JP3322113B2 - Distributed power generation system - Google Patents

Distributed power generation system

Info

Publication number
JP3322113B2
JP3322113B2 JP03459396A JP3459396A JP3322113B2 JP 3322113 B2 JP3322113 B2 JP 3322113B2 JP 03459396 A JP03459396 A JP 03459396A JP 3459396 A JP3459396 A JP 3459396A JP 3322113 B2 JP3322113 B2 JP 3322113B2
Authority
JP
Japan
Prior art keywords
power
power generation
facility
equipment
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03459396A
Other languages
Japanese (ja)
Other versions
JPH09233705A (en
Inventor
忠彦 三吉
間所  学
弘次 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP03459396A priority Critical patent/JP3322113B2/en
Publication of JPH09233705A publication Critical patent/JPH09233705A/en
Application granted granted Critical
Publication of JP3322113B2 publication Critical patent/JP3322113B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、都市近郊に設置さ
れる中小火力発電設備や燃料電池のような、分散型発電
システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a distributed power generation system such as a small and medium-sized thermal power generation facility or a fuel cell installed near a city.

【0002】[0002]

【従来の技術】電力系統の負荷平準化対策として、負極
にナトリウム,正極に硫黄を用いたナトリウム−硫黄電
池などからなる電力貯蔵システムを変電所に設置して、
電力使用量の少ない夜間に電力を蓄え、電力使用量の多
い昼間に電力を放出する負荷平準化システムは、例えば
エネルギー・資源学会から1992年に発行された出版
物『エネルギー貯蔵システム』61〜81頁に見られる
ように公知である。一方、近年の電力事情では、昼間の
内でも特定の時間帯に必要とされる電力ピーク値の影響
が大きく、この電力ピーク値に応じて装備する発電設備
や送電設備,変電設備の容量が決まってくるため、平均
使用電力に対して過大な発電設備や送電設備,変電設備
の投資が必要とされ、これを避けるために電力ピーク対
策が急務とされている。この目的のために、中小火力発
電所などのような分散型発電所を都市近郊に設置して、
過大な電力が必要とされる昼間に主に運転することによ
り、電力ピーク対策と共に送電設備の投資抑制が図られ
ている。しかしながら、この方法によっても、昼間と夜
間の消費電力の違いのために、昼間のみ発電設備を運転
し、夜間は停止するなどの必要を生じ、設備の稼働率が
低く、発電設備が有効に利用できない問題点があった。
2. Description of the Related Art As a countermeasure against load leveling in a power system, a power storage system including a sodium-sulfur battery using sodium for a negative electrode and sulfur for a positive electrode is installed in a substation.
A load leveling system that stores power during the night when power consumption is low and discharges power during the day when power usage is high is described in, for example, the publication “Energy Storage System” 61-81 published by the Institute of Energy and Resources in 1992. It is known as seen on the page. On the other hand, in recent power situations, the power peak value required during a specific time period during the daytime has a large effect, and the capacity of the power generation equipment, transmission equipment, and substation equipment to be installed is determined according to this power peak value. Therefore, it is necessary to invest excessively in power generation facilities, transmission facilities, and substation facilities with respect to the average power consumption. In order to avoid this, it is urgently necessary to take measures against power peaks. For this purpose, decentralized power plants, such as small and medium thermal power plants, are installed near the city,
By mainly operating during the day when excessive power is required, power peaks are reduced and investment in power transmission equipment is reduced. However, even with this method, due to the difference in power consumption between daytime and nighttime, it is necessary to operate the power generation equipment only during the daytime and stop it during the nighttime. There was a problem that could not be done.

【0003】さらに、近年、電力会社以外のメーカの発
電設備を用いて、その余剰電力を電力系統へ供給し、電
力設備の有効利用を図る動きが活発である。しかしなが
ら、この場合にも発電メーカが自家用に使用した残りの
電力パターンと電力系統で必要とされる消費電力パター
ンとが必ずしも一致しないことや、電力系統で昼間必要
とされる電力ピークが夜間の約2倍とアンバランスが大
きいため、全体として電力設備に無駄を生じ、設備の稼
働率が充分には高くできない問題点があった。
[0003] In recent years, there has been an active movement to supply surplus power to a power system using power generation equipment of a maker other than a power company to effectively use the power equipment. However, even in this case, the remaining power pattern used by the power generation maker for private use does not always match the power consumption pattern required by the power system, and the power peak required by the power system during the daytime is approximately Since the imbalance is twice as large, there is a problem in that power equipment as a whole is wasted and the operation rate of the equipment cannot be sufficiently increased.

【0004】[0004]

【発明が解決しようとする課題】本発明の課題は、上記
従来技術の欠点を除き、設備の稼働率が高く、電力系統
の電力ピーク対策に有効な分散型発電システムを提供す
るにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a distributed power generation system which has a high operation rate of equipment and is effective in coping with a power peak in a power system, excluding the above-mentioned disadvantages of the prior art.

