiles Corp
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Corp, Kawasaki Jukogyo KK filed Critical Oiles Corp
Priority to JP34498593A priority Critical patent/JP3324251B2/en
Publication of JPH07173955A publication Critical patent/JPH07173955A/en
Application granted granted Critical
Publication of JP3324251B2 publication Critical patent/JP3324251B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Fluid-Damping Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、地震等の地殻変動によ
る建物等の構造物に与える振動を低減して、構造物を振
動から保護し、特に三次元免震を可能にする免震装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a seismic isolation device that reduces vibrations applied to structures such as buildings due to crustal deformation such as earthquakes, protects the structures from vibrations, and enables three-dimensional seismic isolation. About.

【0002】[0002]

【従来の技術】構造物を振動から保護する免震装置とし
ては、例えば特開平2−47477号公報に記載のよう
に、ゴム板及び金属板を交互に積層した積層ゴム体とゴ
ム膜を設けた空気ばねとを用いたものが知られている。
2. Description of the Related Art As a seismic isolation device for protecting a structure from vibration, for example, as described in Japanese Patent Application Laid-Open No. 2-47477, a rubber laminate and a rubber film in which a rubber plate and a metal plate are alternately laminated are provided. An air spring using an air spring is known.

【0003】[0003]

【発明が解決しようとする課題】ところで上記公報記載
の免震装置は、ゴム膜を設けた空気ばねが使用されて、
加わる重量が比較的小さい床に生じる振動を免震、除振
しようとするものであるため、これを、建物等のように
大きな重量が加わる構造物自体の免震装置として適用す
ると、ゴム膜の極度の変形が生じ、実質免震機能を達成
しない虞がある。一方、大きな荷重を支えても変形が生
じないようにして免震機能を得ようとすると、大きなゴ
ム膜を設けた空気ばねを必要とし、免震装置自体の設置
場所がかなり大きなものとなる。
By the way, the seismic isolation device described in the above publication uses an air spring provided with a rubber film,
Since this system is designed to isolate and eliminate vibrations that occur on floors with relatively small added weight, if this is applied as a seismic isolation device for structures that add large weight, such as buildings, the Extreme deformation may occur and may not achieve the substantial seismic isolation function. On the other hand, if an attempt is made to obtain a seismic isolation function by preventing deformation even if a large load is supported, an air spring provided with a large rubber film is required, and the installation location of the seismic isolation device itself becomes considerably large.

【0004】本発明は前記諸点に鑑みてなされたもので
あって、その目的とするところは、地震等の地殻変動に
よる建物等の構造物に与える振動を低減して、建物等の
ように大きな重量が加わる構造物自体をも振動から効果
的に保護することができる上に、大きな設置場所を必要
としない免震装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and an object of the present invention is to reduce vibrations applied to structures such as buildings due to crustal deformation caused by an earthquake or the like, and to increase the size of buildings such as buildings. It is an object of the present invention to provide a seismic isolation device that can effectively protect even a heavy structure itself from vibration and that does not require a large installation space.

【0005】[0005]

【課題を解決するための手段】本発明によれば前記目的
は、構造物基礎と構造物との間に配される免震装置であ
って、積層ゴム体と空気ばね装置とを具備し、空気ばね
装置は、積層ゴム体と構造物との間に高圧空気収容室を
形成するためにベローズ手段を具備しており、ベローズ
手段は、金属製の内側可撓性ベローズと、この内側可撓
性ベローズと同心に配された金属製の外側可撓性ベロー
ズとを具備しており、内側可撓性ベローズ及び外側可撓
性ベローズの夫々は、一端で、積層ゴム体に取り付けら
れる中間座に連結され、他端で、構造物に取り付けられ
ており、内側可撓性ベローズの内部に高圧空気収容室が
形成される免震装置によって達成される。
According to the present invention, there is provided a seismic isolation device disposed between a structure foundation and a structure, comprising a laminated rubber body and an air spring device. The air spring device includes bellows means for forming a high-pressure air storage chamber between the laminated rubber body and the structure.
The means comprises a metal inner flexible bellows and this inner flexible bellows.
Metal outer flexible bellows concentric with flexible bellows
And an inner flexible bellows and an outer flexible bellows.
Each of the bellows is attached to the laminated rubber body at one end.
Connected to the intermediate seat and attached to the structure at the other end
High pressure air chamber inside the inner flexible bellows
Achieved by a seismic isolation device configured.

【0006】本発明において積層ゴム体としては、積層
ゴムと積層ゴムの中央に配された円柱状鉛とを具備した
鉛入りの積層ゴム体でも、積層ゴムのみからなる単なる
積層ゴム体でもよく、更には、積層ゴム体の各ゴムを高
減衰ゴムから製造したものであってもよい。
In the present invention, the laminated rubber body may be a lead-containing laminated rubber body having a laminated rubber and a columnar lead disposed at the center of the laminated rubber, or may be a simple laminated rubber body composed of only the laminated rubber. Further, each rubber of the laminated rubber body may be manufactured from high attenuation rubber.

【0007】一つの好ましい例では、内側可撓性ベロー
ズと外側可撓性ベローズとの間に高圧空気収容室を形成
してもよい。ベローズは、バルジ式又は溶接式のいずれ
のものであってもよい。
[0007] In one preferred embodiment, it may be formed a high pressure air storage chamber between the inner side flexible bellows and the outer flexible bellows. Baie Rose may be of any bulge type or welded.

【0008】尚、本発明は、二つの金属製の可撓性ベロ
ーズからなるベローズ手段に限定されず、同心状に配さ
れた三つ以上の可撓性ベローズからなるベローズ手段で
あってもよく、各可撓性ベローズ間に高圧空気収容室を
形成してもよい。複数の可撓性ベローズを用いて複数の
高圧空気収容室を形成すると、一つの高圧空気収容室に
空気漏れが生じても他の高圧空気収容室で構造物を保持
し得るため、フェールセーフな免震装置とし得る。好ま
しい例では可撓性ベローズに補強リングを設け、可撓性
ベローズの極端な周方向の変形を阻止するようにしても
よい。
[0008] The present invention can be a double one is not limited to the bellows means including a metallic flexible bellows, the bellows means comprising three or more flexible bellows arranged concentrically A high-pressure air storage chamber may be formed between the flexible bellows. If a plurality of high-pressure air storage chambers are formed using a plurality of flexible bellows, even if air leakage occurs in one high-pressure air storage chamber, the structure can be held in another high-pressure air storage chamber. It may be a seismic isolation device. In a preferred example, a reinforcing ring may be provided on the flexible bellows to prevent extreme circumferential deformation of the flexible bellows.

【0009】本発明の一つの例では、空気ばね装置は、
下端が、中間座に取り付けられる下部円筒体と、上端
が、上部座に取り付けられる上部円筒体とを具備してお
り、下部円筒体の上端部と上部円筒体の下端部とは、互
いに入れ子式となっており、ここにおいて、下部円筒体
と上部円筒体とがベローズ手段を取り囲んで配されてい
てもよく、一方、ベローズ手段が下部円筒体と上部円筒
体とを取り囲んで配されていてもよい。
In one embodiment of the present invention, the air spring device comprises:
The lower end has a lower cylindrical body attached to the intermediate seat, and the upper end has an upper cylindrical body attached to the upper seat. The upper end of the lower cylindrical body and the lower end of the upper cylindrical body are nested with each other. Here, the lower cylinder and the upper cylinder may be arranged so as to surround the bellows means, while the bellows means may be arranged so as to surround the lower cylinder and the upper cylinder. Good.

【0010】本発明においては、高圧空気収容室を、コ
ンプレッサが接続された補助タンク内部に連通させても
よく、この場合、好ましくは高圧空気収容室と補助タン
ク内部との間にバルブ、好ましくはオリフィス機能を有
しているバルブを介在させる。そしてこのような免震装
置において、構造物に与えられる振動を検出する振動検
出手段と、この振動検出手段からの検出信号によりバル
ブの開度及びコンプレッサの作動のうち少なくとも一方
を制御する制御手段とを設けると、免震機能を、振動の
大きさ(加速度、速度又は振幅)又は振動の減衰程度に
対応して可変とし得、言わばアクティブな免震装置とし
得るので好ましい。本振動検出手段は、構造物に与えら
れる振動を検出するため、地殻自体に設けてもよいが、
積層ゴム体、空気ばね装置、構造物基礎又は構造物に設
けてもよい。振動検出手段としては、加速度検出器、速
度検出器又は振幅検出器のいずれであってもよく、達成
しようとする免震機能に対応して適宜選択するとよい。
In the present invention, the high-pressure air storage chamber may communicate with the inside of the auxiliary tank to which the compressor is connected. In this case, a valve, preferably a valve, preferably, is provided between the high-pressure air storage chamber and the inside of the auxiliary tank. A valve having an orifice function is interposed. And in such a seismic isolation device, a vibration detecting means for detecting vibration applied to the structure, and a control means for controlling at least one of the opening degree of the valve and the operation of the compressor by a detection signal from the vibration detecting means. Is preferable because the seismic isolation function can be made variable in accordance with the magnitude of the vibration (acceleration, velocity or amplitude) or the degree of vibration damping, and can be called an active seismic isolation device. This vibration detection means may be provided on the crust itself to detect vibration applied to the structure,
It may be provided on a laminated rubber body, an air spring device, a structure foundation or a structure. The vibration detecting means may be any of an acceleration detector, a speed detector, and an amplitude detector, and may be appropriately selected according to the seismic isolation function to be achieved.

【0011】[0011]

【作用】本発明の免震装置では、積層ゴム体によって横
方向の振動を効果的に低減し、ベローズ手段を具備する
空気ばね装置が縦方向の振動を効果的に低減し、而して
三次元免震を可能にする。そして金属製の可撓性ベロー
ズは、ゴム膜を設けた空気ばねと比較して、数百倍の耐
圧性を有するため、大きな荷重を、大きな設置場所を必
要としないで支持し得る。
According to the seismic isolation device of the present invention, the vibration in the horizontal direction is effectively reduced by the laminated rubber body, and the air spring device having the bellows means effectively reduces the vibration in the vertical direction. Former seismic isolation is possible. The flexible bellows made of metal has a pressure resistance several hundred times that of an air spring provided with a rubber film, so that a large load can be supported without requiring a large installation place.

【0012】次に本発明を、図に示す好ましい具体例に
基づいて更に詳細に説明する。本発明はこれら具体例に
何等限定されないのである。
Next, the present invention will be described in more detail based on preferred embodiments shown in the drawings. The present invention is not limited to these specific examples.

【0013】[0013]

【具体例】図1から図4において、本例の免震装置1
は、構造物基礎2と構造物3との間に配され、積層ゴム
体4と空気ばね装置5とを具備し、空気ばね装置5は、
積層ゴム体4と構造物3との間に、高圧空気収容室6及
び7を形成するために、環状の一端8及び9が、積層ゴ
ム体4に取り付けられる円形の中間座10に連結され、
環状の他端11及び12が、構造物3にボルト等により
取り付けられる円形の上部座13に連結された少なくと
も一つの金属製の可撓性ベローズ、本例では金属製の内
側可撓性ベローズ14と、内側可撓性ベローズ14と同
心に配された金属製の外側可撓性ベローズ15とからな
るベローズ手段16を具備してなる。
1 to 4 show a seismic isolation device 1 of this embodiment.
Is disposed between the structure foundation 2 and the structure 3, and includes a laminated rubber body 4 and an air spring device 5, and the air spring device 5
To form high-pressure air storage chambers 6 and 7 between the laminated rubber body 4 and the structure 3, annular one ends 8 and 9 are connected to a circular intermediate seat 10 attached to the laminated rubber body 4,
At least one metal flexible bellows, in this example a metal inner flexible bellows 14, connected to a circular upper seat 13 whose other ends 11 and 12 are connected to the structure 3 by bolts or the like. And a bellows means 16 comprising an inner flexible bellows 14 and a metal outer flexible bellows 15 arranged concentrically.

【0014】積層ゴム体4は、下部円板21と上部円板
22との間に、ゴム円環板23と金属円環板24とを交
互に積層してなり、下部円板21が図示しないボルトに
より円形の下部座25に取り付けられており、下部座2
5は図示しないアンカーボルトにより構造物基礎2に固
定されている。上部円板22は、図示しないボルトによ
り中間座10に取り付けられている。本例では、積層ゴ
ム体4の中央部に、積層されたゴム円環板23と金属円
環板24とに取り囲まれて円柱状の鉛26が配されてい
る。
The laminated rubber body 4 is formed by alternately laminating a rubber annular plate 23 and a metal annular plate 24 between a lower disk 21 and an upper disk 22, and the lower disk 21 is not shown. The lower seat 2 is attached to the circular lower seat 25 by bolts.
Reference numeral 5 is fixed to the structural foundation 2 by an anchor bolt (not shown). The upper disk 22 is attached to the intermediate seat 10 by bolts (not shown). In this example, a columnar lead 26 is disposed at the center of the laminated rubber body 4 so as to be surrounded by the laminated rubber annular plate 23 and the metal annular plate 24.

【0015】空気ばね装置5には、内側可撓性ベローズ
14の内部に、上端面が閉塞された円筒状の部材31が
配されており、部材31の環状下端32は中間座10に
溶接等により固着されている。内側可撓性ベローズ14
の一端8は、中間座10に一体形成された環状突起33
に溶接等により気密に固着され、内側可撓性ベローズ1
4の他端11は、上部座13に一体形成された環状突起
34に溶接等により気密に固着されている。外側可撓性
ベローズ15の一端9は、中間座10に一体形成された
環状突起35に溶接等により気密に固着され、外側可撓
性ベローズ15の他端12は、上部座13に一体形成さ
れた環状突起36に溶接等により気密に固着されてい
る。このようにして本例では、内側可撓性ベローズ14
の内部に高圧空気収容室6が部材31と協同して形成さ
れており、内側可撓性ベローズ14と外側可撓性ベロー
ズ15との間に、更に高圧空気収容室7が形成されてい
る。各可撓性ベローズ14及び15の外側には、補強リ
ング41及び42が設けられている。
In the air spring device 5, a cylindrical member 31 whose upper end surface is closed is disposed inside the inner flexible bellows 14, and an annular lower end 32 of the member 31 is welded to the intermediate seat 10 or the like. Is fixed. Inner flexible bellows 14
One end 8 has an annular projection 33 integrally formed with the intermediate seat 10.
The inner flexible bellows 1 is hermetically fixed by welding or the like to the inside.
The other end 11 of 4 is hermetically fixed to an annular projection 34 integrally formed on the upper seat 13 by welding or the like. One end 9 of the outer flexible bellows 15 is hermetically fixed by welding or the like to an annular projection 35 formed integrally with the intermediate seat 10, and the other end 12 of the outer flexible bellows 15 is formed integrally with the upper seat 13. It is hermetically fixed to the annular projection 36 by welding or the like. Thus, in this example, the inner flexible bellows 14
Is formed in cooperation with the member 31, and a high-pressure air storage chamber 7 is further formed between the inner flexible bellows 14 and the outer flexible bellows 15. Outside each of the flexible bellows 14 and 15, reinforcing rings 41 and 42 are provided.

【0016】空気ばね装置5は、下端のフランジ部51
が、中間座10にボルト52等により取り付けられる下
部円筒体53と、上端のフランジ部54が、上部座13
にボルト55等により取り付けられる上部円筒体56と
を更に具備しており、下部円筒体53の上端部57と上
部円筒体56の下端部58とは、互いに入れ子式となっ
ており、上端部57と下端部58との間には、上端部5
7に固着された環状軸受60が配されており、こうして
下部円筒体53に対して上部円筒体56は上下動自在で
ある。ベローズ手段16を取り囲んで配された下部円筒
体53と上部円筒体56とはベローズ手段16の水平方
向(横方向)の変形を防止している。
The air spring device 5 includes a flange portion 51 at the lower end.
The lower cylindrical body 53 attached to the intermediate seat 10 with bolts 52 and the like, and the upper flange portion 54 are connected to the upper seat 13.
And an upper cylindrical body 56 attached to the lower cylindrical body 53 by bolts 55 and the like. The upper end 57 of the lower cylindrical body 53 and the lower end 58 of the upper cylindrical body 56 are nested with each other, and the upper end 57 Between the lower end 58 and the upper end 5
An annular bearing 60 fixed to 7 is arranged, and thus the upper cylindrical body 56 can move up and down with respect to the lower cylindrical body 53. The lower cylindrical body 53 and the upper cylindrical body 56 disposed around the bellows means 16 prevent the bellows means 16 from being deformed in the horizontal direction (lateral direction).

【0017】本例では高圧空気収容室6及び7は、連通
管61及び62を介してオリフィス機能を有するバルブ
63及び64に連通されており、バルブ63及び64は
補助タンク65を介してコンプレッサ66に接続されて
いる。
In this embodiment, the high-pressure air storage chambers 6 and 7 are connected to valves 63 and 64 having an orifice function through communication pipes 61 and 62, and the valves 63 and 64 are connected to a compressor 66 via an auxiliary tank 65. It is connected to the.

【0018】以上のように構成された免震装置1では、
地震等の地殻変動に基づく構造物基礎2の水平振動成分
は、復元力を有する積層ゴム体4及び鉛26の剪断的変
形により構造物3へ伝達されなくなり、また仮に構造物
3に伝達されたしても積層ゴム体4及び鉛26の剪断的
変形により急速に減衰される一方、地震等の地殻変動に
基づく構造物基礎2の垂直振動成分は、内側及び外側可
撓性ベローズ14及び15により形成された高圧空気収
容室6及び7を具備する空気ばね装置5によって構造物
3へ伝達されなくなる。また本例の免震装置1では、高
圧空気収容室6及び7のそれぞれがバルブ63及び64
を介して補助タンク65内に連通されているため、構造
物基礎2の垂直振動成分は、バルブ63及び64を通過
する際の空気の移動抵抗により好ましく減衰される。
In the seismic isolation device 1 configured as described above,
The horizontal vibration component of the structure foundation 2 based on the crustal deformation such as an earthquake is not transmitted to the structure 3 due to the shear deformation of the laminated rubber body 4 and the lead 26 having the restoring force, and is temporarily transmitted to the structure 3. However, while being rapidly attenuated by the shear deformation of the laminated rubber body 4 and the lead 26, the vertical vibration component of the structural foundation 2 based on the crustal deformation such as an earthquake is caused by the inner and outer flexible bellows 14 and 15. It is no longer transmitted to the structure 3 by the air spring device 5 having the formed high-pressure air storage chambers 6 and 7. Further, in the seismic isolation device 1 of this example, the high-pressure air storage chambers 6 and 7 are provided with valves 63 and 64, respectively.
, The vertical vibration component of the structural foundation 2 is preferably attenuated by the movement resistance of air when passing through the valves 63 and 64.

【0019】なお、空気漏れなどにより高圧空気収容室
6及び7の内圧が所定値よりも減少した場合には、コン
プレッサ66を動作させ、高圧空気収容室6及び7の内
圧を所定値に維持するとよい。
When the internal pressure of the high-pressure air storage chambers 6 and 7 decreases below a predetermined value due to air leakage or the like, the compressor 66 is operated to maintain the internal pressure of the high-pressure air storage chambers 6 and 7 at the predetermined value. Good.

【0020】そして免震装置1の空気ばね装置5は、高
圧空気収容室6及び7が金属製の内側及び外側可撓性ベ
ローズ14及び15からなるベローズ手段16で形成さ
れているため、大きな荷重をも十分に支えることがで
き、内側及び外側可撓性ベローズ14及び15自体が膨
らんで免震機能を達成しなくなることがない。また各可
撓性ベローズ14及び15の外側に補強リング41及び
42を設けているため、内側及び外側可撓性ベローズ1
4及び15自体の膨らみを更に確実に低減し得る。更に
本例のように二つの高圧空気収容室6及び7を形成する
と、一つのベローズに損傷が生じて一つの高圧空気収容
室に空気漏れ等が生じても、残りの高圧空気収容室によ
り構造物3を支持し得ると共に免震機能の低下もそれほ
ど生じなく、極めてフェールセーフな免震装置とし得
る。
The air spring device 5 of the seismic isolation device 1 has a large load because the high-pressure air storage chambers 6 and 7 are formed by the bellows means 16 including the inner and outer flexible bellows 14 and 15 made of metal. Can be sufficiently supported, and the inner and outer flexible bellows 14 and 15 do not inflate themselves to achieve the seismic isolation function. Further, since the reinforcing rings 41 and 42 are provided outside the flexible bellows 14 and 15, the inner and outer flexible bellows 1 are provided.
The bulges of 4 and 15 themselves can be reduced more reliably. Further, when two high-pressure air storage chambers 6 and 7 are formed as in this example, even if one bellows is damaged and air leakage or the like occurs in one high-pressure air storage chamber, the structure is formed by the remaining high-pressure air storage chamber. The object 3 can be supported, and the seismic isolation function does not deteriorate so much.

【0021】尚、図4に示すように、構造物3に与えら
れる振動を検出する振動検出手段71と、振動検出手段
71からの検出信号によりバルブ63及び64の開度を
制御する制御手段72とを設けて、構造物3に生じる振
動が可及的速やかに低減されるように、バルブ63及び
64の開度を制御してバルブ63及び64を通過する際
の空気の移動抵抗を変えるようにしてもよい。この際、
コンプレッサ66の作動を振動検出手段71からの検出
信号により同様に制御してもよい。
As shown in FIG. 4, a vibration detecting means 71 for detecting vibration applied to the structure 3 and a control means 72 for controlling the degree of opening of the valves 63 and 64 based on a detection signal from the vibration detecting means 71. In order to reduce the vibration generated in the structure 3 as quickly as possible, the opening degrees of the valves 63 and 64 are controlled to change the air movement resistance when passing through the valves 63 and 64. It may be. On this occasion,
The operation of the compressor 66 may be similarly controlled by a detection signal from the vibration detecting means 71.

【0022】[0022]

【発明の効果】以上のように本発明によれば、地震等の
地殻変動による建物等の構造物に与える振動を低減し
て、建物等のように大きな重量が加わる構造物自体をも
振動から効果的に保護することができる免震装置を提供
することができる。
As described above, according to the present invention, the vibration applied to a structure such as a building due to crustal deformation such as an earthquake is reduced, and the structure itself, such as a building, to which a large weight is added can be protected from vibration. A seismic isolation device that can be effectively protected can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に従う好ましい一具体例の一部断面斜視
図である。
FIG. 1 is a perspective view, partly in section, of one preferred embodiment according to the present invention.

【図2】図1に示すベローズ手段の一部の拡大端面図で
ある。
FIG. 2 is an enlarged end view of a part of the bellows means shown in FIG.

【図3】図1に示す補強リングの一部断面斜視図であ
る。
FIG. 3 is a partially sectional perspective view of the reinforcing ring shown in FIG. 1;

【図4】図1に示す一具体例を構造物基礎と構造物との
間に配した例の説明図である。
FIG. 4 is an explanatory diagram of an example in which one specific example shown in FIG. 1 is arranged between a structure foundation and a structure.

【符号の説明】[Explanation of symbols]

1 免震装置 2 構造物基礎 3 構造物 4 積層ゴム体 5 空気ばね装置 6、7 高圧空気収容室 14 内側可撓性ベローズ 15 外側可撓性ベローズ 16 ベローズ手段 REFERENCE SIGNS LIST 1 seismic isolation device 2 structural foundation 3 structure 4 laminated rubber body 5 air spring device 6, 7 high-pressure air storage chamber 14 inner flexible bellows 15 outer flexible bellows 16 bellows means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 圷 陽一 茨城県那珂郡那珂町大字向山801番地の 1 日本原子力研究所那珂研究所内 (72)発明者 佐藤 瓊介 東京都江東区南砂2丁目6番5号 川崎 重工業株式会社 東京設計事務所内 (72)発明者 鈴木 道明 東京都江東区南砂2丁目6番5号 川崎 重工業株式会社 東京設計事務所内 (72)発明者 山崎 誠一郎 東京都江東区南砂2丁目6番5号 川崎 重工業株式会社 東京設計事務所内 (72)発明者 下田 郁夫 神奈川県藤沢市桐原町8番地 オイレス 工業株式会社藤沢事業場内 (72)発明者 池永 雅良 神奈川県藤沢市桐原町8番地 オイレス 工業株式会社藤沢事業場内 (56)参考文献 特開 平5−306726(JP,A) 特開 平4−258550(JP,A) 実開 昭64−744(JP,U) 実開 平1−67343(JP,U) 実開 昭59−67849(JP,U) 実開 平2−114234(JP,U) (58)調査した分野(Int.Cl.7,DB名) E04H 9/02 - 9/02 331 F16F 9/04 F16F 15/04 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Yoichi Akutsu 1 801 Mukaiyama, Naka-cho, Naka-machi, Naka-gun, Ibaraki Prefecture (72) Inventor Kyosuke Sato 2-6 Minamisuna, Koto-ku, Tokyo 5 Kawasaki Heavy Industries, Ltd. Tokyo Design Office (72) Inventor Michiaki Suzuki 2-6-5 Minamisuna, Koto-ku, Tokyo Kawasaki Heavy Industries, Ltd. Tokyo Design Office (72) Inventor Seiichiro Yamazaki 2-chome, Minamisuna, Koto-ku, Tokyo 6-5 Kawasaki Heavy Industries, Ltd. Tokyo Design Office (72) Inventor Ikuo Shimoda 8 Kirihara-cho, Fujisawa-shi, Kanagawa Oiles Industry Co., Ltd. Fujisawa Plant (72) Inventor Masayoshi Ikenaga 8 Kirihara-cho, Fujisawa-shi, Kanagawa Oiles (56) References JP-A-5-306726 (JP, A) JP-A Hei 4-258550 (JP, A) Japanese Utility Model 64-64 (JP, U) Japanese Utility Model 1-67343 (JP, U) Japanese Utility Model 59-67849 (JP, U) Japanese Utility Model 2-114234 (JP) , U) (58) Fields investigated (Int. Cl. 7 , DB name) E04H 9/02-9/02 331 F16F 9/04 F16F 15/04

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 構造物基礎と構造物との間に配される免
震装置であって、積層ゴム体と空気ばね装置とを具備
し、空気ばね装置は、積層ゴム体と構造物との間に高圧
空気収容室を形成するためにベローズ手段を具備してお
り、ベローズ手段は、金属製の内側可撓性ベローズと、
この内側可撓性ベローズと同心に配された金属製の外側
可撓性ベローズとを具備しており、内側可撓性ベローズ
及び外側可撓性ベローズの夫々は、一端で、積層ゴム体
に取り付けられる中間座に連結され、他端で、構造物に
取り付けられており、内側可撓性ベローズの内部に高圧
空気収容室が形成される免震装置
1. A seismic isolation device disposed between a structure foundation and a structure, comprising a laminated rubber body and an air spring device, wherein the air spring device is configured to connect the laminated rubber body to the structure. Bellows means are provided to form a high pressure air storage chamber between them.
The bellows means comprises a metal inner flexible bellows,
Metal outer concentric with this inner flexible bellows
A flexible bellows, the inner flexible bellows
And each of the outer flexible bellows, at one end, a laminated rubber body
Connected to the intermediate seat attached to the
Attached, high pressure inside the inner flexible bellows
A seismic isolation device in which an air storage room is formed .
【請求項2】 内側可撓性ベローズと外側可撓性ベロー
ズとの間に高圧空気収容室が形成される請求項に記載
の免震装置。
Seismic isolation device according to claim 1, the high pressure air storage chamber is formed between the wherein the inner flexible bellows and the outer flexible bellows.
【請求項3】 可撓性ベローズには、補強リングが設
けられている請求項1又は2に記載の免震装置。
Wherein on both flexible bellows, the seismic isolation device according to claim 1 or 2 reinforcing rings are provided.
【請求項4】 空気ばね装置は、下端が、中間座に取り
付けられる下部円筒体と、上端が、上部座に取り付けら
れる上部円筒体とを具備しており、下部円筒体の上端部
と上部円筒体の下端部とは、互いに入れ子式となってい
る請求項1からのいずれか一項に記載の免震装置。
4. The air spring device has a lower cylinder attached to an intermediate seat at a lower end, and an upper cylinder attached to an upper seat at an upper end, and an upper end of the lower cylinder and an upper cylinder. The seismic isolation device according to any one of claims 1 to 3 , wherein the lower end of the body is nested with each other.
【請求項5】 下部円筒体と上部円筒体とは、ベローズ
手段を取り囲んで配されている請求項に記載の免震装
置。
5. The seismic isolation device according to claim 4 , wherein the lower cylindrical body and the upper cylindrical body are arranged so as to surround the bellows means.
【請求項6】 ベローズ手段は、下部円筒体と上部円筒
体とを取り囲んで配されている請求項に記載の免震装
置。
6. The seismic isolation device according to claim 4 , wherein the bellows means is disposed so as to surround the lower cylindrical body and the upper cylindrical body.
【請求項7】 高圧空気収容室は、コンプレッサが接続
された補助タンク内部に連通されている請求項1から
のいずれか一項に記載の免震装置。
7. A high pressure air storage chamber, from claim 1 compressor is in communication with the internal auxiliary tank connected 6
The seismic isolation device according to any one of the above.
【請求項8】 高圧空気収容室と補助タンク内部との間
には、バルブが介在している請求項に記載の免震装
置。
8. The seismic isolation device according to claim 7 , wherein a valve is interposed between the high-pressure air storage chamber and the inside of the auxiliary tank.
【請求項9】 構造物に与えられる振動を検出する振動
検出手段と、この振動検出手段からの検出信号によりバ
ルブの開度及びコンプレッサの作動のうち少なくとも一
方を制御する制御手段とを具備している請求項に記載
の免震装置。
9. A vibration detecting means for detecting vibration applied to a structure, and a control means for controlling at least one of a valve opening and a compressor operation based on a detection signal from the vibration detecting means. seismic isolation device according to claim 8 are.
【請求項10】 バルブは、オリフィス機能を有してい
る請求項又はに記載の免震装置。
10. A valve, seismic isolation device according to claim 8 or 9 has an orifice function.
JP34498593A 1993-12-20 1993-12-20 Seismic isolation device Expired - Fee Related JP3324251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34498593A JP3324251B2 (en) 1993-12-20 1993-12-20 Seismic isolation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34498593A JP3324251B2 (en) 1993-12-20 1993-12-20 Seismic isolation device

Publications (2)

Publication Number Publication Date
JPH07173955A JPH07173955A (en) 1995-07-11
JP3324251B2 true JP3324251B2 (en) 2002-09-17

Family

ID=18373499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34498593A Expired - Fee Related JP3324251B2 (en) 1993-12-20 1993-12-20 Seismic isolation device

Country Status (1)

Country Link
JP (1) JP3324251B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102654172A (en) * 2012-05-08 2012-09-05 北京市北分仪器技术有限责任公司 Vibration attenuation device for vehicle-mounted instrument
CN104481046A (en) * 2014-12-03 2015-04-01 上海大学 Energy dissipation three-dimensional isolation bearing with oblique slide damping

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100685166B1 (en) * 2006-04-11 2007-02-22 (주)제이엔비이엔지 The air mounts with metal bellows
KR100823625B1 (en) * 2006-09-29 2008-04-21 주식회사 포스코건설 A Tuned Mass and Liquid Damper
CN103541429A (en) * 2013-11-06 2014-01-29 东南大学 Three-dimensional shock (vibration) insulation support with resistance to tension
CN108842923A (en) * 2018-07-23 2018-11-20 佛山科学技术学院 A kind of three-dimensional arrangement vibration isolator rubber bearing
CN112303165B (en) * 2019-07-31 2023-09-08 中国电力科学研究院有限公司 Shock insulation device and shock insulation method for transformer equipment
CN111945892B (en) * 2020-05-30 2021-08-13 海南大学 Vertical shock insulation/support that shakes
CN112376411B (en) * 2020-11-23 2021-09-21 常熟市宝德桥梁构件有限公司 Bridge beam supports with hierarchical shock-absorbing function
CN112555329B (en) * 2020-12-11 2022-03-22 苏州市通吉汽车零部件有限公司 Shock absorber spring with pressure-resistant structure and processing technology thereof
CN113718845B (en) * 2021-08-16 2022-08-23 南京工业大学 Double-deck subway station structure of cast-in-place interior assembly in outside

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102654172A (en) * 2012-05-08 2012-09-05 北京市北分仪器技术有限责任公司 Vibration attenuation device for vehicle-mounted instrument
CN104481046A (en) * 2014-12-03 2015-04-01 上海大学 Energy dissipation three-dimensional isolation bearing with oblique slide damping
CN104481046B (en) * 2014-12-03 2017-06-06 上海大学 A kind of oblique slip damping energy dissipation three-dimensional shock isolation support

Also Published As

Publication number Publication date
JPH07173955A (en) 1995-07-11

Similar Documents

Publication Publication Date Title
JP3324251B2 (en) Seismic isolation device
US5487534A (en) Laminated rubber vibration control device for structures
US5761856A (en) Vibration isolation apparatus
EP2518366B1 (en) Three parameter, multi-axis isolators
US6851529B2 (en) Multifunction vibration isolation strut
JPH11247488A (en) Brace damper
JP3287090B2 (en) Seismic isolation device
JP2007205543A (en) Vibration cancellation device
JP3114624B2 (en) Seismic isolation device
JP5192731B2 (en) 3D seismic isolation system
JP2807666B2 (en) Seismic isolation device
JP2002130370A (en) Seismic isolator
JP4545563B2 (en) Seismic isolation structure of building
JP2002371725A (en) Three-dimensional base isolation device
JPH03247872A (en) Vibration isolator for structure
JP2002013572A (en) Seismic isolator
JP3197746B2 (en) Anti-vibration device
JP3187202B2 (en) Structure damping device
JPH0913740A (en) Base isolated structure
JPH1026173A (en) Damper for vibration damping
JPH06307117A (en) Damping structure of mega-structure brace frame assembled with damper unit
JPS6263776A (en) Active earthquake-proof system of structure
JPH02153140A (en) Vibration-proof, vibration-controlling device
JP2000038774A (en) Base isolation element, building with same and base isolation element control method
JPH04331834A (en) Control type engine mount

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070705

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080705

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080705

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100705

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110705

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110705

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120705

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees