JP2004194485A - Energy system - Google Patents

Energy system Download PDF

Info

Publication number
JP2004194485A
JP2004194485A JP2002362746A JP2002362746A JP2004194485A JP 2004194485 A JP2004194485 A JP 2004194485A JP 2002362746 A JP2002362746 A JP 2002362746A JP 2002362746 A JP2002362746 A JP 2002362746A JP 2004194485 A JP2004194485 A JP 2004194485A
Authority
JP
Japan
Prior art keywords
power
hot water
heat pump
commercial
water storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002362746A
Other languages
Japanese (ja)
Inventor
Yoshimi Miyamoto
好美 宮本
Yoshihiko Kenmori
仁彦 権守
Kenji Kubo
謙二 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Home and Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Home and Life Solutions Inc filed Critical Hitachi Home and Life Solutions Inc
Priority to JP2002362746A priority Critical patent/JP2004194485A/en
Publication of JP2004194485A publication Critical patent/JP2004194485A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Photovoltaic Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Fuel Cell (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an energy system that reduces a reverse tidal current that flows into a commercial power supply side and utilizes generated energy highly efficiently. <P>SOLUTION: This energy system comprises a generating device 1 that is connected in such a way as to be capable of outputting by being systematically interconnected with a commercial power supply 5, a heat-pump storage water heater 8, and an electric load 14. An output power monitoring means 6 is provided that is installed between the generating device and the commercial power supply and monitors the output power of the generating device. A system power monitoring means 16 is provided that is installed between a system, to which the heat pump storage water heater and the electric load are connected, and the commercial power supply, and monitors the power of the system. An output power monitored value and a system power monitored one are compared. When a power difference between the output power monitored value and the system power monitored one reaches a preset value, the water heater 8 is operated on input power almost corresponding to the power difference. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は商用電源に系統連系出力する発電装置を用いたエネルギーシステムに係り、商用電源側への逆潮流の電力を低減したエネルギーシステムに関する。
【0002】
【従来の技術】
太陽光発電システムや燃料電池システム等の発電装置では、発電した電力を商用電源に系統連系させて出力するようになっているが、発電量の変動等により、商用電源側に逆潮流させる電力量が変動するため、それにより系統の電圧が変動する可能性がある。
【0003】
系統電圧の変動防止の従来技術として、発電装置で発電した電力を蓄える蓄電装置に設け、直流電力の出力変動分を充放電手段により調整して商用電源系統への逆潮流の急激な変動を抑制する構成がある(例えば、特許文献1参照)。
【0004】
【特許文献1】
特開2001−5543
【0005】
【発明が解決しようとする課題】
しかしながら、上述した構成の発電装置では、系統への逆潮流の急激な変動を抑制することはできるが、系統への逆潮流を低減するものではないため、このような発電装置が局所集中的に設置された場合には、系統への逆潮流が特定の配電系統に集中連系出力されるため、系統への影響が生じる可能性がある。今後、このような発電装置は急激な普及が予想され、集中連系に因る系統への悪影響は早急に解決すべき課題である。
【0006】
また、前記特許文献1に示されるように蓄電池に一旦貯める場合、充放電時にチョッパによる電圧、電流の変換制御が必要であり、このチョッパによる損失が発生し、結果的に発電エネルギーを系統連系出力する場合の変換効率が低下してしまうという課題がある。
【0007】
本発明の目的は、商用電源側へ流れ出す逆潮流を低減し、且つ発電されたエネルギーを高効率で活用するエネルギーシステムを提供することにある。
【0008】
【課題を解決すための手段】
前記課題を解決するために、本発明は主として次のような構成を採用する。
商用電源に系統連系して出力し得るように前記商用電源に接続された発電装置と、前記商用電源に接続されたヒートポンプ貯湯式給湯装置と、前記商用電源に接続された電力負荷と、を備えたエネルギーシステムであって、
前記発電装置と前記商用電源との間に設けられて前記発電装置の出力電力をモニターする出力電力モニター手段を設け、
前記ヒートポンプ貯湯式給湯装置及び前記電力負荷を接続した系統と前記商用電源との間に設けられて前記系統の電力をモニターする系統電力モニター手段を設け、
前記出力電力モニター手段の出力電力モニター値と前記系統電力モニター手段の系統電力モニター値とを比較し、
前記出力電力モニター値と前記系統電力モニター値の差電力が予め設定した所定値に達した場合に、前記ヒートポンプ貯湯式給湯装置を前記差電力にほぼ対応した入力電力で運転させる構成である。
【0009】
また、商用電源に系統連系して出力し得るように前記商用電源に接続された発電装置と、前記商用電源に接続されたヒートポンプ貯湯式給湯装置と、前記商用電源に接続された電力負荷と、を備えたエネルギーシステムであって、
前記ヒートポンプ貯湯式給湯装置及び前記電力負荷を接続した系統と前記発電装置の出力との連結点が前記商用電源に接続され、
前記連結点と前記商用電源との間に設けられて前記系統の電力をモニターする系統電力モニター手段を設け、
前記系統電力モニター手段の系統電力モニター値を監視し、
前記系統電力モニター値がゼロ近傍になった場合に、前記ヒートポンプ貯湯式給湯装置を前記発電装置の出力電力と前記電力負荷の消費電力の差電力にほぼ対応した入力電力で運転させる構成である。
【0010】
このような構成を採用することによって、商用電源側へ流れ出す逆潮流を低減又は無くし、且つ発電されたエネルギーをヒートポンプ貯湯式給湯装置に適用することによって高効率で発電エネルギーの活用を図ることができる。
【0011】
【発明の実施の形態】
本発明の実施形態に係るエネルギーシステムについて、図面を参照しながら以下説明する。図1は本発明の第1の実施形態に係るエネルギーシステムの全体構成を示す図であり、図2は太陽光発電システムによる発電電力と商用電源から供給されて家庭で消費される系統電力即ち全体消費電力の時間経過の一例を示す図であり、図3は本実施形態に関するヒートポンプ貯湯式給湯装置への入力電力と、太陽光発電システムによる発電電力と家庭の全体消費電力との差電力と、商用電源側への逆潮流電力と、の関係を時間経過で示す図であり、図4は本実施形態に関するヒートポンプ式貯湯式給湯装置のCOP(Coefficient Of Performance:成績係数)と外気温度の関係を示す図である。
【0012】
図1に示す本発明の第1の実施形態は一般家庭に設置した例である。1は発電装置としての太陽光発電システムであり、太陽電池発電装置2と、直流を交流に変換して系統連系出力するインバータ3と、系統連系保護継電器4を具備し、この系統連系継電器4の一端は出力電力モニター手段6を介して電力量計7に接続してあり、この電力量計7は商用電源5に接続している。なお、この保護継電器4は系統電力に異常があった場合等に発電システムからの発電電力を遮断するために規定された継電器である。
【0013】
また、ヒートポンプ貯湯式給湯装置8は、ヒートポンプ加熱手段9と、このヒートポンプ加熱手段9に電力を供給する電源部10と、係る電源部10への入力を入・切する電源スイッチ11と、ヒートポンプ加熱手段9により加熱製造された湯を蓄える貯湯槽12と、を具備し、貯湯槽12には給湯負荷13が配管されている。ここで、ヒートポンプ式貯湯式給湯装置8は、定格の消費電力のみで稼働するようなものではなくて、例えば、太陽光発電システムによる変動する発電電力に適宜に合わせるように制御された電力で稼働し得るものである。
【0014】
また、商用電源5は電力量計15及び系統からの電力をモニターする系統電力モニター手段16を介して、電力負荷14及びヒートポンプ貯湯式給湯装置8に接続している。系統電力モニター手段16は系統電圧モニター手段と系統電流モニター手段とを内蔵しており(いずれも図示せず)、それらの計測値より系統電力モニター手段16は電力と電力の流れる方向を検知することができる。前述した出力電力モニター手段6及び系統電力モニター手段16のモニター信号線はシステム制御手段17に接続しており、このシステム制御手段17の制御信号出力線はヒートポンプ貯湯式給湯装置8の電源部10に接続している。
【0015】
次に、本発明の第1の実施形態に係るエネルギーシステムの動作を説明する。太陽光発電システム1は、昼間、太陽電池発電装置2により太陽光を受けて発電し、この太陽電池発電装置2で発電した直流をインバータ3により交流に変換し、系統連系保護継電器4を介して系統連系して出力する。この出力は、出力電力モニター手段6及び電力量計7を介して商用電源5側に逆潮流し得る。
【0016】
図2は、太陽光発電システム1による発電電力と、商用電源側の系統から供給されて家庭で消費される系統電力即ち消費電力と、の時間経過の一例を示す図であり、太陽光発電システム1による発電電力は符号19のようになり、昼間に発電している。一方、符号18はヒートポンプ貯湯式給湯装置8を運転しない場合の系統電力モニター手段16により計測した家庭の全体消費電力の時間経過であり、昼間の太陽光の強い時間帯には、家庭の全体消費電力18よりも発電電力19の方が大きくなる。
【0017】
また、出力電力モニター手段6からの出力モニター値と、系統電力モニター手段16からの系統電力モニター値即ち家庭の消費電力モニター値と、をシステム制御手段17により比較するとともに、システム制御手段17で時刻を計時して夜間電気料金の時間帯になった場合に、又は、太陽光発電システム1の発電電力19が家庭の全体消費電力18よりも所定値だけ大きくなった場合に、システム制御手段17は、ヒートポンプ貯湯式給湯装置8の電源部10に運転制御信号(図示せず)を送ってヒートポンプ貯湯式給湯装置8の電源スイッチ11を閉路し、ヒートポンプ貯湯式給湯装置8の運転を開始させる。
【0018】
また、システム制御手段17は、発電電力19と家庭の全体消費電力18との差に基づいて、ヒートポンプ貯湯式給湯装置8のヒートポンプ加熱手段9の出力を加減する信号を出して、ヒートポンプ貯湯式給湯装置8の出力を制御する。即ち、発電電力19と家庭の全体消費電力18との差電力にほぼ対応してヒートポンプ貯湯式給湯装置8の出力を制御する。このように、図2に示す符号19と符号18との差電力の大部分電力又は差電力を若干超えた電力でヒートポンプ式貯湯式給湯装置を稼働する。この差電力の大部分電力で稼働する場合は商用電源側への逆潮流の値を所定値以下に制限することとなり、若干超えた電力で稼働する場合は商用電源から電力を買うこととなる。
【0019】
図3は、ヒートポンプ貯湯式給湯装置8の入力電力20a,20bと、発電電力19と家庭の全体消費電力18(ヒートポンプ貯湯式給湯装置を使用していないときの消費電力)との差から求まる電力21(図2に示す、符号19の電力が符号18の電力より大であるとき、符号19と符号18の差電力と同一)と、商用電源5側に流れ込む逆潮流電力22と、を時刻との関係で示す図である。ここで、発電電力19が家庭全体消費電力18よりも所定値Gだけ大となったときに、即ちタイミングT経過後に、ヒートポンプ貯湯式給湯装置8を始動させるように制御する。更に、ヒートポンプ貯湯式給湯装置8は差電力21を大部分消費するように制御される。符号21の電力と符号20bの差電力が符号22のようになり、この符号22の電力が商用電源側に流れ込む逆潮流電力となる。
【0020】
換言すると、ヒートポンプ貯湯式給湯装置8の入力電力は夜間は20aのようにほぼ一定の入力電力となり、昼間は発電電力19と家庭の全体消費電力18との差より求まる逆潮流電力(発電システムから流れ出る電力)21の値に対応して20bのように変動する。そのため、ヒートポンプ貯湯式給湯装置8の入力電力20bと発電システムから流れ出る逆潮流電力21とを合計した合計電力(商用電源側に流れ込む電力)は、符号22のように、所定値G以下に制限される。
【0021】
以上のように、本発明の実施形態に係るエネルギーシステムでは、商用電源5の系統に逆潮流する電力が所定値G以下に制限されるので、特定の系統に太陽光発電システムが集中連系され、昼間の時間帯に太陽光発電システム1の発電電力の出力が過大になるような場合でも、太陽光発電システム1の発電電力の出力を停止させることなく、ヒートポンプ貯湯式給湯装置8で熱エネルギーに変えて有効に貯湯することができる。
【0022】
また、系統電力モニター手段16は、内蔵した系統電圧モニター手段(内蔵ではなくて、別個に設けたものでも良い)により系統の電圧を監視し、系統の電圧が上昇して太陽光発電システムの連系出力を停止すべき電圧に近づいた場合に、システム制御手段17は太陽光発電システム1の発電電力の出力と同等以上の家庭の全体消費電力になるように(図3の符号22が正の値となるように)、ヒートポンプ貯湯式給湯装置8の入力電力を制御し、商用電源側への逆潮流が無いレベルの消費電力として、多数の発電システムからなる集中連系等による系統電圧の上昇を抑制するとともに、太陽光発電システム1の発電電力を熱エネルギーに変換して有効利用できる。
【0023】
敷衍して説明すると、太陽光発電システムが多数稼働しているような場合において、系統電圧が規則で規定された規定値を超えれば、図1に示す保護継電器4をオフして太陽光発電システムからの連係出力を停止することが規定されているのであるが、系統電圧がこの規定値よりも所定量小さい値である判定値に達した場合には、発電装置を止めることなく継続運転させるために、発電装置からの発電量よりも大きい電力を消費させるように(ヒートポンプ貯湯式給湯装置への入力電力+電力負荷への電力)、ヒートポンプ貯湯式給湯装置への入力電力を制御すれば、系統電圧が判定値よりも大きい規定値に達することは無くなる。そして、このような系統電圧モニター手段によるヒートポンプ貯湯式給湯装置への入力電力制御は、図1と図3に示すエネルギーシステムの運転制御に優先して実施する。
【0024】
次に、ヒートポンプ貯湯式給湯装置8のCOP(Coefficient Of Performance:成績係数又は動作係数(熱サイクルを動かすために消費される仕事量に対して、熱サイクルの冷却能力や加熱能力がどの程度になるかを示す比))は、図4に示すグラフ23のようになり、外気温度が高いほど大きくなるため、太陽光が強い昼間の方が通常、外気温度が高いので効率よく集熱でき、太陽光発電によるエネルギーを効率よく活用できる。
【0025】
更に、本実施形態では、消費電力の少ない夜間に、及び昼間において発電システムから流れ出る逆潮流が生じる場合に、ヒートポンプ貯湯式給湯装置8を運転するので、家庭の契約電力を上げること無く、ヒートポンプ貯湯式給湯装置8を設置でき、夜間の運転で貯湯するので、時間帯別料金契約を適用することにより、給湯用のエネルギーのコストを低減できる。また、時間帯別料金契約を適用しない場合には、COPの高い昼間の時間帯での運転の割合を多くすることにより、給湯用のエネルギーのコストを低減できる。なお、ヒートポンプ貯湯式給湯装置8で、給湯負荷13での湯の消費量が多くて追炊きが必要な場合は、貯湯槽12の残湯量と家庭の全体消費電力18の情報より、ヒートポンプ貯湯式給湯装置8の入力電力を加減しながら追炊きを行うことができるので、追炊きを考慮しても家庭の契約電力を上げずに済ませることができる。
【0026】
次に、本発明の第2の実施形態に係るエネルギーシステムについて、図5と図6を参照しながら以下説明する。図5は本発明の第2の実施形態に係るエネルギーシステムの全体構成を示す図であり、図6は本実施形態に関する、太陽光発電システムの発電電力と、家庭の全体消費電力と、ヒートポンプ貯湯式給湯装置への入力電力と、太陽光発電システムによる発電電力と家庭の全体消費電力との差電力と、商用電源側への逆潮流電力と、の関係を時間経過で示す図である。
【0027】
図5において、太陽光発電システム1と、家庭の電力負荷14と、ヒートポンプ貯湯式給湯装置8と、を同一系統に接続し、この同一系統における商用電源5側に系統電力モニター手段16を介して全体の消費電力を管理する電力量計15を接続する。
【0028】
図6に示す各部の電力を示すグラフにおいて、太陽光発電システム1の発電電力19が大きくなると、ヒートポンプ貯湯式給湯装置8を除く家庭の全体消費電力18から太陽光発電システム1の発電電力19を引いた差は、符号21に示すように、マイナス即ち発電システムから流れ出る逆潮流電力となる。符号20a,20cはヒートポンプ貯湯式給湯装置8の入力電力である。
【0029】
第2の実施形態のエネルギーシステムでは、系統電力モニター手段16での系統電力モニター値の情報をシステム制御手段17により監視し、電力量計15を通過する系統電力の値がゼロ付近になったら、システム制御手段17はヒートポンプ貯湯式給湯装置8の電源部10に運転制御信号(図示せず)を送ってヒートポンプ貯湯式給湯装置8の電源スイッチ11を閉路し、ヒートポンプ貯湯式給湯装置8の運転を開始させ、系統電力が所定値以下の22’になるようにヒートポンプ貯湯式給湯装置8の入力電力を制御する。即ち、図6に示す符号22’が正の値を示すことは、太陽光発電システムの発電電力が商用電源5側に逆潮流させないことを意味する。
【0030】
第2の実施形態では、太陽光発電システム1の発電電力19の内、電力負荷14で消費しきれない分はヒートポンプ貯湯式給湯装置8で熱エネルギーに変換して、湯として貯湯槽12に蓄え、系統の商用電源5側に逆潮流させないので、系統の電圧を規定値以上に上昇させることはなく、多数の太陽光発電システムによる集中連系になっても系統の電圧の不安定要因とはならない。また、本実施形態では電力モニター手段は1個所に設置すれば逆潮流を監視できるので、電力モニター手段のコストを低減できる。
【0031】
次に、本発明の第3の実施形態に係るエネルギーシステムについて図7を参照しながら説明する。図7は本発明の第3の実施形態に係るエネルギーシステムの全体構成を示し、発電装置として燃料電池システムを用いた構成例を示す図である。
【0032】
図7において、燃料電池システム24は発電及び熱回収を行う燃料電池発電装置26と、燃料電池発電装置26で発電した直流を交流に変換して、系統連系出力するインバータ25と、系統と並列運転する場合に閉路し、解列する場合に開路する系統連系保護継電器27と、を具備している。ここで、燃料電池システムはそれ自体が発熱するので水で冷却して熱水として回収し、貯湯槽12に供給する。また、燃料電池システム26を稼働させるには或る所定の温度環境が求められるので、運転と非運転とを断続する運転方法(非運転から運転に移行するには所定温度環境まで温度上昇させる必要がある)よりも運転継続した方が効率が良いこととなる。
【0033】
系統連系保護継電器27の系統側は系統電力モニター手段16を介して電力量計15に接続しており、電力負荷14及びヒートポンプ貯湯式給湯装置8が系統電力モニター手段16の下流側に接続している。この系統電力モニター手段16のモニター情報をシステム制御手段17により監視し、燃料電池システム24による発電電力が電力負荷14の消費電力以上になって逆潮流したとき、又は燃料電池システム24による発電電力が電力負荷14の消費電力と同程度になって逆潮流しそうになったら、システム制御手段17からの信号によって、ヒートポンプ貯湯式給湯装置8を所定の入力で運転させ、逆潮流しないように消費電力を制御し、発電電力を商用電源側に逆潮流させずに熱エネルギーとして湯に変換し、貯湯槽12に蓄える。
【0034】
また、本実施形態では、燃料電池24で熱回収したエネルギーは、湯にして貯湯槽12に蓄えられ、給湯負荷13に供給される。本実施形態では、燃料電池での発電電力が通常の家庭内での消費電力以上になっても、燃料電池の運転を停止させずに、商用電源側へ逆潮流もさせず、高いCOPで熱エネルギーに変換して湯として蓄えることができ、高効率のエネルギーシステムを構成できる。
【0035】
以上説明したように、本発明は次のような構成例を備えたものを特徴とし、機能乃至作用を奏するものである。即ち、第1に、商用電源に系統連系出力する発電装置とヒートポンプ貯湯式給湯装置とを設け、発電装置の出力電力をモニターする出力電力モニター手段を設けるとともに、ヒートポンプ貯湯式給湯装置の電源部と電力負荷とを接続した系統の系統電力をモニターする系統電力モニター手段を設け、出力電力モニター手段の出力モニター値と系統電力モニター手段の系統電力モニター値とを比較し、発電装置の出力電力により発電装置から流れ出る逆潮流が予め設定した所定値以上生じた場合に、ヒートポンプ貯湯式給湯装置を、前記逆潮流の電力にほぼ対応した入力電力で運転させる構成である。これにより、電力負荷が小さく、発電装置から流れ出る逆潮流の電力が大きくなる場合に、この逆潮流の電力に関連した電力をヒートポンプ貯湯式給湯装置で消費させるので、逆潮流の電力を所定値以下に抑制でき、逆潮流の系統への影響を軽減できる。また、ヒートポンプ貯湯式給湯装置はエネルギー効率(COP)を3〜5又はそれ以上とすることが可能であり、極めて高効率で貯湯することができ、高効率のエネルギーシステムを構成できる。
【0036】
第2に、発電装置の出力部と、ヒートポンプ貯湯式給湯装置の電源部と、電力負荷とを同一の電力量計の下流側に電気的に接続した構成である。これにより、発電装置での発電量と電力負荷での消費量とヒートポンプ貯湯式給湯装置での消費量の合計を一個所でモニターできるので、電力のモニター手段を低コストにでき、またヒートポンプ貯湯式給湯装置の運転時入力電力の制御を容易にできる。
【0037】
第3に、発電装置を太陽光発電システムとした構成である。これにより、発電が昼間に限定される太陽光発電システムの発電電力を、昼間の消費電力が少ないサラリーマン世帯などにおいて、電力負荷で消費しきれない電力の逆潮流を抑制し、気温が高く、COPが大きくなる昼間にヒートポンプ貯湯式給湯装置で貯湯に電力を使用することができ、システムのエネルギー利用効率を高くできる。
【0038】
第4に、ヒートポンプ貯湯式給湯装置を夜間電力で運転するとともに、太陽光発電システムの発電による逆潮流の電力が予め設定した所定値以内に制限されるようにヒートポンプ貯湯式給湯装置の入力電力を制御しながら運転する構成である。これにより、消費電力の少ない夜間にCOPの大きいヒートポンプ貯湯式給湯装置により貯湯するとともに、一般の家庭では、消費電力が比較的少なく、発電量が多い昼間に、電力負荷で消費しきれない電力の逆潮流を抑制し、ヒートポンプ貯湯式給湯装置で貯湯に電力を使用することができるので、使用電力の平準化が図れ、また、ヒートポンプ貯湯式給湯装置の昼間のCOPが大きいので、システムのエネルギー利用効率を極めて高くできる。
【0039】
第5に、発電装置を燃料電池システムとした構成である。これにより、消費電力の少ない時間帯でも燃料電池システムの発電を停止させなくても逆潮流をさせなくすることが可能になり、燃料電池システムでの発電の系統への影響を軽減できる。
【0040】
第6に、商用電源側の電圧をモニターする系統電圧モニター手段を設け、系統電圧モニター手段の計測値が予め設定した判定値に達した場合に、発電装置による発電量に対して所定の割合以上の入力電力でヒートポンプ貯湯式給湯装置を運転する構成である。これにより、多数の発電装置による集中連系等により発電可能な状況にも関わらず、系統連系出力を抑制しなければならない場合に、発電装置で発電した電力に見合う電力でヒートポンプ貯湯式給湯装置を運転し、発電電力を高効率で熱エネルギーに変換して湯を製造することにより、発電電力の無駄を防止できる。
【0041】
第7に、ヒートポンプ貯湯式給湯装置を昼間の時間帯に運転する構成である。これにより、昼間の時間帯は一日の内で気温が概ね最も高くなるため、ヒートポンプ貯湯式給湯装置のCOPが最も大きくなる時間帯となり、システムのエネルギー利用効率を極めて高くできる。
【0042】
【発明の効果】
本発明によれば、発電装置による発電電力を下げること無く商用電源側(系統)への逆潮流を低減することができ、系統の電圧変動への影響を軽減でき、多数の発電装置による集中連系しても発電の制限を未然に防ぐことが可能になる。
【0043】
また、発電電力をCOPの高いヒートポンプ貯湯式給湯機で利用して熱エネルギーに変換して、湯として蓄えるので、エネルギー利用効率の高いエネルギーシステムを構成でき、今後の発電装置の普及促進に好適なシステムを提供できる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係るエネルギーシステムの全体構成を示す図である。
【図2】太陽光発電システムによる発電電力と商用電源から供給されて家庭で消費される系統電力即ち全体消費電力の時間経過の一例を示す図である。
【図3】本実施形態に関するヒートポンプ貯湯式給湯装置への入力電力と、太陽光発電システムによる発電電力と家庭の全体消費電力との差電力と、商用電源側への逆潮流電力と、の関係を時間経過で示す図である。
【図4】本実施形態に関するヒートポンプ式貯湯式給湯装置のCOP(成績係数)と外気温度の関係を示す図である。
【図5】本発明の第2の実施形態に係るエネルギーシステムの全体構成を示す図である。
【図6】本実施形態に関する、太陽光発電システムの発電電力と、家庭の全体消費電力と、ヒートポンプ貯湯式給湯装置への入力電力と、太陽光発電システムによる発電電力と家庭の全体消費電力との差電力と、商用電源側への逆潮流電力と、の関係を時間経過で示す図である。
【図7】本発明の第3の実施形態に係るエネルギーシステムの全体構成を示し、発電装置として燃料電池システムを用いた構成例を示す図である。
【符号の説明】
1 発電装置としての太陽光発電システム
2 太陽電池発電装置
3 DC−ACインバータ
4 系統連系保護継電器
5 商用電源
6 出力電力モニター手段
7 電力量計
8 ヒートポンプ貯湯式給湯装置
9 ヒートポンプ過熱手段
10 電源部
11 電源スイッチ
12 貯湯槽
13 給湯負荷
14 電力負荷
15 電力量計
16 系統電力モニター手段
17 システム制御手段
18 ヒートポンプ貯湯式給湯装置を運転しない場合の全体消費電力
19 太陽光発電システムによる発電電力
20a,20b,20c ヒートポンプ貯湯式給湯装置の入力電力
22 商用電源側に流れ出る逆潮流電力
26 発電装置としての燃料電池システム
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an energy system that uses a power generation device that outputs a system interconnection to a commercial power supply, and more particularly to an energy system that reduces the power of a reverse power flow to the commercial power supply.
[0002]
[Prior art]
In power generation devices such as a solar power generation system and a fuel cell system, the generated power is connected to a commercial power supply and output. As the amount fluctuates, it can fluctuate the system voltage.
[0003]
As a conventional technique for preventing system voltage fluctuations, a power storage device that stores power generated by a power generator is installed, and the output fluctuations of DC power are adjusted by charging and discharging means to suppress sudden fluctuations in reverse power flow to the commercial power supply system (For example, see Patent Document 1).
[0004]
[Patent Document 1]
JP 2001-5543A
[0005]
[Problems to be solved by the invention]
However, in the power generator having the above-described configuration, it is possible to suppress the rapid fluctuation of the reverse power flow to the system, but it is not intended to reduce the reverse power flow to the system. If installed, reverse power flow to the system will be centrally connected and output to a specific distribution system, which may affect the system. In the future, such power generators are expected to spread rapidly, and the adverse effects on the grid due to centralized interconnection are issues that need to be resolved immediately.
[0006]
In addition, when the battery is once stored in a storage battery as described in Patent Document 1, it is necessary to control the conversion of voltage and current by a chopper at the time of charging and discharging, and loss due to the chopper occurs, and as a result, the generated energy is connected to the system. There is a problem that the conversion efficiency when outputting is reduced.
[0007]
An object of the present invention is to provide an energy system that reduces a reverse power flow flowing to a commercial power supply side and uses generated energy with high efficiency.
[0008]
[Means for solving the problem]
In order to solve the above problems, the present invention mainly employs the following configuration.
A power generator connected to the commercial power supply so as to be able to output the power to the commercial power supply, a heat pump hot water storage type hot water supply device connected to the commercial power supply, and a power load connected to the commercial power supply. Energy system with
Providing output power monitoring means provided between the power generator and the commercial power supply to monitor the output power of the power generator,
System power monitoring means provided between the commercial power supply and the system to which the heat pump hot water supply type hot water supply device and the power load are connected to monitor the power of the system,
Comparing the output power monitor value of the output power monitor means with the system power monitor value of the system power monitor means,
When the difference power between the output power monitor value and the system power monitor value reaches a predetermined value set in advance, the heat pump hot water storage type hot water supply device is operated with input power substantially corresponding to the difference power.
[0009]
In addition, a power generator connected to the commercial power supply so as to be able to output the power to the commercial power supply, a heat pump hot water storage type hot water supply device connected to the commercial power supply, and an electric power load connected to the commercial power supply. An energy system comprising:
A connection point between a system connecting the heat pump hot water storage type hot water supply device and the power load and an output of the power generation device is connected to the commercial power supply,
System power monitoring means provided between the connection point and the commercial power supply to monitor the power of the system is provided,
Monitoring a system power monitor value of the system power monitoring means,
When the system power monitor value is close to zero, the heat pump hot-water storage type hot water supply device is operated with input power substantially corresponding to the difference power between the output power of the power generator and the power consumption of the power load.
[0010]
By adopting such a configuration, it is possible to reduce or eliminate the reverse power flow flowing to the commercial power supply side, and to use the generated energy with high efficiency by applying the generated energy to the heat pump hot water storage type hot water supply device. .
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
An energy system according to an embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing an entire configuration of an energy system according to a first embodiment of the present invention, and FIG. 2 is a diagram showing power generated by a photovoltaic power generation system and grid power supplied from a commercial power source and consumed at home, that is, the entire system. FIG. 3 is a diagram illustrating an example of time lapse of power consumption. FIG. 3 illustrates input power to a heat pump hot water storage hot water supply device according to the present embodiment, power difference between power generated by a photovoltaic power generation system and total power consumption of a home, FIG. 4 is a diagram showing the relationship between the reverse power flow to the commercial power supply and time, and FIG. 4 shows the relationship between the COP (Coefficient Of Performance: coefficient of performance) and the outside air temperature of the heat pump hot water storage type hot water supply apparatus according to the present embodiment. FIG.
[0012]
The first embodiment of the present invention shown in FIG. 1 is an example of installation in a general home. Reference numeral 1 denotes a photovoltaic power generation system as a power generation device, which is provided with a photovoltaic power generation device 2, an inverter 3 that converts DC into AC and outputs the system interconnection, and a system interconnection protection relay 4; One end of the relay 4 is connected to a watt-hour meter 7 via output power monitoring means 6, and this watt-hour meter 7 is connected to the commercial power supply 5. The protection relay 4 is a relay defined to cut off the power generated from the power generation system when there is an abnormality in the system power.
[0013]
The heat pump hot water storage device 8 includes a heat pump heating unit 9, a power supply unit 10 for supplying power to the heat pump heating unit 9, a power switch 11 for turning on / off an input to the power supply unit 10, and a heat pump heating unit. A hot water storage tank 12 for storing hot water heated and manufactured by the means 9, and a hot water supply load 13 is provided in the hot water storage tank 12. Here, the heat pump hot water storage type hot water supply device 8 does not operate only with the rated power consumption, but operates with power controlled so as to be appropriately adjusted to the power generated by the solar power generation system, for example. Can be done.
[0014]
In addition, the commercial power supply 5 is connected to an electric load 14 and a heat pump hot water supply type hot water supply device 8 via a watt hour meter 15 and a system power monitoring means 16 for monitoring electric power from the system. The system power monitoring means 16 has built-in system voltage monitoring means and system current monitoring means (both not shown), and the system power monitoring means 16 detects the power and the direction of power flow from the measured values. Can be. The monitor signal lines of the output power monitoring means 6 and the system power monitoring means 16 are connected to the system control means 17, and the control signal output lines of the system control means 17 are connected to the power supply unit 10 of the heat pump hot water storage type hot water supply device 8. Connected.
[0015]
Next, the operation of the energy system according to the first embodiment of the present invention will be described. In the daytime, the solar power generation system 1 receives sunlight from the solar cell power generation device 2 to generate power, converts DC generated by the solar cell power generation device 2 into AC by the inverter 3, and outputs the AC power through the grid interconnection protection relay 4. And output it. This output can flow backward to the commercial power source 5 via the output power monitoring means 6 and the watt hour meter 7.
[0016]
FIG. 2 is a diagram illustrating an example of the time lapse between the power generated by the photovoltaic power generation system 1 and the system power supplied from the system on the commercial power supply side and consumed at home, that is, power consumption. The power generated by No. 1 is as indicated by reference numeral 19 and is generated in the daytime. On the other hand, reference numeral 18 denotes the elapsed time of the total power consumption of the home measured by the system power monitoring means 16 when the heat pump hot water storage type hot water supply device 8 is not operated. The generated power 19 is larger than the power 18.
[0017]
Further, the output monitor value from the output power monitor means 6 is compared with the system power monitor value from the system power monitor means 16, that is, the household power consumption monitor value, by the system control means 17. When the time period of the nighttime electricity rate is counted and the generated power 19 of the photovoltaic power generation system 1 becomes larger than the total power consumption 18 of the home by a predetermined value, the system control means 17 Then, an operation control signal (not shown) is sent to the power supply unit 10 of the heat pump hot water storage device 8, the power switch 11 of the heat pump hot water storage device 8 is closed, and the operation of the heat pump hot water storage device 8 is started.
[0018]
Further, the system control means 17 outputs a signal for adjusting the output of the heat pump heating means 9 of the heat pump hot water supply type hot water supply device 8 based on the difference between the generated power 19 and the total power consumption 18 of the home, and outputs the heat pump hot water supply. The output of the device 8 is controlled. That is, the output of the heat pump hot water supply type hot water supply device 8 is controlled substantially corresponding to the difference power between the generated power 19 and the total power consumption 18 of the household. In this way, the heat pump hot water storage type hot water supply apparatus is operated with most of the difference power between the reference numerals 19 and 18 shown in FIG. 2 or slightly exceeding the difference power. In the case of operating with most of the difference power, the value of the reverse power flow to the commercial power supply is limited to a predetermined value or less, and in the case of operating with slightly more power, the power is purchased from the commercial power supply.
[0019]
FIG. 3 shows the electric power obtained from the difference between the input powers 20a and 20b of the heat pump hot water storage device 8, the generated power 19, and the total power consumption 18 of the household (the power consumption when the heat pump hot water storage device is not used). 21 (when the power of reference numeral 19 is larger than the power of reference numeral 18 shown in FIG. 2, the same as the difference power between reference numerals 19 and 18) and the reverse power flow power 22 flowing into the commercial power supply 5 side, FIG. Here, when the generated power 19 becomes larger than the entire household power consumption 18 by a predetermined value G, that is, after the timing T, the heat pump hot water storage type hot water supply device 8 is controlled to start. Further, the heat pump hot water supply type hot water supply device 8 is controlled so that the difference electric power 21 is mostly consumed. The difference power between the power 21 and the power 20b is as shown by the reference numeral 22, and the power 22 is the reverse power flow power flowing into the commercial power supply.
[0020]
In other words, the input power of the heat pump hot-water storage type hot water supply device 8 is substantially constant input power such as 20a at night, and the reverse power flow power (from the power generation system) obtained at daytime from the difference between the generated power 19 and the total power consumption 18 at home. It varies like 20b in accordance with the value of (power flowing out) 21. Therefore, the total power (the power flowing into the commercial power supply) obtained by summing the input power 20b of the heat pump hot water supply type hot water supply device 8 and the reverse power flow power 21 flowing out of the power generation system is limited to a predetermined value G or less as indicated by reference numeral 22. You.
[0021]
As described above, in the energy system according to the embodiment of the present invention, since the power flowing backward to the system of the commercial power supply 5 is limited to the predetermined value G or less, the photovoltaic power generation system is centrally interconnected to a specific system. Even when the output of the power generated by the photovoltaic power generation system 1 becomes excessive during the daytime, the heat energy is stored in the heat pump hot water storage type hot water supply device 8 without stopping the output of the power generated by the photovoltaic power generation system 1. Can be stored effectively.
[0022]
The system power monitoring means 16 monitors the system voltage by means of a built-in system voltage monitoring means (not the built-in system but may be provided separately). When the system output approaches the voltage at which the system output should be stopped, the system control unit 17 sets the total power consumption of the home to be equal to or more than the output of the generated power of the photovoltaic power generation system 1 (the reference numeral 22 in FIG. 3 indicates a positive value). ), The input power of the heat pump hot water storage type hot water supply device 8 is controlled, and the system voltage rises due to centralized interconnection of a large number of power generation systems as power consumption with no reverse power flow to the commercial power supply side. And the power generated by the photovoltaic power generation system 1 can be converted to heat energy and used effectively.
[0023]
To explain in more detail, in a case where a large number of photovoltaic power generation systems are operating, if the system voltage exceeds a specified value specified by rules, the protection relay 4 shown in FIG. It is stipulated that the cooperative output from is stopped.However, when the system voltage reaches a determination value that is a predetermined value smaller than the specified value, the power generator can be continuously operated without stopping. If the input power to the heat pump hot water storage system is controlled so that the power generated by the power generation device is consumed more (input power to the heat pump hot water storage system + power to the power load), the system The voltage does not reach the specified value larger than the determination value. The input power control to the heat pump hot water supply type hot water supply device by such system voltage monitoring means is performed prior to the operation control of the energy system shown in FIGS. 1 and 3.
[0024]
Next, COP (Coefficient Of Performance) of the heat pump hot water storage type hot water supply device 8 (how much the cooling capacity and the heating capacity of the heat cycle are relative to the work consumed for moving the heat cycle). 4) is as shown in a graph 23 in FIG. 4. The higher the outside air temperature is, the larger the temperature is. In the daytime when the sunlight is strong, the outside air temperature is usually high, so that heat can be efficiently collected and the Energy from photovoltaic power generation can be used efficiently.
[0025]
Further, in the present embodiment, the heat pump hot water supply type hot water supply device 8 is operated at night when power consumption is low and when a reverse power flow flowing out of the power generation system occurs in the daytime. Since the hot water supply device 8 can be installed and the hot water is stored during the night operation, the cost of hot water supply energy can be reduced by applying a time-based rate contract. In addition, when the hourly rate contract is not applied, the cost of energy for hot water supply can be reduced by increasing the rate of operation during the daytime when the COP is high. When the heat pump hot water supply device 8 consumes a large amount of hot water at the hot water supply load 13 and needs additional cooking, the heat pump hot water storage type hot water supply device 8 uses the remaining amount of hot water in the hot water storage tank 12 and the information on the total power consumption 18 at home. Since additional cooking can be performed while adjusting the input power of the hot water supply device 8, even if additional cooking is considered, it is not necessary to increase the contract power at home.
[0026]
Next, an energy system according to a second embodiment of the present invention will be described below with reference to FIGS. FIG. 5 is a diagram showing the overall configuration of an energy system according to a second embodiment of the present invention, and FIG. 6 is a diagram showing the power generation of the photovoltaic power generation system, the entire household power consumption, and the heat pump hot water storage according to this embodiment. It is a figure which shows the relationship between the input electric power to a hot water supply apparatus, the difference electric power of the electric power generated by a photovoltaic power generation system, and the whole household power consumption, and the reverse power flow electric power to a commercial power supply side with a lapse of time.
[0027]
In FIG. 5, the photovoltaic power generation system 1, the household power load 14, and the heat pump hot water supply type hot water supply device 8 are connected to the same system, and the commercial power supply 5 in the same system is connected via the system power monitoring means 16. A watt hour meter 15 for managing the entire power consumption is connected.
[0028]
In the graph showing the power of each part shown in FIG. 6, when the generated power 19 of the photovoltaic power generation system 1 increases, the generated power 19 of the photovoltaic power generation system 1 is reduced from the total power consumption 18 of the house except for the heat pump hot water storage type hot water supply device 8. The difference thus subtracted is, as shown by reference numeral 21, negative power, that is, reverse power flow power flowing out of the power generation system. Reference numerals 20a and 20c denote input power of the heat pump hot water storage type hot water supply device 8.
[0029]
In the energy system of the second embodiment, the information of the system power monitor value at the system power monitor means 16 is monitored by the system control means 17, and when the value of the system power passing through the watt-hour meter 15 becomes close to zero, The system control means 17 sends an operation control signal (not shown) to the power supply section 10 of the heat pump hot water storage device 8 to close the power switch 11 of the heat pump hot water storage device 8, and operates the heat pump hot water storage device 8. Then, the input power of the heat pump hot water supply type hot water supply device 8 is controlled so that the system power becomes 22 ′ which is equal to or less than a predetermined value. That is, when the reference numeral 22 ′ shown in FIG. 6 indicates a positive value, it means that the generated power of the photovoltaic power generation system does not flow backward to the commercial power supply 5.
[0030]
In the second embodiment, of the generated power 19 of the photovoltaic power generation system 1, the portion that cannot be consumed by the power load 14 is converted into heat energy by the heat pump hot water storage device 8 and stored in the hot water storage tank 12 as hot water. However, since no reverse flow is caused to the commercial power supply 5 side of the system, the voltage of the system does not rise above the specified value. No. Further, in this embodiment, if the power monitoring means is installed at one place, the reverse power flow can be monitored, so that the cost of the power monitoring means can be reduced.
[0031]
Next, an energy system according to a third embodiment of the present invention will be described with reference to FIG. FIG. 7 is a diagram illustrating an overall configuration of an energy system according to a third embodiment of the present invention, and illustrating a configuration example using a fuel cell system as a power generation device.
[0032]
In FIG. 7, a fuel cell system 24 includes a fuel cell power generation device 26 that performs power generation and heat recovery, an inverter 25 that converts a direct current generated by the fuel cell power generation device 26 into an alternating current, and outputs the system interconnection, and a parallel connection with the system. And a system interconnection protection relay 27 that is closed when driving and opened when disconnected. Here, since the fuel cell system itself generates heat, it is cooled with water, collected as hot water, and supplied to the hot water storage tank 12. In addition, since a certain temperature environment is required to operate the fuel cell system 26, an operation method of intermittently switching between operation and non-operation (in order to shift from non-operation to operation, it is necessary to raise the temperature to the predetermined temperature environment) It is more efficient to continue the operation than to operate.
[0033]
The grid side of the grid interconnection protection relay 27 is connected to the watt-hour meter 15 via the grid power monitoring means 16, and the power load 14 and the heat pump hot water storage type hot water supply device 8 are connected to the downstream side of the grid power monitoring means 16. ing. The monitoring information of the system power monitoring means 16 is monitored by the system control means 17, and when the power generated by the fuel cell system 24 exceeds the power consumption of the power load 14 and flows backward, or the power generated by the fuel cell system 24 is When the power flow is about the same as the power consumption of the power load 14 and a reverse flow is about to occur, the heat pump hot water supply type hot water supply device 8 is operated at a predetermined input by a signal from the system control means 17 to reduce the power consumption so that the reverse flow does not occur. Under control, the generated power is converted into hot water as heat energy without flowing backward to the commercial power supply side and stored in the hot water storage tank 12.
[0034]
Further, in this embodiment, the energy recovered by the fuel cell 24 is converted into hot water, stored in the hot water storage tank 12, and supplied to the hot water supply load 13. In the present embodiment, even if the power generated by the fuel cell exceeds the power consumption in a normal home, the operation of the fuel cell is not stopped, no reverse power flow to the commercial power source is performed, and the heat generated by the high COP is reduced. It can be converted into energy and stored as hot water, and a highly efficient energy system can be configured.
[0035]
As described above, the present invention is characterized by having the following configuration examples, and has functions and functions. That is, firstly, a power generator and a heat pump hot water storage type hot water supply device that are connected to a commercial power source and output are provided, output power monitoring means for monitoring output power of the power generation device is provided, and a power supply unit of the heat pump hot water storage hot water supply device is provided. System power monitoring means for monitoring the system power of the system connected to the power load and comparing the output monitor value of the output power monitoring means with the system power monitor value of the system power monitoring means, When the reverse power flow flowing out of the power generation device is equal to or greater than a predetermined value, the heat pump hot water supply type hot water supply device is operated with input power substantially corresponding to the power of the reverse power flow. Thereby, when the power load is small and the power of the reverse power flow flowing out of the power generator increases, the power related to the power of the reverse power flow is consumed by the heat pump hot water supply type hot water supply device. And the influence of reverse power flow on the system can be reduced. Further, the heat pump hot water storage type hot water supply apparatus can have an energy efficiency (COP) of 3 to 5 or more, can store hot water with extremely high efficiency, and can configure a high efficiency energy system.
[0036]
Second, the output unit of the power generation device, the power supply unit of the heat pump hot water storage system, and the power load are electrically connected to the downstream side of the same watt hour meter. This makes it possible to monitor the sum of the amount of power generated by the power generator, the amount of power consumed by the power load, and the amount of consumption by the heat pump hot water supply system at a single location. Control of the input power during operation of the water heater can be facilitated.
[0037]
Third, there is a configuration in which the power generation device is a solar power generation system. As a result, the power generated by the photovoltaic power generation system, which is limited to daytime power generation, can be used to suppress the reverse power flow of power that cannot be completely consumed by power loads, such as in office workers who consume less power in daytime. Electricity can be used for hot water storage by a heat pump hot water storage type hot water supply device in the daytime when the temperature increases, and the energy use efficiency of the system can be increased.
[0038]
Fourthly, while operating the heat pump hot water storage hot water supply device at night, the input power of the heat pump hot water storage hot water supply device is controlled so that the power of the reverse power flow generated by the photovoltaic power generation system is limited to a predetermined value or less. It is configured to operate while controlling. As a result, hot water can be stored by a heat pump hot water storage device with a large COP at night when power consumption is low, and in an ordinary household, power that cannot be completely consumed by the power load during the daytime when power consumption is relatively small and power generation is large. Power can be used for hot water storage with the heat pump hot water storage system by suppressing the reverse power flow, and the power consumption can be leveled. In addition, since the daytime COP of the heat pump hot water storage system is large, the energy use of the system can be improved. The efficiency can be extremely high.
[0039]
Fifth, the power generation device is configured as a fuel cell system. This makes it possible to prevent reverse power flow without stopping power generation of the fuel cell system even during a time period when power consumption is low, and reduce the influence on the power generation system in the fuel cell system.
[0040]
Sixth, system voltage monitoring means for monitoring the voltage on the commercial power supply side is provided, and when the measured value of the system voltage monitoring means reaches a predetermined judgment value, a predetermined ratio or more to the amount of power generated by the power generator. This is a configuration in which the heat pump hot water storage type hot water supply device is operated with the input electric power. In this way, in the case where the grid-connected output must be suppressed in spite of the situation where power can be generated by centralized interconnection by a large number of power generators, the heat pump hot water supply type hot water supply system uses power that matches the power generated by the power generator. Is operated, and the generated electric power is converted into thermal energy with high efficiency to produce hot water, thereby preventing waste of the generated electric power.
[0041]
Seventh, the heat pump hot water supply type hot water supply apparatus is operated during the daytime. Thus, during the daytime, the temperature is generally the highest in one day, so that the COP of the heat pump hot-water storage type hot water supply device is the highest, and the energy use efficiency of the system can be extremely high.
[0042]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the reverse power flow to a commercial power supply side (system | system) can be reduced, without reducing the electric power generated by a power generator, the influence on the voltage fluctuation of a system can be reduced, Even in a system, it is possible to prevent power generation restrictions.
[0043]
In addition, since the generated power is converted to heat energy by using a heat pump hot water storage type water heater with a high COP and stored as hot water, an energy system with high energy use efficiency can be configured, which is suitable for promoting the spread of power generation devices in the future. We can provide the system.
[Brief description of the drawings]
FIG. 1 is a diagram showing an overall configuration of an energy system according to a first embodiment of the present invention.
FIG. 2 is a diagram showing an example of a time course of power generated by a photovoltaic power generation system and system power supplied from a commercial power source and consumed at home, that is, total power consumption.
FIG. 3 shows a relationship between input power to a heat pump hot-water storage type hot water supply apparatus according to the present embodiment, power difference between power generated by a photovoltaic power generation system and total power consumption of a household, and reverse power flow power to a commercial power supply. FIG. 6 is a diagram showing time elapsed.
FIG. 4 is a diagram showing the relationship between the COP (coefficient of performance) and the outside air temperature of the heat pump hot water storage type hot water supply apparatus according to the present embodiment.
FIG. 5 is a diagram illustrating an entire configuration of an energy system according to a second embodiment of the present invention.
FIG. 6 shows the power generated by the photovoltaic power generation system, the total power consumption of the home, the input power to the heat pump hot water storage system, the power generated by the photovoltaic power generation system, and the total power consumption of the home according to the present embodiment. FIG. 4 is a diagram showing the relationship between the difference power of the power supply and the reverse power flow to the commercial power supply over time.
FIG. 7 is a diagram illustrating an overall configuration of an energy system according to a third embodiment of the present invention, illustrating a configuration example using a fuel cell system as a power generation device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Solar power generation system as a power generation device 2 Solar cell power generation device 3 DC-AC inverter 4 Grid connection protection relay 5 Commercial power supply 6 Output power monitoring means 7 Electricity meter 8 Heat pump hot water storage type hot water supply device 9 Heat pump overheating means 10 Power supply unit Reference Signs List 11 power switch 12 hot water storage tank 13 hot water supply load 14 power load 15 watt hour meter 16 system power monitoring means 17 system control means 18 total power consumption when heat pump hot water storage type hot water supply device is not operated 19 power generated by solar power generation system 20a, 20b , 20c Input power 22 of heat pump hot water supply type hot water supply Reverse power flow power flowing to commercial power supply 26 Fuel cell system as power generator

Claims (7)

商用電源に系統連系して出力し得るように前記商用電源に接続された発電装置と、前記商用電源に接続されたヒートポンプ貯湯式給湯装置と、前記商用電源に接続された電力負荷と、を備えたエネルギーシステムであって、
前記発電装置と前記商用電源との間に設けられて前記発電装置の出力電力をモニターする出力電力モニター手段を設け、
前記ヒートポンプ貯湯式給湯装置及び前記電力負荷を接続した系統と前記商用電源との間に設けられて前記系統の電力をモニターする系統電力モニター手段を設け、
前記出力電力モニター手段の出力電力モニター値と前記系統電力モニター手段の系統電力モニター値とを比較し、
前記出力電力モニター値と前記系統電力モニター値の差電力が予め設定した所定値に達した場合に、前記ヒートポンプ貯湯式給湯装置を前記差電力にほぼ対応した入力電力で運転させる
ことを特徴とするエネルギーシステム。
A power generator connected to the commercial power supply so as to be able to output the power to the commercial power supply, a heat pump hot water storage type hot water supply device connected to the commercial power supply, and a power load connected to the commercial power supply. Energy system with
Providing output power monitoring means provided between the power generator and the commercial power supply to monitor the output power of the power generator,
System power monitoring means provided between the commercial power supply and the system to which the heat pump hot water supply type hot water supply device and the power load are connected to monitor the power of the system,
Comparing the output power monitor value of the output power monitor means with the system power monitor value of the system power monitor means,
When the difference power between the output power monitor value and the system power monitor value reaches a predetermined value set in advance, the heat pump hot water storage type hot water supply device is operated with input power substantially corresponding to the difference power. Energy system.
商用電源に系統連系して出力し得るように前記商用電源に接続された発電装置と、前記商用電源に接続されたヒートポンプ貯湯式給湯装置と、前記商用電源に接続された電力負荷と、を備えたエネルギーシステムであって、
前記ヒートポンプ貯湯式給湯装置及び前記電力負荷を接続した系統と前記発電装置の出力との連結点が前記商用電源に接続され、
前記連結点と前記商用電源との間に設けられて前記系統の電力をモニターする系統電力モニター手段を設け、
前記系統電力モニター手段の系統電力モニター値を監視し、
前記系統電力モニター値がゼロ近傍になった場合に、前記ヒートポンプ貯湯式給湯装置を前記発電装置の出力電力と前記電力負荷の消費電力の差電力にほぼ対応した入力電力で運転させる
ことを特徴とするエネルギーシステム。
A power generator connected to the commercial power supply so as to be able to output the power to the commercial power supply, a heat pump hot water storage type hot water supply device connected to the commercial power supply, and a power load connected to the commercial power supply. Energy system with
A connection point between a system connecting the heat pump hot water storage type hot water supply device and the power load and an output of the power generation device is connected to the commercial power supply,
System power monitoring means provided between the connection point and the commercial power supply to monitor the power of the system is provided,
Monitoring a system power monitor value of the system power monitoring means,
When the system power monitor value becomes close to zero, the heat pump hot water storage type hot water supply device is operated with input power substantially corresponding to the difference power between the output power of the power generation device and the power consumption of the power load. Energy system.
請求項1又は2において、
前記発電装置は太陽光発電システムであることを特徴とするエネルギーシステム。
In claim 1 or 2,
The energy system, wherein the power generation device is a solar power generation system.
請求項3において、
前記ヒートポンプ貯湯式給湯装置を前記商用電源の夜間電力で運転し、
前記太陽光発電システムの発電による前記商用電源側へ流れ込む逆潮流の電力が予め設定した所定値以内に制限されるように前記ヒートポンプ貯湯式給湯装置の入力電力を制御して運転することを特徴とするエネルギーシステム。
In claim 3,
The heat pump hot water storage type hot water supply device is operated with night power of the commercial power supply,
Controlling and operating the input power of the heat pump hot water supply apparatus so that the reverse flow power flowing into the commercial power supply side by the power generation of the photovoltaic power generation system is limited to a predetermined value or less. Energy system.
請求項1又は2において、
前記発電装置は燃料電池システムであることを特徴とするエネルギーシステム。
In claim 1 or 2,
The energy system, wherein the power generation device is a fuel cell system.
請求項1ないし5のいずれか1つの請求項において、
商用電源側の電圧をモニターする系統電圧モニター手段を設け、
前記系統電圧モニター手段の計測値が予め設定した判定値に達した場合に、前記電力負荷への供給電力に前記ヒートポンプ貯湯式給湯装置への入力電力を加算した電力が前記発電装置による発電量以上の電力になるように、前記入力電力を制御して前記ヒートポンプ貯湯式給湯装置を運転することを特徴とするエネルギーシステム。
In any one of claims 1 to 5,
System voltage monitoring means for monitoring the voltage of the commercial power supply is provided,
When the measured value of the system voltage monitoring means reaches a predetermined determination value, the power obtained by adding the input power to the heat pump hot water storage device to the power supplied to the power load is equal to or more than the amount of power generated by the power generation device. An energy system characterized by operating the heat pump hot water storage type hot water supply device by controlling the input power so that the electric power of the heat pump becomes equal to the above power.
請求項1ないし6のいずれか1つの請求項において、
前記ヒートポンプ貯湯式給湯装置を昼間の時間帯に運転することを特徴とするエネルギーシステム。
In any one of claims 1 to 6,
An energy system, wherein the heat pump hot water storage device is operated during daytime hours.
JP2002362746A 2002-12-13 2002-12-13 Energy system Pending JP2004194485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002362746A JP2004194485A (en) 2002-12-13 2002-12-13 Energy system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002362746A JP2004194485A (en) 2002-12-13 2002-12-13 Energy system

Publications (1)

Publication Number Publication Date
JP2004194485A true JP2004194485A (en) 2004-07-08

Family

ID=32761106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002362746A Pending JP2004194485A (en) 2002-12-13 2002-12-13 Energy system

Country Status (1)

Country Link
JP (1) JP2004194485A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011091983A (en) * 2009-10-26 2011-05-06 Panasonic Electric Works Co Ltd Electric power selling system
JP2012095466A (en) * 2010-10-27 2012-05-17 Chugoku Electric Power Co Inc:The Voltage suppression processing device and voltage suppression processing method
WO2012063409A1 (en) * 2010-11-10 2012-05-18 パナソニック株式会社 Operation planning method, operation planning device, method for operating heat pump hot-water supply system, and method for operating heat pump hot-water supply and heating system
WO2012090365A1 (en) * 2010-12-27 2012-07-05 パナソニック株式会社 Operation planning method and method for operating heat-pump hot-water supply heating system
GB2448504B (en) * 2007-04-17 2012-07-25 Timothy Patrick Cooper A load management controller
WO2012101911A1 (en) * 2011-01-24 2012-08-02 三洋電機株式会社 Power control device and power system
WO2012105642A1 (en) * 2011-02-03 2012-08-09 シャープ株式会社 Controller, control method therefor, and storage medium
JP2012205405A (en) * 2011-03-25 2012-10-22 Chugoku Electric Power Co Inc:The Power control system
WO2012169115A1 (en) * 2011-06-06 2012-12-13 パナソニック株式会社 Operating method for heat pump, and heat pump system
WO2012169118A1 (en) * 2011-06-06 2012-12-13 パナソニック株式会社 Operating method for heat pump, and heat pump system
WO2012169116A1 (en) * 2011-06-06 2012-12-13 パナソニック株式会社 Operating method for heat pump, and heat pump system
JP2013245839A (en) * 2012-05-23 2013-12-09 Mitsubishi Electric Corp Electric water heater
JP2014095501A (en) * 2012-11-08 2014-05-22 Denso Corp Hot water supply device, and hot water supply system
JP2014122764A (en) * 2012-12-21 2014-07-03 Mitsubishi Electric Corp Hot water storage-type water heater and solar system
JP2015121403A (en) * 2015-04-02 2015-07-02 ダイキン工業株式会社 Water heater
KR20170061596A (en) 2015-11-26 2017-06-05 린나이코리아 주식회사 Hot water supply system
WO2017145369A1 (en) * 2016-02-26 2017-08-31 三菱電機株式会社 Hot-water supply system, and control method for water heater
CN109312957A (en) * 2016-06-29 2019-02-05 三菱电机株式会社 Hot-water supply system, water heater and water heater control method
EP3300209B1 (en) * 2016-09-26 2022-04-20 Laborelec CVBA Energy efficient energy generation and consumption system and method for energy efficient operating of this system
US11519612B2 (en) 2015-12-25 2022-12-06 Mitsubishi Electric Corporation Control device, control method for water heater, and program

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2448504B (en) * 2007-04-17 2012-07-25 Timothy Patrick Cooper A load management controller
JP2011091983A (en) * 2009-10-26 2011-05-06 Panasonic Electric Works Co Ltd Electric power selling system
JP2012095466A (en) * 2010-10-27 2012-05-17 Chugoku Electric Power Co Inc:The Voltage suppression processing device and voltage suppression processing method
JP5025834B2 (en) * 2010-11-10 2012-09-12 パナソニック株式会社 Operation planning method, operation planning device, operation method of heat pump hot water supply system, and operation method of heat pump hot water supply heating system
WO2012063409A1 (en) * 2010-11-10 2012-05-18 パナソニック株式会社 Operation planning method, operation planning device, method for operating heat pump hot-water supply system, and method for operating heat pump hot-water supply and heating system
US8972073B2 (en) 2010-11-10 2015-03-03 Panasonic Corporation Operation planning method, operation planning device, heat pump hot water supply system operation method, and heat pump hot water supply and heating system operation method
JPWO2012063409A1 (en) * 2010-11-10 2014-05-12 パナソニック株式会社 Operation planning method, operation planning device, operation method of heat pump hot water supply system, and operation method of heat pump hot water supply heating system
JP5025835B2 (en) * 2010-12-27 2012-09-12 パナソニック株式会社 Operation planning method and operation method of heat pump hot water supply and heating system
US9261284B2 (en) 2010-12-27 2016-02-16 Panasonic Intellectual Property Management Co., Ltd. Operation planning method, and heat pump hot water supply and heating system operation method
WO2012090365A1 (en) * 2010-12-27 2012-07-05 パナソニック株式会社 Operation planning method and method for operating heat-pump hot-water supply heating system
JPWO2012090365A1 (en) * 2010-12-27 2014-06-05 パナソニック株式会社 Operation planning method and operation method of heat pump hot water supply and heating system
WO2012101911A1 (en) * 2011-01-24 2012-08-02 三洋電機株式会社 Power control device and power system
JP2012163222A (en) * 2011-02-03 2012-08-30 Sharp Corp Controller, control program, and control method for controller
WO2012105642A1 (en) * 2011-02-03 2012-08-09 シャープ株式会社 Controller, control method therefor, and storage medium
JP2012205405A (en) * 2011-03-25 2012-10-22 Chugoku Electric Power Co Inc:The Power control system
EP2719972A4 (en) * 2011-06-06 2014-07-02 Panasonic Corp Operating method for heat pump, and heat pump system
JPWO2012169118A1 (en) * 2011-06-06 2015-02-23 パナソニック株式会社 Heat pump operating method and heat pump system
EP2719972A1 (en) * 2011-06-06 2014-04-16 Panasonic Corporation Operating method for heat pump, and heat pump system
EP2719973A1 (en) * 2011-06-06 2014-04-16 Panasonic Corporation Operating method for heat pump, and heat pump system
US9494373B2 (en) 2011-06-06 2016-11-15 Panasonic Intellectual Property Management Co., Ltd. Heat pump operation method and heat pump system
US9267719B2 (en) 2011-06-06 2016-02-23 Panasonic Intellectual Property Management Co., Ltd. Heat pump operation method and heat pump system
US20130205814A1 (en) * 2011-06-06 2013-08-15 Panasonic Corporation Heat pump operation method and heat pump system
WO2012169116A1 (en) * 2011-06-06 2012-12-13 パナソニック株式会社 Operating method for heat pump, and heat pump system
EP2719971A4 (en) * 2011-06-06 2014-07-02 Panasonic Corp Operating method for heat pump, and heat pump system
EP2719973A4 (en) * 2011-06-06 2014-07-02 Panasonic Corp Operating method for heat pump, and heat pump system
WO2012169115A1 (en) * 2011-06-06 2012-12-13 パナソニック株式会社 Operating method for heat pump, and heat pump system
JPWO2012169115A1 (en) * 2011-06-06 2015-02-23 パナソニック株式会社 Heat pump operating method and heat pump system
JPWO2012169116A1 (en) * 2011-06-06 2015-02-23 パナソニック株式会社 Heat pump operating method and heat pump system
US9677784B2 (en) 2011-06-06 2017-06-13 Panasonic Intellectual Property Management Co., Ltd. Heat pump operation method and heat pump system
WO2012169118A1 (en) * 2011-06-06 2012-12-13 パナソニック株式会社 Operating method for heat pump, and heat pump system
EP2719971A1 (en) * 2011-06-06 2014-04-16 Panasonic Corporation Operating method for heat pump, and heat pump system
JP2013245839A (en) * 2012-05-23 2013-12-09 Mitsubishi Electric Corp Electric water heater
JP2014095501A (en) * 2012-11-08 2014-05-22 Denso Corp Hot water supply device, and hot water supply system
JP2014122764A (en) * 2012-12-21 2014-07-03 Mitsubishi Electric Corp Hot water storage-type water heater and solar system
JP2015121403A (en) * 2015-04-02 2015-07-02 ダイキン工業株式会社 Water heater
KR20170061596A (en) 2015-11-26 2017-06-05 린나이코리아 주식회사 Hot water supply system
KR102413003B1 (en) 2015-11-26 2022-06-23 린나이코리아 주식회사 Hot water supply system
US11519612B2 (en) 2015-12-25 2022-12-06 Mitsubishi Electric Corporation Control device, control method for water heater, and program
US11859833B2 (en) 2015-12-25 2024-01-02 Mitsubishi Electric Corporation Control device, control method for water heater, and program
WO2017145369A1 (en) * 2016-02-26 2017-08-31 三菱電機株式会社 Hot-water supply system, and control method for water heater
JPWO2017145369A1 (en) * 2016-02-26 2018-10-25 三菱電機株式会社 Hot water supply system and method for controlling hot water heater
GB2562926A (en) * 2016-02-26 2018-11-28 Mitsubishi Electric Corp Hot-water supply system, and control method for water heater
GB2562926B (en) * 2016-02-26 2020-07-15 Mitsubishi Electric Corp Hot-water supply system, and control method for water heater
CN109312957A (en) * 2016-06-29 2019-02-05 三菱电机株式会社 Hot-water supply system, water heater and water heater control method
EP3300209B1 (en) * 2016-09-26 2022-04-20 Laborelec CVBA Energy efficient energy generation and consumption system and method for energy efficient operating of this system

Similar Documents

Publication Publication Date Title
JP2004194485A (en) Energy system
JP5824614B2 (en) Charge / discharge system
JP5988078B2 (en) Control device and power distribution system
JP5988079B2 (en) Control device, conversion device, control method, and power distribution system
WO2017026287A1 (en) Control device, energy management device, system, and control method
JP3964852B2 (en) Distributed power generation system
JP2002171674A (en) Solar power generator system with power storage
JP5670774B2 (en) Multi-site power saving control system
JP2011250673A (en) Energy controller and control method
JP4660422B2 (en) Energy supply system
TW201832442A (en) Conversion circuit device for uninterruptible power supply (ups) systems
JP4605943B2 (en) Cogeneration system operation method
EP1670115B1 (en) Uninterruptible power supply for limitation of peak load
JP2011027408A (en) Cogeneration system
JP6025443B2 (en) Power supply system
JPH09163626A (en) Sunlight generator
JP2013183611A (en) Controller, converter, control method, and power distribution system
JPH10248180A (en) Power converting apparatus
JP2021057180A (en) Power supply system
JP2012151977A (en) Load leveling system
JP2003092831A (en) Power supply system and its operation method
JP4628074B2 (en) Electricity consumption equipment and cogeneration system
JP3890765B2 (en) Cogeneration equipment
JP2004297905A (en) Cogeneration system and operation method therefor
JP2021057181A (en) Power supply system