【0005】[0005]

【課題を解決するための手段】上記課題を達成するた
め、本発明の分散型発電システムは、発電設備と二次電
池よりなる電力貯蔵設備とを組み合わせた分散型発電シ
ステムにおいて、前記発電設備と前記電力貯蔵設備とが
電力変換器を介し接続されると共に、前記発電設備と
前記電力貯蔵設備に接続される電力変換器とのそれぞれ
が別々の変圧器とスイッチを介して電力系統へ接続され
ていることを特徴としている。なお、前記発電設備の夜
間の発電電力は前記電力系統へ供給される電力よりも大
きく、両者の差の電力が前記電力貯蔵設備へ貯蔵され、
貯蔵された電力が昼間の所定の時間帯に前記電力系統へ
供給される。また、前記発電設備は1日中ほぼ一定出力
で運転し、所定のパタ−ンに従って電力を前記電力系統
へ供給すると共に、夜間の余剰電力を前記電力設備に貯
え、貯蔵した電力は昼間に前記電力系統へ供給されるこ
とが特に望ましいまた、前記発電設備として火力発電
設備又は燃料電池を、前記電力貯蔵設備としてナトリウ
ム硫黄電池などの高温ナトリウム二次電池よりなる電力
貯蔵設備を用いることが特に望ましい。
In order to achieve the above object, a distributed power generation system according to the present invention is a distributed power generation system in which a power generation facility and a power storage facility comprising a secondary battery are combined. The power storage facility is connected via a power converter, and the power generation facility and
Each with a power converter connected to the power storage facility
Are connected to the grid via separate transformers and switches
It is characterized by having. Incidentally, the power generated at night by the power generation equipment is greater than the power supplied to the power system, the power difference between the two is stored in the power storage equipment,
The stored electric power is supplied to the electric power system during a predetermined time period in the daytime. The power generation equipment operates at a substantially constant output throughout the day, supplies power to the power system according to a predetermined pattern, stores excess power at night in the power equipment, and stores the stored power during the day. It is particularly desirable to be supplied to the power system . It is particularly preferable to use a thermal power generation facility or a fuel cell as the power generation facility, and use a power storage facility including a high-temperature sodium secondary battery such as a sodium-sulfur battery as the power storage facility.

【0006】さらに、前記電力貯蔵設備の電力貯蔵容量
(kWh)と前記電力変換器の入出力容量(kW)との
比が約7〜12の範囲内にあること、前記電力変換器の
入出力容量が前記発電設備の発電容量の約25%から約
75%の範囲にあることがシステム構成上有利である。
Further, the ratio between the power storage capacity (kWh) of the power storage facility and the input / output capacity (kW) of the power converter is within a range of about 7 to 12, and the input / output of the power converter is It is advantageous in terms of system configuration that the capacity is in the range of about 25% to about 75% of the power generation capacity of the power generation facility.

【0007】以下、本発明を図面を用いて説明する。Hereinafter, the present invention will be described with reference to the drawings.

【0008】図1及び図2は本発明の分散型発電システ
ムの構成例を示している。図1において、1は、例えば
10〜15万kW以下の火力発電設備や燃料電池などの
発電設備である。2は二次電池よりなる電力貯蔵設備で
あり、エネルギー密度が大きいためにシステムがコンパ
クトにできること、出力密度が大きくできるために電力
ピーク対応に適していること、サイクル寿命が長いため
に電力系統の信頼性を損なわないこと、自己放電がな
く、充放電効率が高いためにシステム効率が高くできる
こと、の理由で、活物質としてナトリウムと硫黄を用い
たナトリウム−硫黄電池などの高温ナトリウム二次電池
を用いるのが好適である。3は電力変換器であり、発電
設備1の電力の一部を交直変換して電力貯蔵設備2へ貯
蔵したり、貯蔵された電力を直交変換して電力系統7へ
供給したりする役目を果たしている。4は切り替えのた
めの遮断器などのスイッチである。また、5は昇圧のた
めの変圧器で、遮断器などのスイッチ6を介して電力系
統7と接続されており、発電設備1や電力貯蔵設備2の
電力を電力系統7へ供給する役目を果たしている。さら
に、8は全体のシステムを制御するための制御・保護装
置である。
FIGS. 1 and 2 show an example of the configuration of a distributed power generation system according to the present invention. In FIG. 1, reference numeral 1 denotes a power generation facility such as a thermal power generation facility or a fuel cell of 100 to 150,000 kW or less. Numeral 2 is a power storage facility composed of a secondary battery. The system can be made compact because of its high energy density, is suitable for peak power because of its high output density, and has a long cycle life. A high-temperature sodium secondary battery such as a sodium-sulfur battery using sodium and sulfur as active materials is used because reliability is not impaired, there is no self-discharge, and system efficiency can be increased due to high charge / discharge efficiency. It is preferred to use. Reference numeral 3 denotes a power converter, which serves to alternately and directly convert a part of the power of the power generation facility 1 and store the power in the power storage facility 2 or to orthogonally transform the stored power and supply it to the power system 7. I have. Reference numeral 4 denotes a switch such as a circuit breaker for switching. Reference numeral 5 denotes a transformer for boosting, which is connected to a power system 7 via a switch 6 such as a circuit breaker, and serves to supply power of the power generation facility 1 and the power storage facility 2 to the power system 7. I have. Reference numeral 8 denotes a control / protection device for controlling the entire system.

【0009】図2においても、図1と同符号の部品は同
じ内容を示している。この図においては、発電設備1と
電力変換器3のそれぞれに変圧器5とスイッチ6とが接
続され、電力系統7に繋がっている。また、図3,図4
は本発明の分散型発電システムの働きの例を示してい
る。図3の例では、実線で示されるように、発電設備は
1日中ほぼ一定の出力で発電される。夜間には電力系統
で必要とされる電力が少ないため、電力系統へ供給され
る電力は破線のようになり、実線と破線との差の電力量
Aが電力貯蔵設備へ蓄えられる。一方、昼間には多量の
電力が必要とされるため、実線で示された発電設備から
の電力と、電力貯蔵設備からの電力Bとを加えた破線で
示された電力が電力系統へ供給される。また、図4の例
では、実線で示されるように、発電設備は夜間には出力
をしぼって運転される。また、昼間には一部電力は図示
されていない負荷によって自家消費され、残りの電力と
電力貯蔵設備からの電力Bが電力系統へ供給される。一
方、夜間には自家消費はなく、発電された電力と電力系
統へ供給される電力の差Aが電力貯蔵設備に蓄えられ
る。蓄えられた電力は、昼間の電力消費の多い時間帯に
電力系統へ供給され(図のB)、電力ピーク対策に有効
に寄与する。
In FIG. 2, parts having the same reference numerals as those in FIG. 1 indicate the same contents. In this figure, a transformer 5 and a switch 6 are connected to a power generation facility 1 and a power converter 3, respectively, and are connected to a power system 7. 3 and 4
Shows an example of the operation of the distributed power generation system of the present invention. In the example of FIG. 3, as shown by the solid line, the power generation facility generates power at a substantially constant output throughout the day. At night, since the power required by the power system is small, the power supplied to the power system is as shown by the broken line, and the power amount A, which is the difference between the solid line and the broken line, is stored in the power storage facility. On the other hand, since a large amount of power is required during the day, the power indicated by the broken line, which is the sum of the power from the power generation equipment indicated by the solid line and the power B from the power storage equipment, is supplied to the power system. You. In addition, in the example of FIG. 4, as shown by the solid line, the power generation facility is operated with a reduced output at night. In the daytime, part of the power is consumed by a load (not shown), and the remaining power and the power B from the power storage facility are supplied to the power system. On the other hand, there is no private consumption at night, and the difference A between the generated power and the power supplied to the power system is stored in the power storage facility. The stored electric power is supplied to the electric power system during the daytime when power consumption is high (B in the figure), and effectively contributes to measures against electric power peaks.

【0010】さらに、図5,図6は発電設備して燃料電
池を用いた分散型発電システムの構成例を示しており、
図1,図2と同符号の設備は同じ内容を示している。こ
れらの例では、電力変換器3としては直流−直流変換器
が用いられると共に、発電設備1と変圧器5の間に第二
の電力変換器9が設けられている。また、図6の例で
は、電力貯蔵設備2と変圧器5との間に第三の電力変換
器10が設けられており、これら第二,第三の電力変換
器は、発電設備1や電力貯蔵設備2から供給される直流
電力を交流電力に変換して、変圧器5へ供給している。
FIGS. 5 and 6 show examples of the configuration of a distributed power generation system using a fuel cell as a power generation facility.
1 and 2 have the same contents. In these examples, a DC-DC converter is used as the power converter 3, and a second power converter 9 is provided between the power generation facility 1 and the transformer 5. Further, in the example of FIG. 6, a third power converter 10 is provided between the power storage facility 2 and the transformer 5, and these second and third power converters The DC power supplied from the storage facility 2 is converted into AC power and supplied to the transformer 5.

【0011】本発明の分散型発電システムにおいては、
夜間には電力系統へ供給される電力よりも大きな電力が
発電設備で発電され、両者の差の電力が電力貯蔵設備へ
貯蔵され、貯蔵された電力が昼間の所定の時間帯に前記
電力系統へ供給されるため、電力貯蔵設備を設けない場
合に比べて、発電設備の稼働率は向上し、また、全体と
しての電力供給パターンが昼間の電力ピークに対処する
のに有効なパターンとなる。なお、発電設備は1日中ほ
ぼ一定の出力で運転されることが望ましく、この場合発
電設備の稼働率は特に高くなり、また、電力貯蔵設備か
ら昼間の電力消費の多い時間帯に電力を供給することに
より、電力ピークに対して有効に対処できる。さらに、
発電設備が適正範囲のほぼ一定の出力で連続運転される
場合、発電効率が高く、且つ、発電設備の寿命が長くな
る。特に、発電設備として火力発電設備や燃料電池を用
いる場合、設備の起動・停止には複雑な制御や時間を必
要とし、設備の温度変化やボイラの点火装置のオン・オ
フが効率の低下や寿命低下をもたらし易いが、発電設備
を連続運転する場合には、一定出力で連続運転する場合
はもちろん、夜間に出力をしぼって連続運転する場合に
も、このような問題は起こりにくい。なお、発電設備と
して火力発電設備や溶融塩燃料電池,固体電解質燃料電
池を用いた場合、その排ガスの温度を利用してナトリウ
ム硫黄電池などの高温ナトリウム二次電池を加熱・保温
すれば、電気ヒータを用いて電池を加熱・保温する場合
に比べて、システムの効率が高くできるという利点もあ
る。また、電力会社以外のメーカの発電設備において
も、夜間の余剰電力を昼間電力系統へ供給することによ
り、稼働率を高め、設備の有効利用が図られる。
In the distributed power generation system of the present invention,
At night, power greater than the power supplied to the power system is generated by the power generation facility, the power difference between the two is stored in the power storage facility, and the stored power is transmitted to the power system at a predetermined time in daytime. Since the power is supplied, the operation rate of the power generation facility is improved as compared with the case where no power storage facility is provided, and the power supply pattern as a whole is an effective pattern for coping with the daytime power peak. It is desirable that the power generation equipment be operated at a substantially constant output throughout the day. In this case, the operation rate of the power generation equipment becomes particularly high, and power is supplied from the power storage equipment during the daytime when power consumption is high. By doing so, it is possible to effectively deal with power peaks. further,
When the power generation equipment is continuously operated with a substantially constant output in an appropriate range, the power generation efficiency is high and the life of the power generation equipment is prolonged. In particular, when using thermal power generation equipment or fuel cells as power generation equipment, starting and stopping the equipment requires complicated control and time, and temperature changes in the equipment and turning on and off the boiler's ignition device may reduce the efficiency or shorten the service life. Such a problem is not likely to occur when the power generation equipment is continuously operated with a constant output, but also when the power generation equipment is continuously operated with the output squeezed at night. When a thermal power generation facility, a molten salt fuel cell, or a solid electrolyte fuel cell is used as a power generation facility, if the temperature of the exhaust gas is used to heat and maintain a high-temperature sodium secondary battery such as a sodium sulfur battery, an electric heater is used. There is also an advantage that the efficiency of the system can be increased as compared with the case where the battery is heated and kept warm using the method. In addition, even in a power generation facility of a maker other than the power company, by supplying surplus power at night to the power system during the day, the operation rate is increased and the facility is effectively used.

【0012】さらに、発電設備と電力貯蔵設備とが電力
変換器を介して直接接続されていて、発電設備から電力
貯蔵設備への送電に電力系統を利用する必要がないた
め、分散型発電システムの制御が簡単で、外乱を受けに
くく、電力の送電ロスが少ないという利点がある。ま
た、本発明の分散型発電システムは電力の消費地に近い
都市近郊に設置されることができるため、変電所へ電力
貯蔵設備を設置したシステムに比べて、変電所から消費
地までの送電設備が節約できること、電力の消費地近く
で消費パターンに沿った電力が供給されるため、電力系
統の制御が容易で、その電圧や周波数が安定に保たれ易
い利点もある。特に、電圧制御に有効な無効電力制御は
制御範囲が比較的狭い範囲に限定されること、遠方から
有効電力制御する場合、送電線などによるロスが問題に
なることから、発電設備と電力貯蔵設備を組合せて、電
力の消費地近傍へ設置することのメリットは大きい。
Further, since the power generation equipment and the electric power storage equipment are directly connected via the power converter, and there is no need to use the electric power system for the transmission of electric power from the electric power generation equipment to the electric power storage equipment, the distributed power generation system has There are advantages that control is simple, disturbance is less likely, and power transmission loss is small. Further, since the distributed power generation system of the present invention can be installed in a suburb near a power consumption area, compared to a system in which power storage equipment is installed in a substation, the power transmission equipment from the substation to the consumption area can be used. In addition, since power is supplied in accordance with the consumption pattern near the power consumption area, the power system can be easily controlled, and its voltage and frequency can be easily kept stable. In particular, the reactive power control effective for voltage control is limited to a relatively narrow control range, and when active power control is performed from a long distance, loss due to transmission lines etc. becomes a problem. There is a great merit of installing in the vicinity of the power consumption area by combining.

【0013】電力系統の制御性を高める観点からは、図
2に示すように、発電設備と電力変換器とを別々に電力
系統へ接続するのが望ましい。こうすることにより、両
者が独立に制御でき、きめこまかな制御が可能となる。
特に、電力変換器に有効電力制御の他に無効電力制御の
機能を持たせることにより、例えば、発電設備で有効電
力を供給しながら、電力変換器でそれと独立に無効電力
制御するなどの方法により、電力系統の電圧や周波数な
どの安定化が有効に行える。もちろん、この場合にも分
散型発電設備を電力の消費地近くの都市近郊に設置する
ことにより、電力系統の電圧や周波数の制御が容易で、
有効なものとなる。なお、図1の構成では変圧器が一台
で済むため、システムの構成が簡単で、設置面積が少な
くて済む利点がある。
From the viewpoint of improving the controllability of the power system, it is desirable to connect the power generation equipment and the power converter separately to the power system as shown in FIG. By doing so, both can be controlled independently, and fine control can be performed.
In particular, by providing the power converter with a function of reactive power control in addition to the active power control, for example, while supplying active power in the power generation equipment, the power converter to control the reactive power independently from such a method Thus, stabilization of the voltage and frequency of the power system can be effectively performed. Of course, even in this case, by installing the distributed power generation facilities near the city where the power is consumed, it is easy to control the voltage and frequency of the power system,
It will be effective. In the configuration shown in FIG. 1, since only one transformer is required, there is an advantage that the configuration of the system is simple and the installation area is small.

【0014】電力の消費パターンは季節,場所,天候な
どによって変化するが、検討の結果、電力貯蔵設備の電
力貯蔵能力(kWh)と電力変換器の入出力容量(k
W)との比を約7から約12の間に設定すれば、電力貯
蔵設備と電力変換器の能力をほぼ過不足なく使って、有
効に電力ピークに対応でき、設備能力に無駄が出にくい
ことが分かった。両者の比が7よりも小さいと電力変換
器の能力に無駄を生じ、逆に両者の比が12よりも大き
いと電力貯蔵設備の能力に無駄を生じ易い。なお、電力
変換器の能力は直交変換あるいは交直変換のうちの大き
い方の電力に合わせる必要がある。また、普通の電力消
費パターンでは、夜間の必要電力は昼間の電力ピークの
約50%であるが、この値も場所,季節,気温などによ
って変動する。この変動に対処するには、発電設備を1
日中ほぼ一定の出力で運転する場合、電力変換器の入出
力容量を発電設備の発電容量の約25%から約75%の
範囲にすれば良く、こうすることにより、消費パターン
に沿った電力を各々の分散型発電システムから供給でき
る。電力変換器の容量が発電容量の25%以下の場合に
は発電設備の能力が無駄になり、逆に75%より大きい
と電力変換器の能力が無駄になり易い。このように、電
力貯蔵装置の電力貯蔵能力,電力変換器の入出力容量,
発電設備の発電容量を本発明の範囲内に選ぶことによ
り、設備能力に無駄が出にくく、従って比較的コンパク
トな設備で、電力ピーク対策が有効に行える。なお、図
5,図6の構成においては、直流−直流電力変換器3の
入出力容量と電力貯蔵設備の電力貯蔵能力との比、又
は、発電設備の発電容量の関係を図1と図2と同様に上
述の範囲とすれば良い。
The power consumption pattern changes depending on the season, place, weather, etc. As a result of the examination, the power storage capacity (kWh) of the power storage equipment and the input / output capacity (k) of the power converter are examined.
By setting the ratio of W) to about 7 to about 12, the capacity of the power storage facility and the power converter can be used with almost no excess and deficiency, effectively responding to the power peak, and the facility capacity is not wasted. I understood that. If the ratio of the two is smaller than 7, the capacity of the power converter is wasted, and if the ratio of both is larger than 12, the capacity of the power storage facility is easily wasted. It is necessary to adjust the capacity of the power converter to the larger one of the orthogonal transform and the AC / DC transform. In a normal power consumption pattern, the required power at night is about 50% of the peak power at daytime, but this value also varies depending on the location, season, temperature, and the like. To cope with this change, one power generation facility must be installed.
When operating at a substantially constant output during the day, the input / output capacity of the power converter may be in the range of about 25% to about 75% of the power generation capacity of the power generation equipment. Can be supplied from each distributed power generation system. When the capacity of the power converter is 25% or less of the power generation capacity, the capacity of the power generation equipment is wasted, and when it is larger than 75%, the capacity of the power converter is easily wasted. Thus, the power storage capacity of the power storage device, the input / output capacity of the power converter,
By selecting the power generation capacity of the power generation equipment within the scope of the present invention, the power of the equipment is less likely to be wasted, so that the power peak countermeasure can be effectively performed with relatively compact equipment. 5 and 6, the relationship between the input / output capacity of the DC-DC power converter 3 and the power storage capacity of the power storage facility, or the relationship between the power generation capacity of the power generation facility and FIGS. The range may be set in the same manner as described above.

【0015】[0015]

【発明の実施の形態】図2に示す構成の分散型発電シス
テムにおいて、発電設備として出力2万kWの火力発電
設備,電力変換器として容量0.5万kW のインバー
タ,電力貯蔵設備として電力貯蔵容量約3.5万kWh
のナトリウム硫黄電池モジュールを用い、年間でピーク
電力が問題となる100〜200日の平日には24h中
2万kWを発電し、発電設備からは変圧器を介して昼間
16hは2万kWを電力系統へ供給し、夜間8hは1.
5万kWを電力系統へ、0.5万kWは電力変換器を介
して電力貯蔵設備へ供給する。なお、電力変換器の効率
は普通片側約95%,往復で約90%で、ナトリウム硫
黄電池モジュールの効率が約90%であるため、電力貯
蔵量は約3.4 万kWhとなる。蓄えられた電力は昼間
12hの間放電され、電力変換器と変圧器を介して、約
0.3 万kWが電力系統へ供給される。なお、この場
合、休日には電力使用量が少ないため、約1.5 万kW
が1日中発電され、そのまま電力系統へ供給される。ま
た、電力使用状況によっては、年間の特定の日には電力
貯蔵設備に電力を蓄えることなく、昼間16hは2万k
W,夜間8hは1.5 万kWを発電し、そのまま電力系
統へ供給する運転パターンも可能である。但し、設備の
有効利用と電力ピーク対策の観点からはこのような日は
できるだけ設けないことが望ましく、発電設備の能力を
有効に使って定格出力で発電を継続し、夜間の余剰電力
は貯蔵して、昼間に放電する運転モードが望ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In a distributed power generation system having the configuration shown in FIG. 2, a thermal power generation facility having an output of 20,000 kW as a power generation facility, an inverter having a capacity of 0.5000 kW as a power converter, and a power storage facility as a power storage facility. Capacity about 35,000 kWh
Using a sodium-sulfur battery module of this type, generates 20,000 kW out of 24 hours on weekdays of 100 to 200 days when peak power is a problem, and 20,000 kW during the daytime 16 hours from a power generation facility via a transformer The system is supplied to the grid for 1.
50,000 kW is supplied to the electric power system, and 0.50000 kW is supplied to the electric power storage equipment via the electric power converter. The efficiency of the power converter is usually about 95% on one side and about 90% for reciprocation. Since the efficiency of the sodium-sulfur battery module is about 90%, the power storage amount is about 34,000 kWh. The stored electric power is discharged for 12 hours in the daytime, and about 0.3000 kW is supplied to the electric power system via the electric power converter and the transformer. In this case, since the power consumption is low on holidays, about 15,000 kW
Is generated throughout the day and supplied to the power system as it is. In addition, depending on the state of power use, the power storage facility does not store power on certain days of the year, and 20,000 k
It is also possible to generate an operation pattern of generating 15,000 kW in W for 8 hours at night and supplying the power to the power system as it is. However, from the viewpoint of effective use of facilities and measures against power peaks, it is desirable to avoid such days as much as possible.Efficiently use the power of the power generation facilities to continue power generation at the rated output, and store excess power at night. Thus, an operation mode in which discharge occurs during the day is desirable.

【0016】また、同じく図2に示す構成の分散型発電
システムにおいて、発電設備として出力1万kWの火力
発電設備,変換器として容量0.7万 kWのインバー
タ,電力貯蔵設備として電力貯蔵容量約7.2 万kWh
のナトリウム硫黄電池モジュールを用い、年間で特にピ
ーク電力が問題となる100〜200日の平日には24h
中1万kWを発電し、発電設備からは昼間12hは1万
kW,夜間12hは0.3万kWを電力系統へ、0.7 万
kWを電力貯蔵設備へ供給する。電力貯蔵装置に貯蔵さ
れた電力量約7.2万kWhは昼間12hの間放電さ
れ、約0.6万kWの電力が電力系統へ供給される。な
おこの場合にも、休日には1日中0.3 万kWを発電
し、そのまま電力系統へ供給することができる。
Also, in the distributed power generation system having the same configuration as shown in FIG. 2, a thermal power generation facility having an output of 10,000 kW as a power generation facility, an inverter having a capacity of 0.7000 kW as a converter, and a power storage capacity of about 0.70 kW as a power storage facility. 720,000 kWh
24 hours on 100-200 weekdays when peak power is a problem especially during the year.
It generates 10,000 kW of electricity, and supplies 10,000 kW to the power grid during the daytime 12h and 0.30 kW during the nighttime 12h to the power storage facility from the power generation facility. Approximately 720,000 kWh of electric power stored in the power storage device is discharged for 12 hours in the daytime, and approximately 60,000 kW of electric power is supplied to the power system. Also in this case, it is possible to generate 0.3000 kW all day on holidays and supply it to the power system as it is.

【0017】[0017]

【発明の効果】本発明により、発電設備を連続運転して
設備の稼働率を高めながら、目的とする消費パターンに
応じた電力を電力系統へ供給できる、電力ピーク対策に
有効な分散型発電システムが実現できる。また、電力貯
蔵装置の電力貯蔵能力,電力変換器の入出力容量,発電
設備の発電容量を本発明の範囲内に選ぶことにより、設
備能力に無駄が出にくく、従って比較的コンパクトな設
備で、電力ピーク対策が有効に行える。
According to the present invention, a distributed power generation system that can supply power according to a target consumption pattern to a power system while continuously operating power generation equipment to increase the operation rate of the equipment, and is effective for power peak countermeasures. Can be realized. In addition, by selecting the power storage capacity of the power storage device, the input / output capacity of the power converter, and the power generation capacity of the power generation equipment within the scope of the present invention, the power of the equipment is hardly wasted, and thus the equipment is relatively compact. Power peak measures can be effectively implemented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の分散型発電システムの構成例を示す
図。
FIG. 1 is a diagram showing a configuration example of a distributed power generation system of the present invention.

【図2】本発明の分散型発電システムの構成例を示す
図。
FIG. 2 is a diagram showing a configuration example of a distributed power generation system of the present invention.

【図3】本発明の分散型発電システムの働きの例を示す
図。
FIG. 3 is a diagram showing an example of the operation of the distributed power generation system of the present invention.

【図4】本発明の分散型発電システムの働きの例を示す
図。
FIG. 4 is a diagram showing an example of the operation of the distributed power generation system of the present invention.

【図5】本発明の分散型発電システムの構成例を示す
図。
FIG. 5 is a diagram showing a configuration example of a distributed power generation system of the present invention.

【図6】本発明の分散型発電システムの構成例を示す
図。
FIG. 6 is a diagram showing a configuration example of a distributed power generation system of the present invention.

【符号の説明】[Explanation of symbols]

1…発電設備、2…電力貯蔵設備、3…電力変換器、
4,6…スイッチ、5…変圧器、7…電力系統、8…制
御・保護装置。
1. Power generation facilities, 2. Power storage facilities, 3. Power converters,
4, 6 switch, 5 transformer, 7 power system, 8 control / protection device.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−176792(JP,A) 特開 平2−311130(JP,A) 特開 平8−23634(JP,A) (58)調査した分野(Int.Cl.7,DB名) H02J 3/00 - 5/00 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-6-176792 (JP, A) JP-A-2-311130 (JP, A) JP-A-8-23634 (JP, A) (58) Field (Int.Cl. 7 , DB name) H02J 3/00-5/00

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】発電設備と二次電池からなる電力貯蔵設備
とを組み合わせた分散型発電システムにおいて、前記発
電設備と前記電力貯蔵設備とが電力変換器を介して接続
されると共に、前記発電設備と前記電力貯蔵設備に接続
される電力変換器とのそれぞれが別々の変圧器とスイッ
チを介して電力系統へ接続されていることを特徴とする
分散型発電システム。
In a distributed power generation system combining a power generation facility and a power storage facility comprising a secondary battery, the power generation facility and the power storage facility are connected via a power converter, and the power generation facility is connected to the power storage facility. And connected to the power storage facility
Power converters each have a separate transformer and switch
A decentralized power generation system characterized by being connected to a power system via a power switch .
【請求項2】前記発電設備と前記電力貯蔵設備とが電力
変換器を介して接続されると共に、変圧器とスイッチを
介して電力系統へ接続されており、前記電力貯蔵設備の
電力貯蔵容量(kWh)と前記電力変換器の入出力容量
(kW)との比が7ないし12の範囲にあることを特徴
とする請求項1に記載の分散型発電システム。
2. The method according to claim 1 , wherein the power generation equipment and the power storage equipment
Connected via a converter and connected to a transformer and switch
Connected to the power system via the power storage facility.
Power storage capacity (kWh) and input / output capacity of the power converter
(KW) is in the range of 7 to 12.
The distributed power generation system according to claim 1, wherein
【請求項3】前記発電設備と前記電力貯蔵設備とが電力
変換器を介して接続されると共に、変圧器とスイッチを
介して電力系統へ接続されており、前記電力変換器の入
出力容量が前記発電設備の発電容量の25ないし75%
の範囲にあることを特徴とする請求項1に記載の分散型
発電システム。
3. The electric power generating equipment and the electric power storage equipment have electric power.
Connected via a converter and connected to a transformer and switch
Connected to the power system through the input of the power converter.
The output capacity is 25 to 75% of the power generation capacity of the power generation equipment
2. The decentralized type according to claim 1, wherein
Power generation system.
【請求項4】前記発電設備の夜間の発電電力が前記電力
系統へ供給される電力よりも大きく、両者の差の電力が
前記電力貯蔵設備へ貯蔵され、貯蔵された電力が昼間に
前記電力系統へ供給されることを特徴とする請求項1,
2あるいは3のいずれかに記載の分散型発電システム。
4. The electric power generated by the power generation equipment at night
Is greater than the power supplied to the grid, and the difference between the two is
The power is stored in the power storage facility, and the stored power is used during the daytime.
The electric power system is supplied to the power system.
4. The distributed power generation system according to any one of 2 and 3.
【請求項5】前記発電設備を一日中ほぼ一定出力で運転
し、所定のパタ−ンに従って電力を前記電力系統へ供給
すると共に、夜間の余剰電力を前記電力貯蔵設備に蓄
え、貯蔵された電力を昼間に前記電力系統へ供給するこ
とを特徴とする請求項1,2あるいは3のいずれかに記
載の分散型発電システム。
5. The power generator is operated at a substantially constant output throughout the day.
And supplies power to the power system according to a predetermined pattern.
And store excess power at night in the power storage facility.
Supply the stored power to the power grid during the day.
The method according to claim 1, 2, or 3,
On-board distributed power generation system.
【請求項6】前記発電設備が火力発電設備又は燃料電池
であり、前記電力貯蔵設備が高温ナ トリウム二次電池よ
りなる電力貯蔵設備であることを特徴とする請求項1な
いし5のいずれかに記載の分散型発電システム。
6. The thermal power generation facility or the fuel cell
, And the electric power storage equipment is high-temperature sodium secondary battery
2. The power storage facility according to claim 1,
6. The distributed power generation system according to any one of the chairs 5.
JP03459396A 1996-02-22 1996-02-22 Distributed power generation system Expired - Fee Related JP3322113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03459396A JP3322113B2 (en) 1996-02-22 1996-02-22 Distributed power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03459396A JP3322113B2 (en) 1996-02-22 1996-02-22 Distributed power generation system

Publications (2)

Publication Number Publication Date
JPH09233705A JPH09233705A (en) 1997-09-05
JP3322113B2 true JP3322113B2 (en) 2002-09-09

Family

ID=12418637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03459396A Expired - Fee Related JP3322113B2 (en) 1996-02-22 1996-02-22 Distributed power generation system

Country Status (1)

Country Link
JP (1) JP3322113B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003052132A (en) * 2001-08-03 2003-02-21 Sumitomo Electric Ind Ltd Operation method for power supply system
JPWO2003034523A1 (en) * 2001-10-11 2005-02-03 株式会社日立製作所 Home fuel cell system
DE102012204220A1 (en) * 2012-03-16 2013-09-19 Wobben Properties Gmbh A method of controlling an arrangement for feeding electrical power to a utility grid
US11442483B2 (en) * 2016-03-04 2022-09-13 Hyaxiom, Inc. Fuel cell power plant with real and reactive power modes
DE102016125953A1 (en) 2016-12-30 2018-07-05 Wobben Properties Gmbh Method for operating a wind farm

Also Published As

Publication number Publication date
JPH09233705A (en) 1997-09-05

Similar Documents

Publication Publication Date Title
JP4765162B2 (en) Power storage type solar power generation system
JP2016042787A (en) Electro-thermal cogeneration system with power storage device
WO2003034523A1 (en) Home-use fuel cell system
PT1323222E (en) Island network and method for operation of an island network
PL210291B1 (en) Separate network and method for operating a separate network
WO2002005403A1 (en) Grid-linked power supply
JP2004194485A (en) Energy system
JP2001112176A (en) Private power generation facility
JP3322113B2 (en) Distributed power generation system
JPH1155858A (en) Incoming and transforming station for private use
JP5469120B2 (en) Power generation output control system and control method for distributed power supply
JP4746165B2 (en) Energy supply equipment
JPH05252671A (en) Control system for photovoltaic power generation
JP2003092831A (en) Power supply system and its operation method
JPH11332125A (en) Residential home power supply system
CN114844099A (en) Battery power supplementing method and terminal based on light storage diesel micro-grid system
CN210350790U (en) Wind power, photoelectricity and generator coupled intelligent micro-grid structure with multi-energy complementation
JPH09312935A (en) Power storage type power supply system and power storage method
JP3688744B2 (en) Solar power plant
JP3810887B2 (en) Auxiliary power supply combined power supply system
JPH0374147A (en) Solar generator system
JPH06121470A (en) Power storage system
JPH04308432A (en) Dc power supply system
Kiyohito et al. INTRODUCTION OF POWER STORAGE FACILITIES TO SEWERAGE SYSTEMS
GB2624387A (en) Power distribution system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees