JP3311454B2 - Alkaline zinc secondary battery - Google Patents

Alkaline zinc secondary battery

Info

Publication number
JP3311454B2
JP3311454B2 JP34173193A JP34173193A JP3311454B2 JP 3311454 B2 JP3311454 B2 JP 3311454B2 JP 34173193 A JP34173193 A JP 34173193A JP 34173193 A JP34173193 A JP 34173193A JP 3311454 B2 JP3311454 B2 JP 3311454B2
Authority
JP
Japan
Prior art keywords
zinc
battery
diester
negative electrode
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34173193A
Other languages
Japanese (ja)
Other versions
JPH07161357A (en
Inventor
睦 矢野
光造 野上
晃治 西尾
俊彦 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP34173193A priority Critical patent/JP3311454B2/en
Publication of JPH07161357A publication Critical patent/JPH07161357A/en
Application granted granted Critical
Publication of JP3311454B2 publication Critical patent/JP3311454B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、アルカリ亜鉛二次電池
に係わり、詳しくはサイクル特性を改善することを目的
とした、負極の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alkaline zinc secondary battery, and more particularly to an improvement in a negative electrode for the purpose of improving cycle characteristics.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】電解質
にアルカリ水溶液を用いたアルカリ二次電池としては、
ニッケル−カドミウム二次電池、ニッケル−鉄二次電
池、ニッケル−亜鉛二次電池などが知られているが、上
記ニッケル−亜鉛二次電池のように負極活物質として亜
鉛を用いた電池は、亜鉛電極が高エネルギー密度であ
り、且つ、安価であるという利点があるため、電気自動
車用の電源等として注目されている。
2. Description of the Related Art As an alkaline secondary battery using an alkaline aqueous solution as an electrolyte,
Nickel-cadmium secondary batteries, nickel-iron secondary batteries, nickel-zinc secondary batteries, and the like are known. Batteries using zinc as a negative electrode active material, such as the above-mentioned nickel-zinc secondary batteries, are known as zinc electrodes. Has high energy density and is inexpensive, and thus has attracted attention as a power source for electric vehicles.

【0003】しかしながら、負極活物質である亜鉛はア
ルカリ電解液への溶解度が大きく、亜鉛錯イオン〔Zn
(OH)4 2-〕としてアルカリ電解液中に溶出して亜鉛
極が変形するため、充放電を繰り返すうちに電池容量が
次第に低下するという問題があった。すなわち、負極活
物質として亜鉛を用いた場合は、安価に製造でき、しか
も高容量化が可能であるという利点がある反面、亜鉛が
電解液中に溶出し易いためサイクル特性が良くないとい
う欠点があるのである。
[0003] However, zinc, which is a negative electrode active material, has a high solubility in an alkaline electrolyte, and a zinc complex ion [Zn
(OH) 4 2- ], which elutes in the alkaline electrolyte and deforms the zinc electrode, causing a problem that the battery capacity gradually decreases during repeated charging and discharging. That is, when zinc is used as the negative electrode active material, there is an advantage that it can be manufactured at a low cost and that the capacity can be increased, but there is a disadvantage that the cycle characteristics are not good because zinc is easily eluted into the electrolyte solution. There is.

【0004】本発明は、以上の事情に鑑みなされたもの
であって、その目的とするところは、亜鉛を負極活物質
とするアルカリ亜鉛二次電池のサイクル特性を改善する
ことにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to improve the cycle characteristics of an alkaline zinc secondary battery using zinc as a negative electrode active material.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
の本発明に係るアルカリ亜鉛二次電池(以下「本発明電
池」と称する。)は、正極と、酸化亜鉛、金属亜鉛及び
結着剤を有する負極と、アルカリ電解液とを備えるアル
カリ亜鉛二次電池おいて、前記負極に下記化5で示すリ
ン酸ジエステル又は下記化6で示すリン酸トリエステル
が、これらリン酸ジエステル又はリン酸トリエステル、
前記酸化亜鉛、前記金属亜鉛及び前記結着剤の総量に対
して0.05〜0.20重量%の割合で添加されてな
る。
In order to achieve the above object, an alkaline zinc secondary battery according to the present invention (hereinafter referred to as "battery of the present invention") comprises a positive electrode, zinc oxide, zinc metal and a binder. In an alkaline zinc secondary battery provided with a negative electrode having the formula: and an alkaline electrolyte, the negative electrode is provided with a phosphoric diester represented by the following formula (5) or a phosphate triester represented by the following formula (6): ester,
It is added at a ratio of 0.05 to 0.20% by weight based on the total amount of the zinc oxide, the metal zinc and the binder.

【0006】[0006]

【化5】 Embedded image

【0007】〔但し、式中、MはH、Na又はK、nは
1〜10の整数、R1 は炭素数1〜4のアルキル基であ
る。〕
Wherein M is H, Na or K, n is an integer of 1 to 10, and R 1 is an alkyl group having 1 to 4 carbon atoms. ]

【0008】[0008]

【化6】 Embedded image

【0009】〔但し、式中、qは1〜10の整数、R2
は炭素数1〜4のアルキル基である。〕
[Wherein, q is an integer of 1 to 10, R 2
Is an alkyl group having 1 to 4 carbon atoms. ]

【0010】本発明におけるリン酸ジエステル又はリン
酸トリエステル(以下、リン酸ジエステル等と称するこ
とがある。)の添加量が、このリン酸ジエステル等、前
記酸化亜鉛、前記金属亜鉛及び前記結着剤の総量に対し
て0.05〜0.20重量%に規制されるのは、同添加
量が0.05重量%未満の場合は、亜鉛表面に吸着され
るリン酸ジエステル等の量が少な過ぎるため、アルカリ
電解液中への亜鉛の溶出を充分に抑制できず、サイクル
特性を充分に改善することができないからであり、一方
同添加量が0.20重量%を越える場合は、亜鉛表面に
吸着されるリン酸ジエステル等の量が多過ぎるため、ア
ルカリ電解液中に亜鉛が溶出する放電時にその溶出量が
少なくなって、放電反応が阻害され、サイクル特性が低
下するからである。
In the present invention, the amount of the phosphoric diester or phosphoric triester (hereinafter may be referred to as phosphoric diester, etc.) is determined by the amount of the phosphoric diester, the zinc oxide, the metallic zinc, and the binder. The reason why the amount is limited to 0.05 to 0.20% by weight based on the total amount of the agent is that when the amount is less than 0.05% by weight, the amount of the phosphoric diester or the like adsorbed on the zinc surface is small. This is because it is not possible to sufficiently suppress the elution of zinc into the alkaline electrolyte and the cycle characteristics cannot be sufficiently improved. On the other hand, if the amount exceeds 0.20% by weight, the zinc surface This is because the amount of the phosphoric diester or the like adsorbed on the surface is too large, and the amount of zinc eluted in the alkaline electrolyte is reduced at the time of discharge, and the discharge reaction is inhibited, and the cycle characteristics are reduced.

【0011】特に、リン酸ジエステル等の添加量を0.
10〜0.15重量%に規制すると、充放電サイクル初
期における電池容量の低下が極めて小さくなり、サイク
ル特性に特に優れたアルカリ亜鉛二次電池を得ることが
可能となる。
In particular, the amount of the phosphoric acid diester or the like added is set to 0.1.
When the content is regulated to 10 to 0.15% by weight, the decrease in the battery capacity at the beginning of the charge / discharge cycle is extremely small, and it is possible to obtain an alkaline zinc secondary battery having particularly excellent cycle characteristics.

【0012】上記化5及び化6においてエチレンオキサ
イドの繰り返し単位数n及びqが10以下に規制される
のは、繰り返し単位数n及びqが11以上になると亜鉛
表面へのリン酸ジエステル等の吸着力が強くなり過ぎる
ため、放電時における亜鉛の溶出が少なくなり、サイク
ル特性が低下するからである。
In the above chemical formulas (5) and (6), the number of repeating units n and q of ethylene oxide is regulated to 10 or less because, when the number of repeating units n and q is 11 or more, adsorption of phosphate diester or the like on the zinc surface. This is because the strength becomes too strong, so that the elution of zinc during discharge decreases, and the cycle characteristics deteriorate.

【0013】上記化5及び化6においてアルキル基R1
及びR2 の炭素数が4以下に規制されるのは、アルキル
基R1 及びR2 の炭素数が5以上になると、亜鉛表面へ
のリン酸ジエステル等の吸着力が強くなり過ぎて、サイ
クル特性が低下するからである。
In the above formulas (5) and (6), the alkyl group R 1
And the carbon number of R 2 is regulated to 4 or less because, when the carbon number of the alkyl groups R 1 and R 2 is 5 or more, the adsorbing power of the phosphoric diester or the like on the zinc surface becomes too strong, and the cycle is reduced. This is because the characteristics deteriorate.

【0014】なお、亜鉛表面に対するリン酸ジエステル
等の吸着力は、上記エチレンオキサイドの繰り返し単位
数n及びqが1〜10の範囲では略ね等しく、またアル
キル基R1 及びR2 の炭素数が4以下では概ね等しい。
したがって、エチレンオキサイドの繰り返し単位数n及
びqが1〜10の範囲で、且つ、アルキル基R1 及びR
2 の炭素数が4以下であるリン酸ジエステル等を添加す
る場合、添加量が同じであれば、上記繰り返し単位数n
や炭素数に係わらず略ね同等の優れたサイクル特性が発
揮される。
The adsorbing power of phosphoric diester or the like on the zinc surface is substantially equal when the number of repeating units n and q of the ethylene oxide is in the range of 1 to 10, and the number of carbon atoms of the alkyl groups R 1 and R 2 is substantially the same. Below four, they are approximately equal.
Therefore, the number of repeating units n and q of ethylene oxide is in the range of 1 to 10, and the alkyl groups R 1 and R
When adding a phosphoric diester or the like having 2 or less 4 carbon atoms, the number of repeating units n is the same if the addition amount is the same.
Approximately the same excellent cycle characteristics are exhibited regardless of the carbon number.

【0015】[0015]

【作用】負極に添加されたリン酸ジエステル又はリン酸
トリエステルが亜鉛の表面に吸着されるので、アルカリ
電解液中に亜鉛が溶出する放電時に必要量以上の亜鉛の
溶出が抑制され、しかも、放電時以外の亜鉛の溶出を防
止すべきときにも亜鉛の溶出が十分に抑制される。
Since the phosphate diester or phosphate triester added to the negative electrode is adsorbed on the surface of zinc, the elution of more zinc than necessary at the time of discharge in which zinc elutes in the alkaline electrolyte is suppressed. The elution of zinc is sufficiently suppressed even when the elution of zinc is to be prevented except at the time of discharging.

【0016】[0016]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, and the present invention may be practiced by appropriately changing the gist of the invention. Is possible.

【0017】(実施例1)単3型(AAサイズ)のアル
カリ亜鉛二次電池(本発明電池)を作製した。
Example 1 AA type (AA size) alkaline zinc secondary batteries (batteries of the present invention) were prepared.

【0018】〔正極〕ニッケル粉末と結着剤としてのメ
チルセルロースとを混練して調製したスラリーをパンチ
ングメタル(芯体)に塗布した後、約900°Cで焼結
して多孔度85%のニッケル焼結基板を作製した。次い
で、このニッケル焼結基板を、硝酸コバルト、硝酸カド
ミウム及び硝酸亜鉛を含有する硝酸ニッケル水溶液に浸
漬した後、アルカリ水溶液中に浸漬して中和させるとい
う活物質含浸工程を6回繰り返した。次に、この活物質
を含浸したニッケル焼結極板をアルカリ水溶液中で極板
容量の25%まで充電した後、完全放電して極板内の不
純物を除去することにより、正極を作製した。
[Positive Electrode] A slurry prepared by kneading nickel powder and methylcellulose as a binder is applied to a punching metal (core), and then sintered at about 900 ° C. to obtain nickel having a porosity of 85%. A sintered substrate was produced. Then, the nickel-sintered substrate was immersed in a nickel nitrate aqueous solution containing cobalt nitrate, cadmium nitrate, and zinc nitrate, and then immersed in an alkaline aqueous solution to neutralize the active material. Next, the nickel sintered electrode impregnated with the active material was charged to 25% of the electrode plate capacity in an alkaline aqueous solution, and then completely discharged to remove impurities in the electrode plate, thereby producing a positive electrode.

【0019】〔負極〕負極活物質としての酸化亜鉛粉末
及び金属亜鉛粉末をそれぞれ70重量%及び25重量%
と、リン酸ジエステル(前記化5中の、Mが水素、nが
5、R1 がプロピル基であるもの)0.10重量%と
を、結着剤としてのポリテトラフルオロエチレン4.9
重量%の水懸濁液(ディスパージョン)に分散させてス
ラリーを調製した。次いで、このスラリーを圧延ロール
を用いて圧延して所定厚さのシートを作製した後、この
シートをパンチングメタル(厚さ0.1mm)の両面に
付着させ、更に圧延することにより負極(厚さ0.8m
m)を作製した。
[Negative electrode] 70% by weight and 25% by weight of zinc oxide powder and zinc metal powder as negative electrode active materials, respectively.
And 0.10% by weight of a phosphoric diester (wherein M is hydrogen, n is 5, and R 1 is a propyl group in Chemical Formula 5), and 4.9 as polytetrafluoroethylene as a binder.
A slurry was prepared by dispersing in a weight-% water suspension (dispersion). Next, the slurry is rolled using a rolling roll to produce a sheet having a predetermined thickness. The sheet is attached to both surfaces of a punching metal (thickness: 0.1 mm), and further rolled to form a negative electrode (thickness). 0.8m
m) was prepared.

【0020】〔アルカリ電解液〕酸化亜鉛を飽和させた
30重量%のKOH水溶液を調製した。
[Alkaline Electrolyte] A 30% by weight aqueous solution of KOH saturated with zinc oxide was prepared.

【0021】〔電池の作製〕以上の正負両極及びアルカ
リ電解液を用いて単3型の本発明電池BA1を作製し
た。なお、セパレータとしては、ポリプロピレン製の微
多孔膜(ヘキストセラニーズ社製、商品名「セルガー
ド」)を使用し、これに先のアルカリ電解液を含浸させ
た。
[Preparation of Battery] AA type battery BA1 of the present invention was prepared using the above positive and negative electrodes and an alkaline electrolyte. As a separator, a polypropylene microporous membrane (manufactured by Hoechst Celanese Co., Ltd., trade name "Celgard") was used, and this was impregnated with the alkaline electrolyte.

【0022】図1は作製した本発明電池BA1を模式的
に示す断面図であり、図示の本発明電池BA1は、正極
1、負極2、これら両電極を離間するセパレータ3、正
極リード4、負極リード5、正極外部端子6、負極缶7
などからなる。正極1及び負極2は、電解液を注入され
たセパレータ3を介して渦巻き状に巻き取られた状態
で、負極缶7内に収容されており、正極1は正極リード
4を介して正極外部端子6に、また負極2は負極リード
5を介して負極缶7に接続され、電池内部で生じた化学
エネルギーを電気エネルギーとして外部へ取り出し得る
ようになっている。
FIG. 1 is a cross-sectional view schematically showing a battery BA1 of the present invention produced. The battery BA1 of the present invention includes a positive electrode 1, a negative electrode 2, a separator 3 separating these two electrodes, a positive electrode lead 4, and a negative electrode. Lead 5, positive external terminal 6, negative can 7
Etc. The positive electrode 1 and the negative electrode 2 are housed in a negative electrode can 7 while being spirally wound through a separator 3 into which an electrolytic solution has been injected, and the positive electrode 1 is connected to a positive electrode terminal via a positive electrode lead 4. 6, and the negative electrode 2 is connected to a negative electrode can 7 via a negative electrode lead 5, so that chemical energy generated inside the battery can be extracted to the outside as electric energy.

【0023】(実施例2)リン酸ジエステルに代えてリ
ン酸トリエステル(前記化6中の、qが5、R2がプロ
ピル基であるもの)を0.10重量%添加混合したこと
以外は実施例1と同様にして、負極を作製した。次い
で、この負極を用いたこと以外は実施例1と同様にし
て、単3型の本発明電池BA2を作製した。
(Example 2) Except that 0.10% by weight of a phosphoric acid triester (wherein q is 5 and R 2 is a propyl group) in the above formula (6) was added and mixed in place of the phosphoric acid diester. A negative electrode was produced in the same manner as in Example 1. Subsequently, an AA battery BA2 of the present invention was produced in the same manner as in Example 1 except that this negative electrode was used.

【0024】(比較例1)リン酸ジエステルを添加混合
しなかったこと以外は実施例1と同様にして、負極を作
製した。次いで、この負極を用いたこと以外は実施例1
と同様にして、単3型の比較電池BC1を作製した。
Comparative Example 1 A negative electrode was produced in the same manner as in Example 1 except that the phosphoric diester was not added and mixed. Then, Example 1 was repeated except that this negative electrode was used.
In the same manner as in the above, an AA comparative battery BC1 was produced.

【0025】〔サイクル特性〕本発明電池BA1、BA
2及び比較電池BC1(1サイクル目の放電容量はいず
れも700mAhである。)について、1/4Cの電流
で6時間充電した後、1/4Cの電流で放電終止電圧
1.3Vまで放電して、各電池のサイクル特性を調べ
た。結果を図2に示す。なお、放電容量が1サイクル目
の放電容量の70%まで減少した時点を電池寿命と考
え、その時点で試験を終了した。
[Cycle characteristics] Batteries BA1, BA of the present invention
2 and the comparative battery BC1 (the discharge capacity at the first cycle was 700 mAh) were charged at a current of 1/4 C for 6 hours, and then discharged at a current of 1/4 C to a discharge end voltage of 1.3 V. The cycle characteristics of each battery were examined. The results are shown in FIG. The time when the discharge capacity decreased to 70% of the discharge capacity in the first cycle was considered as the battery life, and the test was terminated at that time.

【0026】図2は、各電池のサイクル特性を、縦軸に
電池容量残存率(%)を、また横軸にサイクル数(回)
をとって示したグラフであり、同図に示すように本発明
電池BA1、BA2では電池寿命が250サイクル以上
と長いのに対して、比較電池BC1では電池寿命が約1
75サイクルと短い。このことから、亜鉛の溶出に起因
する放電容量の低下が、負極にリン酸ジエステル又はリ
ン酸トリエステルを添加することにより顕著に抑制され
ることが分かる。
FIG. 2 shows the cycle characteristics of each battery, the vertical axis shows the remaining battery capacity ratio (%), and the horizontal axis shows the number of cycles (times).
The battery life of the batteries BA1 and BA2 of the present invention is as long as 250 cycles or more, while the battery life of the comparative battery BC1 is about 1 as shown in FIG.
It is as short as 75 cycles. This indicates that the decrease in discharge capacity due to the elution of zinc is significantly suppressed by adding phosphoric diester or phosphoric triester to the negative electrode.

【0027】〈リン酸ジエステルの添加量とサイクル特
性との関係〉上記リン酸ジエステルの添加量を0.02
5重量%、0.05重量%、0.15重量%、0.20
重量%、0.225重量%又は0.25重量%としたこ
と以外は実施例1と同様にして、本発明電池及び比較電
池を作製した。なお、このようにリン酸ジエステルの添
加量を変化させたことに伴い、リン酸ジエステルと結着
剤との総量が5重量%となるように結着剤の添加量も同
時に変化させた。次いで、先と同じ条件で充放電サイク
ル試験を行って各電池のサイクル寿命を求め、リン酸ジ
エステルの添加量とサイクル特性との関係を調べた。結
果を図3に示す。なお、図3には、先の図2に示した本
発明電池BA1(リン酸ジエステルの添加量:0.10
重量%)及び比較電池BC1(リン酸ジエステル無添
加)のサイクル寿命も、比較の便宜のために示してあ
る。
<Relationship between addition amount of phosphoric diester and cycle characteristics>
5% by weight, 0.05% by weight, 0.15% by weight, 0.20%
A battery of the present invention and a comparative battery were produced in the same manner as in Example 1 except that the content was changed to 0.2% by weight, 0.225% by weight, or 0.25% by weight. In addition, with the addition amount of the phosphate diester being changed in this way, the addition amount of the binder was also changed so that the total amount of the phosphate diester and the binder was 5% by weight. Next, a charge / discharge cycle test was performed under the same conditions as above to determine the cycle life of each battery, and the relationship between the amount of phosphoric acid diester added and the cycle characteristics was examined. The results are shown in FIG. FIG. 3 shows the battery BA1 of the present invention shown in FIG. 2 (addition amount of phosphoric diester: 0.10).
(% By weight) and the cycle life of the comparative battery BC1 (without addition of phosphoric diester) are also shown for convenience of comparison.

【0028】図3は、各電池のサイクル特性を、縦軸に
サイクル寿命(回)を、また横軸にリン酸ジエステルの
添加量(重量%)をとって示したグラフであり、同図に
示すようにリン酸ジエステルの添加量を0.05〜0.
20重量%とした場合に、優れたサイクル特性を示すア
ルカリ亜鉛二次電池が得られることが分かる。したがっ
て、リン酸ジエステルの添加量は、リン酸ジエステル、
酸化亜鉛、金属亜鉛及び結着剤の総量に対して0.05
〜0.20重量%に規制する必要がある。
FIG. 3 is a graph showing the cycle characteristics of each battery, the vertical axis showing the cycle life (times), and the horizontal axis showing the amount of phosphoric acid diester added (% by weight). As shown, the addition amount of the phosphoric diester was 0.05 to 0.1.
It can be seen that when the content is 20% by weight, an alkaline zinc secondary battery having excellent cycle characteristics can be obtained. Therefore, the addition amount of the phosphoric diester, the phosphoric diester,
0.05 with respect to the total amount of zinc oxide, metallic zinc and binder
It has to be regulated to 0.20% by weight.

【0029】なお、上記リン酸トリエステル(前記化6
中の、qが5、R2 がプロピル基であるもの)について
も同様にその添加量を変化させ、リン酸トリエステルの
添加量とサイクル特性との関係を調べた。その結果、上
記リン酸ジエステルの場合と全く同様の試験結果を得
た。したがって、リン酸トリエステルの添加量は、リン
酸トリエステル、酸化亜鉛、金属亜鉛及び結着剤の総量
に対して0.05〜0.20重量%に規制する必要があ
る。
The above-mentioned phosphoric acid triester (the above-mentioned chemical formula 6)
(Wherein q is 5 and R 2 is a propyl group), the amount of addition was also changed, and the relationship between the amount of addition of the phosphoric acid triester and the cycle characteristics was examined. As a result, exactly the same test results as in the case of the phosphoric diester were obtained. Therefore, it is necessary to regulate the amount of the phosphoric acid triester to be 0.05 to 0.20% by weight based on the total amount of the phosphoric acid triester, zinc oxide, metallic zinc and the binder.

【0030】〈リン酸ジエステルの添加量と100サイ
クル目の電池容量残存率との関係〉リン酸ジエステルの
好適な添加範囲を見出すべく、次の試験を行った。
<Relationship between the amount of phosphoric diester added and the remaining capacity of the battery at the 100th cycle> The following test was conducted to find a suitable range of phosphoric diester addition.

【0031】上記リン酸ジエステルの添加量を0.05
重量%、0.075重量%、0.10重量%、0.12
5重量%、0.15重量%、0.175重量%又は0.
20重量%としたこと以外は実施例1と同様にして、本
発明電池を作製した。なお、上述の試験と同様にして、
リン酸ジエステルと結着剤との総量が5重量%となるよ
うに結着剤の添加量も変化させた。次いで、先と同じ条
件で充放電サイクル試験を行って各電池の100サイク
ル目の電池容量残存率を求め、リン酸ジエステルの添加
量と電池容量残存率との関係を調べた。結果を図4に示
す。
The amount of the phosphoric diester added is 0.05
Wt%, 0.075 wt%, 0.10 wt%, 0.12
5%, 0.15%, 0.175% or 0.1% by weight.
A battery of the present invention was produced in the same manner as in Example 1 except that the content was 20% by weight. In the same manner as in the above test,
The amount of the binder was also changed so that the total amount of the phosphoric diester and the binder was 5% by weight. Next, a charge / discharge cycle test was performed under the same conditions as above to determine the remaining capacity of the battery at the 100th cycle, and the relationship between the amount of phosphoric diester added and the remaining capacity of the battery was examined. FIG. 4 shows the results.

【0032】図4は、各電池のサイクル特性を、縦軸に
100サイクル目の電池容量残存率(%)を、また横軸
にリン酸ジエステルの添加量(重量%)をとって示した
グラフであり、同図に示すようにリン酸ジエステルの添
加量を0.10〜0.15重量%とした場合に、100
サイクル目の電池容量残存率を大きくすることができ、
サイクル特性に特に優れたアルカリ亜鉛二次電池が得ら
れることが分かる。したがって、リン酸ジエステルの添
加量は、リン酸ジエステルと酸化亜鉛と金属亜鉛と結着
剤との総量に対して0.10〜0.15重量%の範囲で
あることが好ましい。
FIG. 4 is a graph showing the cycle characteristics of each battery, the ordinate represents the remaining capacity of the battery at the 100th cycle (%), and the abscissa represents the amount of phosphoric diester added (% by weight). When the amount of the phosphoric diester added is 0.10 to 0.15% by weight as shown in FIG.
The battery capacity remaining rate at the cycle can be increased,
It can be seen that an alkaline zinc secondary battery having particularly excellent cycle characteristics can be obtained. Therefore, the addition amount of the phosphoric diester is preferably in the range of 0.10 to 0.15% by weight based on the total amount of the phosphoric diester, zinc oxide, metallic zinc, and the binder.

【0033】なお、リン酸トリエステル(前記化6中
の、qが5、R2 がプロピル基であるもの)についても
同様にその添加量を変化させ、リン酸トリエステルの添
加量と100サイクル目の電池容量残存率との関係につ
いて調べた。その結果、上記リン酸ジエステルの場合と
全く同様の試験結果を得た。したがって、リン酸トリエ
ステルの添加量も、リン酸トリエステルと酸化亜鉛と金
属亜鉛と結着剤との総量に対して0.10〜0.15重
量%の範囲であることが好ましい。
The amount of the phosphoric acid triester (the compound represented by the formula (6), wherein q is 5 and R 2 is a propyl group) is similarly changed, and the amount of the phosphoric acid triester is changed by 100 cycles. The relationship with the remaining battery capacity of the eyes was examined. As a result, exactly the same test results as in the case of the phosphoric diester were obtained. Therefore, the amount of the phosphoric acid triester is preferably in the range of 0.10 to 0.15% by weight based on the total amount of the phosphoric acid triester, zinc oxide, metal zinc and the binder.

【0034】〈リン酸ジエステル中のエチレンオキサイ
ドの繰り返し単位数nとサイクル特性との関係〉前記化
5中のエチレンオキサイドの繰り返し単位数nが1、
2、4、6、8、10又は11であるリン酸ジエステル
を用いたこと以外は実施例1と同様にして、本発明電池
及び比較電池を作製した。次いで、先と同じ条件で充放
電サイクル試験を行って各電池のサイクル寿命を求め、
エチレンオキサイドの繰り返し単位数nとサイクル特性
との関係を調べた。結果を図5に示す。なお、図5に
は、先の図2に示した本発明電池BA1(エチレンオキ
サイドの繰り返し単位数n=5)のサイクル寿命も、比
較の便宜のために示してある。
<Relationship between the number n of repeating units of ethylene oxide in the phosphoric diester and the cycle characteristics> The number n of repeating units of ethylene oxide in Chemical formula 5 is 1,
A battery of the present invention and a comparative battery were produced in the same manner as in Example 1 except that the phosphoric diester of 2, 4, 6, 8, 10, or 11 was used. Next, a charge / discharge cycle test was performed under the same conditions as above to determine the cycle life of each battery,
The relationship between the number n of repeating units of ethylene oxide and cycle characteristics was examined. FIG. 5 shows the results. FIG. 5 also shows the cycle life of the battery BA1 of the present invention (the number of repeating units of ethylene oxide n = 5) shown in FIG. 2 for convenience of comparison.

【0035】図5は、各電池のサイクル特性を、縦軸に
サイクル寿命(回)を、また横軸にエチレンオキサイド
の繰り返し単位数nをとって示したグラフであり、同図
に示すようにリン酸ジエステルとしてエチレンオキサイ
ドの繰り返し単位数nが1〜10であるものを用いた場
合に、優れたサイクル特性を示すアルカリ亜鉛二次電池
が得られることが分かる。したがって、エチレンオキサ
イドの繰り返し単位数nは1〜10に規制する必要があ
る。
FIG. 5 is a graph showing the cycle characteristics of each battery, the vertical axis showing the cycle life (times), and the horizontal axis showing the number of repeating units of ethylene oxide n. It can be seen that an alkaline zinc secondary battery exhibiting excellent cycle characteristics can be obtained when a phosphate diester having a repeating unit number of ethylene oxide of 1 to 10 is used. Therefore, it is necessary to regulate the number n of repeating units of ethylene oxide to 1 to 10.

【0036】なお、上記リン酸トリエステルについても
前記化6中のエチレンオキサイドの繰り返し単位数qが
1、2、4、6、8、10又は11であるものを用いて
電池を作製し、先と同じ条件の充放電サイクル試験を行
い、エチレンオキサイドの繰り返し単位数qとサイクル
特性との関係を調べた。その結果、上記リン酸ジエステ
ルの場合と全く同様の試験結果を得た。したがって、リ
ン酸トリエステルの場合も、エチレンオキサイドの繰り
返し単位数qは1〜10に規制する必要がある。
A battery was prepared using the above-mentioned phosphate triester in which the number q of ethylene oxide repeating units in Chemical Formula 6 was 1, 2, 4, 6, 8, 10 or 11. A charge / discharge cycle test was performed under the same conditions as described above, and the relationship between the number q of repeating units of ethylene oxide and cycle characteristics was examined. As a result, exactly the same test results as in the case of the phosphoric diester were obtained. Therefore, also in the case of phosphoric acid triester, the number q of repeating units of ethylene oxide needs to be restricted to 1 to 10.

【0037】〈リン酸ジエステルにおけるアルキル基の
炭素数とサイクル特性との関係〉前記化5中のアルキル
基R1 の炭素数が1、2、4、5又は6であるリン酸ジ
エステルを用いたこと以外は実施例1と同様にして、本
発明電池及び比較電池を作製した。次いで、先と同じ条
件で充放電サイクル試験を行って各電池のサイクル寿命
を求め、アルキル基の炭素数とサイクル特性との関係を
調べた。結果を図6に示す。なお、図6には、先の図2
に示した本発明電池BA1(アルキル基の炭素数=3)
のサイクル寿命も、比較の便宜のために示してある。
<Relationship between the number of carbon atoms of the alkyl group in the phosphoric diester and the cycle characteristics> The phosphoric diester in which the alkyl group R 1 in Chemical Formula 5 has 1, 2, 4, 5 or 6 carbon atoms was used. Except for this, the battery of the present invention and the comparative battery were prepared in the same manner as in Example 1. Next, a charge / discharge cycle test was performed under the same conditions as above to determine the cycle life of each battery, and the relationship between the number of carbon atoms of the alkyl group and the cycle characteristics was examined. FIG. 6 shows the results. FIG. 6 shows FIG.
Inventive battery BA1 shown in (1) (carbon number of alkyl group = 3)
Are also shown for convenience of comparison.

【0038】図6は、各電池のサイクル特性を、縦軸に
サイクル寿命(回)を、また横軸にアルキル基の炭素数
をとって示したグラフであり、同図に示すようにリン酸
ジエステルとしてアルキル基の炭素数が1〜4であるも
のを用いた場合に、優れたサイクル特性を示すアルカリ
亜鉛二次電池が得られることが分かる。したがって、ア
ルキル基R1 の炭素数は1〜4に規制する必要がある。
FIG. 6 is a graph showing the cycle characteristics of each battery, the vertical axis representing the cycle life (times), and the horizontal axis representing the carbon number of the alkyl group. As shown in FIG. It is understood that when a diester having an alkyl group having 1 to 4 carbon atoms is used, an alkaline zinc secondary battery exhibiting excellent cycle characteristics can be obtained. Therefore, the carbon number of the alkyl group R 1 needs to be restricted to 1 to 4.

【0039】なお、上記リン酸トリエステルについても
前記化6中のアルキル基R2 の炭素数が1、2、4、5
又は6であるものを用いて、アルキル基の炭素数とサイ
クル特性との関係を調べた。その結果、上記リン酸ジエ
ステルの場合と全く同様の試験結果を得た。したがっ
て、リン酸トリエステルの場合もアルキル基の炭素数は
1〜4に規制する必要がある。
It should be noted that also in the above-mentioned phosphoric acid triester, the number of carbon atoms of the alkyl group R 2 in Chemical formula 6 is 1, 2, 4, 5 or more.
The relationship between the number of carbon atoms of the alkyl group and the cycle characteristics was examined using the sample having the number of 6 or 6. As a result, exactly the same test results as in the case of the phosphoric diester were obtained. Therefore, also in the case of the phosphoric acid triester, it is necessary to regulate the carbon number of the alkyl group to 1 to 4.

【0040】叙上の実施例では、本発明を単3型電池に
適用する場合を例に挙げて説明したが、本発明電池はそ
の形状に特に制限はなく、扁平型、角型など、他の種々
の形状のアルカリ亜鉛二次電池に適用し得るものであ
る。
In the above embodiment, the case where the present invention is applied to an AA battery has been described as an example. However, the shape of the battery of the present invention is not particularly limited. The present invention can be applied to alkaline zinc secondary batteries of various shapes.

【0041】また、上記実施例では、正極として焼結式
ニッケル正極を用いたが、非焼結式ニッケル正極を用い
ることも可能である。
In the above embodiment, a sintered nickel positive electrode is used as the positive electrode, but a non-sintered nickel positive electrode can be used.

【0042】[0042]

【発明の効果】アルカリ電解液中への亜鉛の溶解が、亜
鉛の表面に吸着されたリン酸ジエステル又はリン酸トリ
エステルにより抑制されるので、本発明電池は充放電サ
イクルの進行に伴う容量劣化率が小さくサイクル特性に
優れるなど、本発明は優れた特有の効果を奏する。
As described above, the dissolution of zinc in the alkaline electrolyte is suppressed by the phosphate diester or phosphate triester adsorbed on the surface of zinc. The present invention has excellent unique effects such as a small ratio and excellent cycle characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】単3型の本発明電池の断面図である。FIG. 1 is a cross-sectional view of an AA battery of the present invention.

【図2】本発明電池及び比較電池の各サイクル特性を示
すグラフである。
FIG. 2 is a graph showing cycle characteristics of a battery of the present invention and a comparative battery.

【図3】リン酸ジエステルの添加量(重量%)とサイク
ル寿命(回)との関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the amount of phosphoric diester added (% by weight) and the cycle life (times).

【図4】リン酸ジエステルの添加量(重量%)と電池容
量残存率(%)との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the amount of phosphoric diester added (% by weight) and the remaining battery capacity (%).

【図5】エチレンオキサイドの繰り返し単位数nとサイ
クル寿命(回)との関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the number n of repeating units of ethylene oxide and the cycle life (times).

【図6】アルキル基の炭素数とサイクル寿命(回)との
関係を示すグラフである。
FIG. 6 is a graph showing the relationship between the number of carbon atoms in an alkyl group and the cycle life (times).

【符号の説明】[Explanation of symbols]

BA1 本発明電池 1 正極 2 負極 3 セパレータ BA1 Battery of the present invention 1 Positive electrode 2 Negative electrode 3 Separator

フロントページの続き (72)発明者 斎藤 俊彦 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (56)参考文献 特開 昭58−198858(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/62 H01M 4/24 H01M 10/24 Continuation of front page (72) Inventor Toshihiko Saito 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (56) References JP-A-58-198858 (JP, A) (58) Field (Int.Cl. 7 , DB name) H01M 4/62 H01M 4/24 H01M 10/24

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】正極と、酸化亜鉛、金属亜鉛及び結着剤を
有する負極と、アルカリ電解液とを備えるアルカリ亜鉛
二次電池おいて、前記負極に下記化1で表されるリン酸
ジエステル又は下記化2で示すリン酸トリエステルが、
これらリン酸ジエステル又はリン酸トリエステル、前記
酸化亜鉛、前記金属亜鉛及び前記結着剤の総量に対し
て、0.05〜0.20重量%の割合で添加されている
ことを特徴とするアルカリ亜鉛二次電池。 【化1】 〔但し、式中、MはH、Na又はK、nは1〜10の整
数、R1 は炭素数1〜4のアルキル基である。〕 【化2】 〔但し、式中、qは1〜10の整数、R2 は炭素数1〜
4のアルキル基である。〕
An alkaline zinc secondary battery comprising a positive electrode, a negative electrode having zinc oxide, metallic zinc and a binder, and an alkaline electrolyte, wherein the negative electrode has a phosphoric acid diester represented by the following formula (1): The phosphoric acid triester represented by the following formula 2 is
An alkali characterized by being added at a ratio of 0.05 to 0.20% by weight based on the total amount of the phosphate diester or phosphate triester, the zinc oxide, the metal zinc, and the binder. Zinc secondary battery. Embedded image [However, in the formula, M is H, Na or K, n is an integer of 1 to 10, and R 1 is an alkyl group having 1 to 4 carbon atoms. [Chemical formula 2] [However, in the formula, q is an integer of 1 to 10, and R 2 has 1 to 1 carbon atoms.
4 alkyl group. ]
【請求項2】正極と、酸化亜鉛、金属亜鉛及び結着剤を
有する負極と、アルカリ電解液とを備えるアルカリ亜鉛
二次電池おいて、前記負極に下記化3で表されるリン酸
ジエステル又は下記化4で示すリン酸トリエステルが、
これらリン酸ジエステル又はリン酸トリエステル、前記
酸化亜鉛、前記金属亜鉛及び前記結着剤の総量に対し
て、0.10〜0.15重量%の割合で添加されている
ことを特徴とするアルカリ亜鉛二次電池。 【化3】 〔但し、式中、MはH、Na又はK、nは1〜10の整
数、R1 は炭素数1〜4のアルキル基である。〕 【化4】 〔但し、式中、qは1〜10の整数、R2 は炭素数1〜
4のアルキル基である。〕
2. An alkaline zinc secondary battery comprising a positive electrode, a negative electrode having zinc oxide, metallic zinc and a binder, and an alkaline electrolyte, wherein the negative electrode has a phosphoric diester or The phosphoric acid triester represented by the following formula 4 is
An alkali characterized by being added in an amount of 0.10 to 0.15% by weight based on the total amount of the phosphate diester or phosphate triester, the zinc oxide, the metal zinc, and the binder. Zinc secondary battery. Embedded image [However, in the formula, M is H, Na or K, n is an integer of 1 to 10, and R 1 is an alkyl group having 1 to 4 carbon atoms. [Formula 4] [However, in the formula, q is an integer of 1 to 10, and R 2 has 1 to 1 carbon atoms.
4 alkyl group. ]
JP34173193A 1993-12-09 1993-12-09 Alkaline zinc secondary battery Expired - Fee Related JP3311454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34173193A JP3311454B2 (en) 1993-12-09 1993-12-09 Alkaline zinc secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34173193A JP3311454B2 (en) 1993-12-09 1993-12-09 Alkaline zinc secondary battery

Publications (2)

Publication Number Publication Date
JPH07161357A JPH07161357A (en) 1995-06-23
JP3311454B2 true JP3311454B2 (en) 2002-08-05

Family

ID=18348341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34173193A Expired - Fee Related JP3311454B2 (en) 1993-12-09 1993-12-09 Alkaline zinc secondary battery

Country Status (1)

Country Link
JP (1) JP3311454B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001519464A (en) 1997-10-02 2001-10-23 ビーエーエスエフ アクチェンゲゼルシャフト Mixtures with specific plasticizers suitable as solid electrolytes or separators for electrochemical cells
US7226696B2 (en) * 2002-02-27 2007-06-05 Rayovac Corporation Alkaline cell with performance enhancing additives
WO2008001813A1 (en) * 2006-06-28 2008-01-03 Panasonic Corporation Alkaline dry cell
JP4516092B2 (en) * 2007-05-10 2010-08-04 パナソニック株式会社 Alkaline battery
JP2020061222A (en) * 2018-10-05 2020-04-16 日立化成株式会社 Negative electrode for nickel zinc battery and nickel zinc battery

Also Published As

Publication number Publication date
JPH07161357A (en) 1995-06-23

Similar Documents

Publication Publication Date Title
US10079385B2 (en) Positive electrode for alkaline storage battery and alkaline storage battery using the same
JP3311454B2 (en) Alkaline zinc secondary battery
CA2272386C (en) Alkaline storage battery and method for charging battery
JPH05174810A (en) Battery electrode and battery
US20090061317A1 (en) Negative electrode for alkaline storage battery and alkaline storage battery
JP3079303B2 (en) Activation method of alkaline secondary battery
CN1176508C (en) Akaline accumulator and positive pole for akaline accumulator
CN1337750A (en) Method for preparing active material of positive electrode of alkali accumulator and nickle and electrode and alkali accumulator
US5984982A (en) Electrochemical synthesis of cobalt oxyhydroxide
KR100404658B1 (en) Nickel-Metal Hydride Batteries and Manufacturing Method
JPH11144733A (en) Secondary battery electrode and secondary battery
JP3639494B2 (en) Nickel-hydrogen storage battery
US5180646A (en) Nickel-cadium storage battery with improved electrical properties
JPH10284071A (en) Sintered hydrogen storage alloy electrode
US20040219427A1 (en) Non-sintered electrode for an electrochemical generator with an alkaline electrolyte
JPH07161376A (en) Sealed alkaline zinc storage battery
JP3393978B2 (en) Alkaline secondary battery
JP3101622B2 (en) Nickel-hydrogen alkaline storage battery
US6171728B1 (en) Nickel electrode for akaline storage cell and manufacturing method of the same
JPH10172550A (en) Alkaline battery with nickel positive electrode and its activating method
JP3362400B2 (en) Nickel-metal hydride storage battery
JP3482478B2 (en) Nickel-metal hydride storage battery
JP2600825B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2002117893A (en) Nickel hydrogen storage battery
JP2020087703A (en) Method for manufacturing zinc battery negative electrode and method for manufacturing zinc battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080524

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110524

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120524

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130524

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees