JP3312637B2 - Temperature-sensitive magnetic thin film, fabrication method thereof, and light detection type thin film temperature sensor - Google Patents

Temperature-sensitive magnetic thin film, fabrication method thereof, and light detection type thin film temperature sensor

Info

Publication number
JP3312637B2
JP3312637B2 JP06661194A JP6661194A JP3312637B2 JP 3312637 B2 JP3312637 B2 JP 3312637B2 JP 06661194 A JP06661194 A JP 06661194A JP 6661194 A JP6661194 A JP 6661194A JP 3312637 B2 JP3312637 B2 JP 3312637B2
Authority
JP
Japan
Prior art keywords
thin film
temperature
magnetic thin
sensitive magnetic
sensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06661194A
Other languages
Japanese (ja)
Other versions
JPH07249517A (en
Inventor
佳光 大谷
文一 吉村
巌 畠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP06661194A priority Critical patent/JP3312637B2/en
Publication of JPH07249517A publication Critical patent/JPH07249517A/en
Application granted granted Critical
Publication of JP3312637B2 publication Critical patent/JP3312637B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は感温磁性薄膜とその
作製方法ならびに光検出型薄膜温度センサ、さらに詳細
には、様々な感温センサ、感温アクチュエータ等に応用
できる磁性薄膜およびその作製法、ならびに感温磁性薄
膜を利用した温度センサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature-sensitive magnetic thin film, a method for producing the same, and a light detection type thin-film temperature sensor, and more particularly, a magnetic thin film applicable to various temperature-sensitive sensors and temperature-sensitive actuators, and a method for producing the same. And a temperature sensor using a temperature-sensitive magnetic thin film.

【0002】[0002]

【従来の技術】温度の変化に伴って、磁性体の磁化、透
磁率、保磁力などの磁気的性質が急激変化することを利
用した、いわゆる感温素子が広く用いられている。サー
マルリードスイッチはその代表的なもので、指定温度に
キュリー温度を持つフェライト磁心と永久磁石、リード
スイッチを組み合わせたものである。これは、指定温度
におけるフェライトの透磁率の急激な低下によってリー
ドスイッチに加わる磁界が変化することで、主回路を開
閉する温度制御素子であり、冷蔵庫、電子ポット、自動
車のエンジンの監視などに実用されている。この温度セ
ンサとしての利用の他にも、感温磁性材料は熱エネルギ
ーを電気・機械エネルギーなどへの変換素子、生体加熱
等へも応用されている。
2. Description of the Related Art So-called temperature-sensitive elements, which utilize the fact that magnetic properties such as magnetization, magnetic permeability, and coercive force of a magnetic material change rapidly with a change in temperature, are widely used. A typical example of the thermal reed switch is a combination of a ferrite core having a Curie temperature at a specified temperature, a permanent magnet, and a reed switch. This is a temperature control element that opens and closes the main circuit by changing the magnetic field applied to the reed switch due to a sharp decrease in the magnetic permeability of ferrite at a specified temperature, and is practical for monitoring refrigerators, electronic pots, and automobile engines. Have been. In addition to the use as the temperature sensor, the temperature-sensitive magnetic material is also applied to a conversion element for converting heat energy into electric / mechanical energy, a living body heating, and the like.

【0003】近年は、電子機器の小型、軽量化への要請
が一層高ま植り、電子回路のシリコンチップ上一体化し
て薄膜形態で使用するセンサ、アクチュエータに対する
期待が大きい。また、温度に対する精度の増加、多様な
指定温度の設定が必要となっている。
[0003] In recent years, there has been a growing demand for smaller and lighter electronic devices, and there has been great expectation for sensors and actuators that are integrated with a silicon chip of an electronic circuit and used in a thin film form. In addition, it is necessary to increase accuracy with respect to temperature and to set various designated temperatures.

【0004】[0004]

【発明が解決しようとする課題】これら要請に対して従
来技術では次のような不都合があった。すなわち、一つ
は、指定温度を精密に制御することが困難であることで
ある。指定温度を変えるには材料のキュリー点を変化さ
せる必要がある。キュリー点は材料固有の性質であり、
これ変化させるためには材料の組性を直接変える必要が
ある。Mn−Cu系フェライト、Fe−Ni−Cr系合
金、Cu−Ni系合金などが多く使用される材料である
が、これらにおいて、各々の系における組成比率、ある
いは温度によっては、合金系そのものを選択、変化させ
なければならない。またキュリー点が変われば、磁化の
絶対値なども同時に変化するので、指定温度、機能によ
って、単品としての設計が必要となる。
In response to these requirements, the prior art has the following disadvantages. That is, one is that it is difficult to precisely control the designated temperature. Changing the designated temperature requires changing the Curie point of the material. The Curie point is a material-specific property,
To change this, it is necessary to directly change the composition of the material. Mn-Cu-based ferrite, Fe-Ni-Cr-based alloy, Cu-Ni-based alloy, etc. are frequently used materials. In these, the alloy system itself is selected depending on the composition ratio in each system or the temperature. Must be changed. Further, if the Curie point changes, the absolute value of magnetization and the like also change at the same time, so that it is necessary to design a single product depending on the specified temperature and function.

【0005】二つには、薄膜化、プロセス化に当たって
の困難性である。薄膜化に当たっては、上記組成に対す
る制御の厳密性はさらに要求される。また、集積化にあ
ったり、いくつもの指定温度の材料を組み合わせるには
それぞれの組成の膜を別々に堆積せねばならず、プロセ
スが膨大になってしまう。さらに、これらに加え設計変
更、指定温度の変更に際しては、以前の薄膜プロセスは
適用できず、素子形成後の指定値変更は不可能である。
[0005] The second is difficulty in thinning and processing. In thinning the film, strict control of the composition is further required. In addition, in order to be integrated or to combine materials at various designated temperatures, films having respective compositions must be separately deposited, and the process becomes enormous. Further, in addition to these, when changing the design and the designated temperature, the previous thin film process cannot be applied, and it is impossible to change the designated value after forming the element.

【0006】これら不都合に加え、医療分野、耐電磁ノ
イズの要求される分野および、防爆性の要求される分野
においては、電気的な回路、接点などを用いず、しかも
微小領域の温度を光によりセンシングする遠隔的な温度
センサが望まれているが、従来、このような温度センサ
はなかった。
In addition to these disadvantages, in the medical field, the field where electromagnetic noise resistance is required, and the field where explosion-proof property is required, electric circuits and contacts are not used, and the temperature of a minute area is controlled by light. Although a remote temperature sensor for sensing is desired, there has been no such temperature sensor conventionally.

【0007】本発明は、上記問題点に対して、指定温度
を精密に、しかも簡便に設定でき、かつ薄膜化プロセス
化が容易な感温磁性薄膜およびその作製法ならびに、こ
の薄膜を利用した、微小領域の温度を精度よく、遠隔的
に光によって検知する温度センサに関する技術を提供す
ることを目的としている。
In order to solve the above-mentioned problems, the present invention provides a temperature-sensitive magnetic thin film which can set a designated temperature precisely and easily, and which can be easily formed into a thin-film process. It is an object of the present invention to provide a technology related to a temperature sensor that accurately detects the temperature of a minute region remotely by light.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するた
め、本発明による感温磁性薄膜は、Pd、Pt、Ir、
Ru、Osから選ばれた元素を5atm%以下含有す
る、塩化セシウム結晶構造のFe−Rh系合金の薄膜上
に、部分的に厚さの異なる非磁性の薄膜が堆積されてな
ることを特徴とする。
In order to solve the above-mentioned problems, a temperature-sensitive magnetic thin film according to the present invention comprises Pd, Pt, Ir,
A non-magnetic thin film having a partially different thickness is deposited on a thin film of an Fe-Rh-based alloy having a cesium chloride crystal structure containing 5 atm% or less of an element selected from Ru and Os. I do.

【0009】また、本発明による感温磁性薄膜の作製方
法は、Pd、Pt、Ir、Ru、Osから選ばれた元素
を5atm%以下含有する、塩化セシウム結晶構造のF
e−Rh系合金薄膜を形成し、前記合金薄膜上に非磁性
の薄膜を不均一に堆積することを特徴とするものであ
る。
Further, the method for producing a temperature-sensitive magnetic thin film according to the present invention is directed to a method of forming a cesium chloride crystal structure containing 5 atm% or less of an element selected from Pd, Pt, Ir, Ru and Os.
An e-Rh alloy thin film is formed, and a non-magnetic thin film is non-uniformly deposited on the alloy thin film.

【0010】さらに本発明による感温磁性薄膜を使用し
た光検出型薄膜温度センサは、Pd、Pt、Ir、R
u、Osから選ばれた元素を5atm%以下含有する、
塩化セシウム結晶構造のFe−Rh系合金の薄膜上に、
部分的に厚さの異なる非磁性の薄膜が堆積されてなる感
温磁性薄膜と、前記感温磁性薄膜に直線偏光を入射する
手段と、前記直線偏光の前記感温磁性薄膜からの反射光
を検出する手段と、前記感温磁性薄膜の表面に略平行な
方向に磁場を印加する起磁力源とを有することを特徴と
するものである。
Further, the photodetection type thin film temperature sensor using the temperature-sensitive magnetic thin film according to the present invention comprises Pd, Pt, Ir, R
contains at least 5 atm% of an element selected from u and Os;
On a thin film of Fe-Rh alloy with cesium chloride crystal structure,
A temperature-sensitive magnetic thin film in which a non-magnetic thin film having a partially different thickness is deposited, a unit for inputting linearly polarized light to the temperature-sensitive magnetic thin film, and a reflected light of the linearly polarized light from the temperature-sensitive magnetic thin film. It has a detecting means and a magnetomotive force source for applying a magnetic field in a direction substantially parallel to the surface of the temperature-sensitive magnetic thin film.

【0011】本発明の特徴の一つは、キュリー温度にお
ける磁気特性の変化を利用するのではなく、Fe−Rh
系合金の薄膜における反強磁性から強磁性へ変化する磁
気相転移を利用する点である。Fe−50at%Rh近
傍組成の合金(Fe−45〜56at%Rh組成)はC
sClタイプのbcc規則合金となる。この規則合金
は、低温において反強磁性であるが、60℃〜100℃
において強磁性に遷移する。また、0〜5原子%のP
d、Pt、Ir、Ru、Osを前記合金に添加すると、
転移温度は50〜400℃程度の範囲で変化させること
ができる。転移温度において磁化のほとんどない状態か
ら不連続に磁化約1000G程度が発生するために、温
度センサや感熱駆動アクチュエータなど多くの応用の可
能性がある。このバルクにおける特性を薄膜で利用する
ことに着目している。
One of the features of the present invention is that instead of utilizing the change in magnetic properties at the Curie temperature, Fe-Rh
The point is to utilize the magnetic phase transition that changes from antiferromagnetic to ferromagnetic in a thin film of a system alloy. An alloy having a composition near Fe-50 at% Rh (Fe-45 to 56 at% Rh composition) is C
It becomes an sCl type bcc ordered alloy. This ordered alloy is antiferromagnetic at low temperatures, but at 60 ° C to 100 ° C.
Transitions to ferromagnetic. Also, 0-5 atomic% of P
When d, Pt, Ir, Ru, and Os are added to the alloy,
The transition temperature can be changed in the range of about 50 to 400 ° C. Since about 1000 G of magnetization is discontinuously generated from a state where there is almost no magnetization at the transition temperature, there are many applications such as a temperature sensor and a heat-sensitive actuator. We are focusing on utilizing the properties of this bulk in thin films.

【0012】特徴の二つ目は、上記Fe−Rh系合金薄
膜をまず基板上に作製してから、非磁性の薄膜をオーバ
ーコートする点である。このオーバーコート薄膜はFe
Rh薄膜に加わる応力を制御する目的で形成するもので
ある。Fe−Rh系合金における反強磁性−強磁性相転
移は、応力に敏感であり、バルクにおいては、100M
Paの静水圧(圧縮応力)あたり、5から6℃の相転移
点の増加が生じることが知られているが、静水圧下で素
子を形成するのは実用的でない。発明者らは、非磁性薄
膜オーバーコートという手法により、薄膜に適した、2
次元的な応力付与によって、転移点の制御ができること
を発見し、本発明に至ったのである。
The second feature is that the above-mentioned Fe-Rh alloy thin film is first formed on a substrate and then overcoated with a non-magnetic thin film. This overcoat thin film is made of Fe
It is formed for the purpose of controlling the stress applied to the Rh thin film. The antiferromagnetic-ferromagnetic phase transition in Fe-Rh based alloys is stress sensitive, and in bulk, 100M
It is known that the phase transition point increases by 5 to 6 ° C. per hydrostatic pressure (compression stress) of Pa, but it is not practical to form the element under hydrostatic pressure. The present inventors have proposed a method of overcoating non-magnetic thin films suitable for thin films.
The inventors have found that the transition point can be controlled by applying dimensional stress, leading to the present invention.

【0013】詳細は実施例にて後程述べるが、図1に、
薄膜構成の模式図、図2にオーバーコートによる磁化の
温度に対する挙動の変化の例を示した。図1において1
は基板、2はFe−Rh系合金薄膜、3は非磁性オーバ
ーコート薄膜を示す。また、図2において、Aがオーバ
ーコート前の厚さ2000ÅのFe51Rh49合金薄
膜をスパッタ法で形成して、1000℃でアニールした
後の磁化の温度変化を示すものである。この薄膜に厚さ
2000ÅのSiO2をスパッタ法で形成すると、Bの
ように相転移温度が高温側にシフトしていることがわか
る。これはオーバーコートによって、Fe−Rh系合金
薄膜に圧縮応力が加わったためである。このオーバーコ
ートによる応力付与で都合の良い点は、オーバーコート
の膜厚を変えることで、応力の大きさを簡便に制御でき
ることである。さらには、オーバーコートする際の薄膜
形成条件や材料を変えることによって、圧縮、引っ張り
の両応力を付与することもできる。このため、初めに形
成してあるFe−Rh系合金薄膜の磁気相転移点を高温
側にも、低温側にも、後から調整ができるという極めて
利便性に富む作製法である。加えて、薄膜全体のみなら
ず、薄膜一部領域だけの相転移温度の変更、あるいは、
温度に対する磁化変化量を任意にするということが可能
になる。
The details will be described later in an embodiment, but FIG.
FIG. 2 shows a schematic diagram of a thin film configuration, and FIG. 2 shows an example of a change in behavior of magnetization with temperature due to overcoating. In FIG. 1, 1
Indicates a substrate, 2 indicates an Fe-Rh alloy thin film, and 3 indicates a non-magnetic overcoat thin film. In FIG. 2, A represents the temperature change of the magnetization after the formation of a 2,000-mm-thick Fe51Rh49 alloy thin film by a sputtering method before overcoating and annealing at 1000 ° C. When SiO 2 having a thickness of 2000 ° is formed on this thin film by sputtering, it can be seen that the phase transition temperature shifts to a higher temperature side as shown in B. This is because a compressive stress was applied to the Fe-Rh alloy thin film by the overcoat. The advantage of applying the stress by the overcoat is that the magnitude of the stress can be easily controlled by changing the thickness of the overcoat. Furthermore, both compressive and tensile stresses can be applied by changing the thin film forming conditions and materials used for overcoating. Therefore, this is a very convenient manufacturing method in which the magnetic phase transition point of the initially formed Fe—Rh-based alloy thin film can be adjusted to a high temperature side or a low temperature side later. In addition, the change of the phase transition temperature of not only the whole thin film but also a part of the thin film, or
It is possible to make the amount of magnetization change with respect to temperature arbitrary.

【0014】ある設定温度において、オンオフする感温
スイッチを集積して、複数の異なる温度で各々スイッチ
ングする素子を形成しようとする際には、従来技術であ
れば、それぞれ別な組成の薄膜を別々に形成し集積化す
る必要があった。本発明によれば、もとになるFe−R
h系合金薄膜は同一のものを用いて、部分的に、コート
する非磁性薄膜の膜厚を変えることは容易である。ま
た、ある薄膜の領域において、非磁性薄膜の膜厚を連続
的に変化させる、すなわち、膜厚勾配をつけることも可
能となる。
When integrating temperature-sensitive switches that are turned on and off at a certain set temperature to form elements that switch at a plurality of different temperatures, a thin film having a different composition is separately formed according to the prior art. Formed and integrated. According to the present invention, the original Fe-R
Using the same h-based alloy thin film, it is easy to partially change the thickness of the non-magnetic thin film to be coated. Further, in a certain thin film region, the thickness of the nonmagnetic thin film can be continuously changed, that is, a film thickness gradient can be provided.

【0015】図3はオーバーコート薄膜3に膜厚勾配を
つけた際の構成の模式図である。オーバーコートに膜厚
勾配(分布)があると、Fe−Rh系合金に対する応力
にも勾配が生じ、転移温度にも分布が生じるため、温度
増加とともに、部分的に相転移が起き、徐々に磁化が増
加するという効果が現われる。これにより従来の材料で
は不可能であった。温度上昇とともに直線的に磁化増加
を示す薄膜材料の作製が可能になる。
FIG. 3 is a schematic view of a configuration when a film thickness gradient is applied to the overcoat thin film 3. If there is a film thickness gradient (distribution) in the overcoat, a gradient also occurs in the stress with respect to the Fe-Rh-based alloy, and the distribution also occurs in the transition temperature. Has the effect of increasing. This has been impossible with conventional materials. It becomes possible to produce a thin film material that shows a linear increase in magnetization with increasing temperature.

【0016】上記感温薄膜の作製法によって、薄膜の部
分部分で転移温度を変えれば、従来にできなかった温度
に対して非常に精密な、しかも微小領域で光によって遠
隔的に温度を検出するセンサができる。図4は、本発明
の光検出型薄膜温度センサの模式図である。41はFe
−Rh系合金薄膜、42は基板、43は永久磁石であ
り、ヨーク44を通して、膜面平行に磁場が印加されて
いる。一方、発光素子45からの光は光ファイバ46な
らびに、偏光子47をとおして偏光が薄膜41面に照射
される。薄膜41から反射した光は、カー効果によっ
て、磁化の大きさに対応して偏光面が回転した後、検光
子48、ファイバ49を通じて、受光素子410にて光
強度が検出される。温度上昇によって、Fe−Rh系合
金の磁化が発生するとそれに対応して受光強度が変化す
るために、温度を遠隔的に調べることができる。
If the transition temperature is changed in a portion of the thin film by the above-mentioned method for producing a temperature-sensitive thin film, the temperature can be detected very precisely in a very small area by using light, if the transition temperature is changed. A sensor can be made. FIG. 4 is a schematic view of a light detection type thin film temperature sensor according to the present invention. 41 is Fe
-A Rh-based alloy thin film, 42 is a substrate, 43 is a permanent magnet, and a magnetic field is applied through a yoke 44 parallel to the film surface. On the other hand, the light from the light emitting element 45 is irradiated on the surface of the thin film 41 through the optical fiber 46 and the polarizer 47. After the light reflected from the thin film 41 has its polarization plane rotated in accordance with the magnitude of magnetization by the Kerr effect, the light intensity is detected by the light receiving element 410 through the analyzer 48 and the fiber 49. When the temperature rise causes magnetization of the Fe-Rh alloy to occur, the received light intensity changes correspondingly, so that the temperature can be checked remotely.

【0017】光の照射、検出はファイバをもちずに、空
間を飛ばしても差し支えない。本発明の特徴は、薄膜4
1であり、図5に示すようにいくつかの部分411に別
れていて、それぞれ別な膜厚のオーバーコートがなされ
ている。すなわち、薄膜部分411はそれぞれ、異なる
温度で磁化発生する。この分割数、ならびに温度設定は
オーバーコートの種類、膜厚で指定の範囲に設定でき
る。各分割を多くするほど、温度に対する精度が向上す
る。プロセスの点からも、マスクをずらしながらオーバ
ーコートするなどすれば、各分割領域での膜厚の変化は
簡単である。また、分割しなくとも、オーバーコート薄
膜の膜厚に勾配があって、磁気相転移が温度に対して連
続的に発生させることもできる。従来技術で本センサと
同様の機能を持たせようとすると、薄膜部分411の各
々を別々の組成の感温材料薄膜を膜厚や組成の精度よく
形成する必要があったが、本発明によれば、格段に簡便
であることは明白であろう。
Light irradiation and detection may be performed in a space without using a fiber. The feature of the present invention is that the thin film 4
As shown in FIG. 5, it is divided into several portions 411, each of which has an overcoat of a different thickness. That is, each of the thin film portions 411 is magnetized at a different temperature. The number of divisions and the temperature setting can be set in a range specified by the type and film thickness of the overcoat. As the number of divisions increases, the accuracy with respect to temperature improves. From the viewpoint of the process, if the overcoat is performed while shifting the mask, the change in the film thickness in each divided region is easy. Also, even if the overcoat thin film is not divided, the thickness of the overcoat thin film has a gradient, and the magnetic phase transition can be continuously generated with respect to the temperature. In order to provide the same function as that of the present sensor in the prior art, it is necessary to form temperature-sensitive material thin films having different compositions with high precision in the thickness and composition of each of the thin film portions 411. Obviously, it would be much easier.

【0018】以下、実施例をあげて説明する。Hereinafter, an embodiment will be described.

【0019】[0019]

【実施例1】まず、非磁性オーバーコート薄膜の応力が
膜厚とともにどのように変化するか調べた。Si基板上
に、Arガス圧3×10-1Pa、パワー300Wの条件
でSiO2薄膜をスパッタリングにて膜厚を変化させて
作製した。これとは別にSi基板にECRプラズマCV
D法により、プラズマ形成ガスにArを、反応ガスとし
てSiH4/C24=1.15の流量比率でガス流量5
0sccm、基板温度700℃の条件でSiC薄膜を形
成した。それぞれの薄膜の膜厚と応力の関係を図6に示
す。スパッタで形成したSiO2は圧縮応力となり、E
CRプラズマCVDで形成したSiCは引っ張り応力と
なった。膜厚1000Åに対してそれぞれ2.3×10
8、−1.6×108Paの増加率で、膜厚に対して応力
は比例していた。
Example 1 First, it was examined how the stress of a non-magnetic overcoat thin film changes with the film thickness. On a Si substrate, an SiO 2 thin film was formed by sputtering under the conditions of an Ar gas pressure of 3 × 10 −1 Pa and a power of 300 W by changing the thickness by sputtering. Separately, ECR plasma CV on Si substrate
According to the D method, Ar was used as a plasma forming gas, and a gas flow rate of 5 was used as a reaction gas at a flow rate ratio of SiH 4 / C 2 H 4 = 1.15.
An SiC thin film was formed under the conditions of 0 sccm and a substrate temperature of 700 ° C. FIG. 6 shows the relationship between the thickness of each thin film and the stress. SiO 2 formed by sputtering becomes a compressive stress, and E 2
SiC formed by CR plasma CVD became tensile stress. 2.3 × 10 for each 1000Å
8 , the stress was proportional to the film thickness at an increasing rate of -1.6 × 10 8 Pa.

【0020】さて、Fe50Rh50合金薄膜、すなわ
ちFeとRhの1:1の組成の薄膜をArガス圧3×1
-1Pa、パワー150Wにてスパッタで石英基板に2
000Å形成して、1000℃でアニールした単層薄膜
は50℃で磁気相転移を示した。この薄膜の上に、前記
SiO2、SiCをそれぞれ応力測定時と同一条件で、
膜厚を変化させて、オーバーコートした。その結果、F
e50Rh50薄膜の相転移温度は図7のようになっ
た。オーバーコート薄膜単独での応力量を反映して、S
iO2膜の圧縮応力では高温側に、SiC膜の引っ張り
応力では低温側に転移点が変化していることがわかる。
膜厚に対する変化も直線関係で示されている。
Now, an Fe50Rh50 alloy thin film, that is, a thin film having a 1: 1 composition of Fe and Rh is prepared by Ar gas pressure 3 × 1.
Sputtering at 0 -1 Pa and power of 150 W onto quartz substrate
The single-layer thin film formed at 000 ° and annealed at 1000 ° C. exhibited a magnetic phase transition at 50 ° C. On this thin film, the SiO 2 and SiC were respectively applied under the same conditions as when the stress was measured.
Overcoating was performed by changing the film thickness. As a result, F
The phase transition temperature of the e50Rh50 thin film was as shown in FIG. Reflecting the stress amount of the overcoat thin film alone, S
It can be seen that the transition point changes to the high temperature side in the compressive stress of the iO 2 film and to the low temperature side in the tensile stress of the SiC film.
The change with respect to the film thickness is also shown in a linear relationship.

【0021】このように、オーバーコートが堆積する際
の応力を利用して、先に形成してあったFe−Rh系薄
膜の相転移温度を制御できること、しかもオーバーコー
ト薄膜の作製条件により、低温側にも高温側にも変化さ
せられることがわかる。スパッタで形成したSiNの薄
膜についても、図6、図7で示すように同様な効果が確
認された。オーバーコート薄膜は上記薄膜に限らず、非
磁性であれば、特に制限はない。なお、図6、図7図
中、△はSiC、○はSiO2、□はSiNの結果を示
すグラフである。
As described above, it is possible to control the phase transition temperature of the Fe-Rh-based thin film previously formed by utilizing the stress generated when the overcoat is deposited. It can be seen that both sides can be changed to the high temperature side. Similar effects were confirmed for the SiN thin film formed by sputtering, as shown in FIGS. The overcoat thin film is not limited to the above thin film, and is not particularly limited as long as it is nonmagnetic. 6 and 7 are graphs showing results for SiC, ○ for SiO 2 , and □ for SiN.

【0022】[0022]

【実施例2】実施例1と同様に、スパッタならびにアニ
ールしたFe50Rh50合金薄膜(膜厚2000Å)
に、図3のような構成でSiO2を膜厚に勾配を持たせ
て形成した。SiO2の作製条件は実施例1と同様であ
るが、基板とターゲットの間にシャッターを設けて、シ
ャッターを等速で移動させて、堆積させる膜厚を変え、
膜厚勾配を0から4000Åとしたものである。オーバ
ーコート後の温度に対する磁化変化を図8に示す。オー
バーコート薄膜の膜厚勾配を付与することによって、4
0℃から100℃にかけて、直線的に磁化増加が認めら
れた。この直線性を利用すれば、従来不可能であった、
連続的な磁化変化を検出して温度をモニターしたり、力
の大きさを制御したアクチュエータなどが形成できる。
[Embodiment 2] A Fe50Rh50 alloy thin film (thickness: 2000 Å) sputtered and annealed in the same manner as in Embodiment 1.
Then, SiO 2 was formed with a gradient in the film thickness in the configuration as shown in FIG. The conditions for producing SiO 2 were the same as in Example 1, except that a shutter was provided between the substrate and the target, the shutter was moved at a constant speed, and the film thickness to be deposited was changed.
The film thickness gradient is from 0 to 4000 °. FIG. 8 shows the change in magnetization with temperature after overcoating. By providing a film thickness gradient of the overcoat thin film, 4
From 0 ° C. to 100 ° C., a linear increase in magnetization was observed. If this linearity is used, it was impossible in the past.
The temperature can be monitored by detecting a continuous magnetization change, and an actuator or the like in which the magnitude of the force is controlled can be formed.

【0023】[0023]

【実施例3】Fe49Rh50Pd1なる組成の薄膜を
2000Å実施例1と同一条件でスパッタで形成、アニ
ールした、この薄膜は40℃で磁気相転移が発生した。
この同一薄膜を基板ごと0.5mm角に切断したものを
6個用意した。それぞれは、切断前と同じ相転移温度を
有している。これら小片ごと、膜厚を変えてSiO2
ーバーコートを施した。すなわち、膜厚0から800Å
きざみで膜厚を増やした。図9にそれぞれの磁化の温度
変化を示した。
Example 3 A thin film having a composition of Fe49Rh50Pd1 was formed by sputtering under the same conditions as in Example 1 at 2000 ° C. and annealed. This thin film showed a magnetic phase transition at 40 ° C.
Six pieces of the same thin film cut into a 0.5 mm square together with the substrate were prepared. Each has the same phase transition temperature as before cutting. Each of these small pieces was changed in film thickness and overcoated with SiO 2 . That is, the film thickness is from 0 to 800 °
The film thickness was increased in increments. FIG. 9 shows the temperature change of each magnetization.

【0024】これらを、図4で示したような構成とし
て、光検出型温度センサを作製した。この図中で、Fe
−Rh合金薄膜41はこの場合前記小片を配列してスラ
イド硝子に固定した。永久磁石43にはNdFeB(B
r:1.5T)を、光照射にはファイバを用いず、He
Ne(波長630nm)を用いフォトマルで検出した。
上記のような構成のセンサのプローブに対応する磁性膜
の集合体の裏面にヒータと熱電対を配置して、温度上昇
させた際の光強度を測定した。
These were configured as shown in FIG. 4 to produce a light detection type temperature sensor. In this figure, Fe
In this case, the small pieces of the Rh alloy thin film 41 were arranged and fixed to a slide glass. NdFeB (B
r: 1.5T), using He without using fiber for light irradiation.
It was detected by photomultiplier using Ne (wavelength 630 nm).
A heater and a thermocouple were arranged on the back surface of the magnetic film assembly corresponding to the probe of the sensor having the above configuration, and the light intensity when the temperature was increased was measured.

【0025】結果は図10のように、各小片の磁化変化
に対応した光出力が得られ、センサとしての有用性が示
された。この例の場合にはオーバーコート膜厚の違う小
片を集合させ、また、磁石と組み合わせたが、磁石やプ
ローブは薄膜プロセスで一体形成できることは言うまで
もない。
As a result, as shown in FIG. 10, an optical output corresponding to a change in the magnetization of each small piece was obtained, indicating the usefulness as a sensor. In this example, small pieces having different overcoat film thicknesses were assembled and combined with a magnet. Needless to say, the magnet and the probe can be integrally formed by a thin film process.

【0026】[0026]

【発明の効果】以上説明したように、本発明の感温磁性
薄膜およびその作製方法を用いれば、指定温度を任意
に、しかも精密に制御できる感温磁性薄膜が簡便に作製
でき、且つ薄膜化、プロセス化が容易で、感温設定を修
正できる感温磁性薄膜の作製法ならびに、微小領域の温
度を精度よく、遠隔的に光によって検知する薄膜温度セ
ンサが実現できるという利点がある。
As described above, by using the temperature-sensitive magnetic thin film and the method of manufacturing the same according to the present invention, a temperature-sensitive magnetic thin film capable of arbitrarily and precisely controlling a designated temperature can be easily manufactured. There is an advantage that a method of manufacturing a temperature-sensitive magnetic thin film that can be easily processed and whose temperature-sensitive setting can be corrected, and a thin-film temperature sensor that accurately and remotely detects the temperature of a minute region by light can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一例の構成図。FIG. 1 is a configuration diagram of an example of the present invention.

【図2】オーバーコートによる磁化−温度特性の変化を
示す図。
FIG. 2 is a diagram showing a change in magnetization-temperature characteristics due to overcoating.

【図3】本発明の他の具体例の構成図。FIG. 3 is a configuration diagram of another specific example of the present invention.

【図4】本発明の光検出型薄膜検知センサの一例の模式
図。
FIG. 4 is a schematic view of an example of a light detection type thin film detection sensor according to the present invention.

【図5】合金薄膜の拡大図。FIG. 5 is an enlarged view of an alloy thin film.

【図6】実施例1におけるオーバーコートの膜厚と応力
の関係を示す図。
FIG. 6 is a diagram showing the relationship between the thickness of an overcoat and stress in Example 1.

【図7】実施例1におけるオーバーコートの膜厚と磁気
相転移温度の関係を示す図。
FIG. 7 is a diagram showing the relationship between the thickness of the overcoat and the magnetic phase transition temperature in Example 1.

【図8】実施例2におけるオーバーコート後の薄膜の磁
化の温度変化を示す図。
FIG. 8 is a diagram showing a temperature change in magnetization of a thin film after overcoating in Example 2.

【図9】実施例3におけるオーバーコート後の薄膜の磁
化の温度変化を示す図。
FIG. 9 is a diagram showing a temperature change in magnetization of a thin film after overcoating in Example 3.

【図10】実施例3における温度変化に対応した光検出
強度を示す図。
FIG. 10 is a diagram illustrating light detection intensity corresponding to a temperature change in the third embodiment.

【符号の説明】[Explanation of symbols]

1 基板 2 Fe−Rh系合金薄膜 3 オーバーコート薄膜 41 Fe−Rh系合金薄膜 42 基板 43 永久磁石 44 ヨーク 45 発光素子 46 光ファイバ 47 偏光子 48 検光子 49 ファイバ 410 受光素子 411 薄膜部分 DESCRIPTION OF SYMBOLS 1 Substrate 2 Fe-Rh alloy thin film 3 Overcoat thin film 41 Fe-Rh alloy thin film 42 Substrate 43 Permanent magnet 44 Yoke 45 Light emitting element 46 Optical fiber 47 Polarizer 48 Analyzer 49 Fiber 410 Light receiving element 411 Thin film part

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−5174(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01F 10/00 - 10/32 G01K 1/00 - 19/00 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-6-5174 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01F 10/00-10/32 G01K 1 / 00-19/00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Pd、Pt、Ir、Ru、Osから選ばれ
た元素を5atm%以下含有する、塩化セシウム結晶構
造のFe−Rh系合金の薄膜上に、部分的に厚さの異な
る非磁性の薄膜が堆積されてなることを特徴とする感温
磁性薄膜。
1. A non-magnetic layer having a partially different thickness on a thin film of an Fe-Rh-based alloy having a cesium chloride crystal structure containing 5 atm% or less of an element selected from Pd, Pt, Ir, Ru, and Os. 1. A temperature-sensitive magnetic thin film comprising a thin film deposited thereon.
【請求項2】前記非磁性の薄膜が、SiO2、SiC、
SiNから選ばれた1種以上であることを特徴とする請
求項1記載の感温性磁性薄膜。
2. The method according to claim 1, wherein the non-magnetic thin film is made of SiO 2 , SiC,
The temperature-sensitive magnetic thin film according to claim 1, wherein the magnetic thin film is at least one selected from SiN.
【請求項3】Pd、Pt、Ir、Ru、Osから選ばれ
た元素を5atm%以下含有する、塩化セシウム結晶構
造のFe−Rh系合金薄膜を形成し、前記合金薄膜上に
非磁性の薄膜を不均一に堆積することを特徴とする感温
性磁性薄膜の作製方法。
3. An Fe-Rh-based alloy thin film having a cesium chloride crystal structure containing 5 atm% or less of an element selected from Pd, Pt, Ir, Ru, and Os, and a non-magnetic thin film is formed on the alloy thin film. The method for producing a temperature-sensitive magnetic thin film, comprising depositing non-uniformly.
【請求項4】前記非磁性の薄膜が、SiO2、SiC、
SiNから選ばれた1種以上であることを特徴とする請
求項3記載の感温性磁性薄膜の作製方法。
4. The method according to claim 1, wherein the non-magnetic thin film is made of SiO 2 , SiC,
The method for producing a temperature-sensitive magnetic thin film according to claim 3, wherein at least one kind is selected from SiN.
【請求項5】Pd、Pt、Ir、Ru、Osから選ばれ
た元素を5atm%以下含有する、塩化セシウム結晶構
造のFe−Rh系合金の薄膜上に、部分的に厚さの異な
る非磁性の薄膜が堆積されてなる感温磁性薄膜と、前記
感温磁性薄膜に直線偏光を入射する手段と、前記直線偏
光の前記感温磁性薄膜からの反射光を検出する手段と、
前記感温磁性薄膜の表面に略平行な方向に磁場を印加す
る起磁力源とを有することを特徴とする光検出型薄膜温
度センサ。
5. A nonmagnetic layer having a partially different thickness on a thin film of an Fe—Rh alloy having a cesium chloride crystal structure containing 5 atm% or less of an element selected from Pd, Pt, Ir, Ru, and Os. A temperature-sensitive magnetic thin film formed by depositing a thin film, means for inputting linearly polarized light to the temperature-sensitive magnetic thin film, and means for detecting reflected light of the linearly polarized light from the temperature-sensitive magnetic thin film,
And a magnetomotive force source for applying a magnetic field in a direction substantially parallel to the surface of the temperature-sensitive magnetic thin film.
JP06661194A 1994-03-10 1994-03-10 Temperature-sensitive magnetic thin film, fabrication method thereof, and light detection type thin film temperature sensor Expired - Fee Related JP3312637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06661194A JP3312637B2 (en) 1994-03-10 1994-03-10 Temperature-sensitive magnetic thin film, fabrication method thereof, and light detection type thin film temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06661194A JP3312637B2 (en) 1994-03-10 1994-03-10 Temperature-sensitive magnetic thin film, fabrication method thereof, and light detection type thin film temperature sensor

Publications (2)

Publication Number Publication Date
JPH07249517A JPH07249517A (en) 1995-09-26
JP3312637B2 true JP3312637B2 (en) 2002-08-12

Family

ID=13320879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06661194A Expired - Fee Related JP3312637B2 (en) 1994-03-10 1994-03-10 Temperature-sensitive magnetic thin film, fabrication method thereof, and light detection type thin film temperature sensor

Country Status (1)

Country Link
JP (1) JP3312637B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100590211B1 (en) 2002-11-21 2006-06-15 가부시키가이샤 덴소 Magnetic impedance device, sensor apparatus using the same and method for manufacturing the same
JP4849653B2 (en) * 2004-04-22 2012-01-11 大阪シーリング印刷株式会社 Temperature sensing member and temperature sensing method
JP6805088B2 (en) * 2017-06-15 2020-12-23 日本電信電話株式会社 Optical waveguide and its manufacturing method

Also Published As

Publication number Publication date
JPH07249517A (en) 1995-09-26

Similar Documents

Publication Publication Date Title
Hunter et al. Giant magnetostriction in annealed Co1− xFex thin-films
Basantkumar et al. Integration of thin-film galfenol with MEMS cantilevers for magnetic actuation
US4748089A (en) Multilayered ferromagnetic amorphous alloy film and magnetic head employing the same
US5585196A (en) Magnetoresistance effect element
US7463447B2 (en) Magnetic thin film sensor based on the extraordinary Hall effect
WO2004109725A1 (en) Method of manufacturing a device with a magnetic layer-structure
JP2612997B2 (en) Magnetoresistance read transducer
Vasiliev et al. Annealing behaviour and crystal structure of RF-sputtered Bi-substituted dysprosium iron-garnet films having excess co-sputtered Bi-oxide content
JP3312637B2 (en) Temperature-sensitive magnetic thin film, fabrication method thereof, and light detection type thin film temperature sensor
CN107887103A (en) A kind of magneto-resistance film material and preparation method thereof
Lim et al. Application-related properties of giant magnetostrictive thin films
KR20050051655A (en) Magnetoresistance effect element and production method and application method therefor
Yang et al. rf‐diode sputtered Permalloy film
JPH01148928A (en) Stress sensor
JPS59226882A (en) Magnetic signal converting element
Sharp et al. Unidirectional anisotropy in multilayer films of Cr and NiFe
JPH09113379A (en) Thin film temperature sensor and use thereof
Ohmori et al. Thin Film Magneto-Impedance Sensor Integrated Into ${\rm L} 1_ {0} $ FePt Thin Film Bias Magnet
JPH0499005A (en) Magnetostriction film
JP2871990B2 (en) Magnetoresistive element thin film
KR0180590B1 (en) Granular magnetroresistane element and its manufacture
JPS6421977A (en) Magnetoresistance element
JPH0499006A (en) Magnetostriction film for magnetostriction
JP3551134B2 (en) Method for manufacturing magnetic tunnel effect element
RU2128819C1 (en) Magnetoresistive element and process of its manufacture

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100531

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100531

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110531

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120531

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees