JP3309872B2 - Wheel power distribution control device - Google Patents

Wheel power distribution control device

Info

Publication number
JP3309872B2
JP3309872B2 JP10498493A JP10498493A JP3309872B2 JP 3309872 B2 JP3309872 B2 JP 3309872B2 JP 10498493 A JP10498493 A JP 10498493A JP 10498493 A JP10498493 A JP 10498493A JP 3309872 B2 JP3309872 B2 JP 3309872B2
Authority
JP
Japan
Prior art keywords
wheel
yaw rate
rotation speed
pair
yaw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10498493A
Other languages
Japanese (ja)
Other versions
JPH06293226A (en
Inventor
尚史 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP10498493A priority Critical patent/JP3309872B2/en
Publication of JPH06293226A publication Critical patent/JPH06293226A/en
Application granted granted Critical
Publication of JP3309872B2 publication Critical patent/JP3309872B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Arrangement And Mounting Of Devices That Control Transmission Of Motive Force (AREA)
  • Retarders (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は左右の駆動輪に適正な動
力を配分することにより、車両の旋回走行時の運動性能
を向上する車輪の動力配分制御装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power distribution control device for a wheel which distributes appropriate power to left and right driving wheels to improve the kinetic performance of the vehicle when turning.

【0002】[0002]

【従来の技術】車両が旋回走行する場合に、各輪の旋回
半径および回転速度(回転数)が異なるので、左右の駆
動輪に適正な動力が伝達されないと、円滑な旋回走行が
妨げられ、駆動輪にスリツプが生じる。
2. Description of the Related Art When a vehicle turns, since the turning radius and the rotation speed (rotation speed) of each wheel are different, if proper power is not transmitted to left and right driving wheels, smooth turning can be hindered. Slip occurs on the drive wheels.

【0003】特開平3-208730号公報に開示される車輪の
動力配分制御装置では、湿式多板クラツチにより機関の
動力を各駆動輪へ各別に伝達する場合に、機関から駆動
輪へ伝達される駆動トルクが湿式多板クラツチが伝達し
得るトルクよりも小さいと、湿式多板クラツチは滑らな
くなり、内輪(旋回方向内側の車輪)の実回転数は目標
とする旋回半径に対応する理想回転数ないし必要回転数
よりも大きくなり、内輪はスリツプする。また、外輪
(旋回方向外側の車輪)の実回転数は目標とする旋回半
径に対応する必要回転数よりも小さくなり、外輪は逆方
向にスリツプし、大きな制動力を発生し、結果として車
両の操向特性はアンダステア気味になる。
In the wheel power distribution control device disclosed in Japanese Patent Application Laid-Open No. 3-208730, when the power of the engine is individually transmitted to each drive wheel by a wet multi-plate clutch, the power is transmitted from the engine to the drive wheels. If the driving torque is smaller than the torque that can be transmitted by the wet multi-plate clutch, the wet multi-plate clutch will not slip, and the actual rotation speed of the inner wheel (wheel inside the turning direction) will be the ideal rotation speed or the rotation speed corresponding to the target turning radius. The rotation speed becomes higher than required, and the inner ring slips. Also, the actual rotation speed of the outer wheel (wheel outside the turning direction) becomes smaller than the required rotation speed corresponding to the target turning radius, and the outer wheel slips in the opposite direction, generating a large braking force, and as a result, The steering characteristics become understeer.

【0004】特開平4-5128号公報に開示される差動制限
制御装置でも、機関から駆動輪へ伝達されるトルクが、
湿式多板クラツチが伝達し得るトルクよりも大きくない
限り、車両の操向特性はアンダステア気味になる。
[0004] Even in the differential limiting control device disclosed in Japanese Patent Application Laid-Open No. 4-5128, the torque transmitted from the engine to the drive wheels is reduced.
As long as the torque is not greater than the wet multi-plate clutch can transmit, the steering characteristics of the vehicle tend to be understeer.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は上述の
問題に鑑み、遊星歯車を支持するキヤリヤを、走行条件
に対応して強制的に回転制御することにより、駆動輪に
スリツプが生じない、円滑な安定した旋回走行を得る、
車輪の動力配分制御装置を提供することにある。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, the object of the present invention is to prevent the slip on the driving wheels by forcibly controlling the rotation of the carrier supporting the planetary gears according to the running conditions. Get smooth and stable turning,
A wheel power distribution control device is provided.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明の構成は左右の車軸に結合した1対の太陽歯
車と機関により駆動される1対のリング歯車との間にそ
れぞれ遊星歯車を噛み合せ、各遊星歯車を支持する1対
のキヤリヤにモータを結合し、ヨーセンサにより検出し
た実ヨーレートと、舵角と各車輪の回転数と車輪荷重と
から求めたヨーレートとの偏差をなくすように、前記モ
ータの回転数を各別に制御するものである。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention comprises a planetary gear set between a pair of sun gears connected to left and right axles and a pair of ring gears driven by an engine. A gear is meshed, a motor is coupled to a pair of carriers supporting each planetary gear, and a deviation between the actual yaw rate detected by the yaw sensor and the yaw rate obtained from the steering angle, the rotation speed of each wheel, and the wheel load is eliminated. In addition, the number of rotations of the motor is separately controlled.

【0007】[0007]

【作用】機関の動力は左右1対のリング歯車へ伝達さ
れ、1対のリング歯車の回転は1対の遊星歯車を経て、
左右の駆動輪の車軸の太陽歯車へ各別に伝達される。遊
星歯車を支持する1対のキヤリヤの回転数は、旋回走行
条件に対応してモータ(油圧モータ、電動機など)によ
り制御される。即ち、ヨーセンサにより検出した実ヨー
レートと旋回走行条件に基づき求めた規範ヨーレートと
の偏差をなくすように、左右1対のキヤリヤの回転数を
モータにより各別に制御する。これにより、各駆動輪が
スリツプしない、円滑な安定した旋回走行が得られる。
The power of the engine is transmitted to a pair of left and right ring gears, and the rotation of the pair of ring gears passes through a pair of planetary gears.
It is transmitted separately to the sun gear on the axle of the left and right drive wheels. The rotation speed of the pair of carriers that support the planetary gears is controlled by a motor (a hydraulic motor, an electric motor, or the like) in accordance with the turning traveling condition. That is, the rotational speeds of the pair of left and right carriers are individually controlled by the motors so as to eliminate the deviation between the actual yaw rate detected by the yaw sensor and the reference yaw rate obtained based on the turning traveling condition. As a result, smooth and stable turning traveling without slipping of each drive wheel can be obtained.

【0008】[0008]

【実施例】図1は本発明に係る車輪の動力配分制御装置
の概略構成を示す平面図、図2は同動力配分制御装置の
油圧回路図である。図示の実施例では、機関2の動力は
後輪26の車軸30へ伝達される。即ち、機関2と一体
の変速機の出力軸に結合した歯車3は、軸5の歯車4に
噛み合され、軸5の傘歯車6は推進軸10の傘歯車7に
噛み合される。
1 is a plan view showing a schematic configuration of a power distribution control device for a wheel according to the present invention, and FIG. 2 is a hydraulic circuit diagram of the power distribution control device. In the embodiment shown, the power of the engine 2 is transmitted to the axle 30 of the rear wheel 26. That is, the gear 3 connected to the output shaft of the transmission integrated with the engine 2 is meshed with the gear 4 of the shaft 5, and the bevel gear 6 of the shaft 5 is meshed with the bevel gear 7 of the propulsion shaft 10.

【0009】推進軸10の後端の傘歯車15は傘歯車3
5に噛み合される。傘歯車35と一体に形成した左右1
対のリング歯車35aは、それぞれ遊星歯車28を介し
左右の後車軸30の太陽歯車32に噛み合される。各遊
星歯車28を軸33により各別に支持する1対のキヤリ
ヤ31は傘歯車31aを備えている。各傘歯車31aは
油圧モータ25により駆動される傘歯車27に噛み合さ
れる。
The bevel gear 15 at the rear end of the propulsion shaft 10 is a bevel gear 3
5 is engaged. Left and right 1 formed integrally with bevel gear 35
The pair of ring gears 35a mesh with the sun gears 32 of the left and right rear axles 30 via the planetary gears 28, respectively. A pair of carriers 31, each of which supports each planetary gear 28 by a shaft 33, includes a bevel gear 31a. Each bevel gear 31a is meshed with a bevel gear 27 driven by the hydraulic motor 25.

【0010】各油圧モータ25は油圧ポンプ14から圧
油を電磁油量制御弁24を経て供給され、油量に対応し
て傘歯車27の回転数を制御する。電磁油量制御弁24
の励磁電流はマイクロコンピユータからなる電子制御装
置12の出力により制御される。
Each hydraulic motor 25 is supplied with hydraulic oil from the hydraulic pump 14 via an electromagnetic oil amount control valve 24, and controls the rotation speed of the bevel gear 27 according to the oil amount. Electromagnetic oil control valve 24
Is controlled by the output of an electronic control unit 12 composed of a microcomputer.

【0011】各輪23,26にそれぞれ回転数センサ1
6が配設され、前後軸21,30と車体との間に、相対
車高を検出する車高センサ22が配設される。車高セン
サの代りに、各輪23,26の荷重を直接検出する荷重
センサを備えるのが好ましい。ハンドル9に舵角センサ
8が配設される。回転数センサ16,車高センサ22,
舵角センサ8の各信号は電子制御装置12へ入力され
る。
Each of the wheels 23 and 26 has a rotation speed sensor 1
A vehicle height sensor 22 for detecting a relative vehicle height is disposed between the front and rear shafts 21 and 30 and the vehicle body. It is preferable to provide a load sensor for directly detecting the load on each wheel 23, 26 instead of the vehicle height sensor. A steering angle sensor 8 is provided on the steering wheel 9. Rotation speed sensor 16, vehicle height sensor 22,
Each signal of the steering angle sensor 8 is input to the electronic control unit 12.

【0012】図2に示すように、油圧ポンプ14は油槽
47から油をフイルタ46を経て吸い込み、逆止弁4
3、電磁切換弁44を経て油圧モータ25へ供給し、電
磁切換弁44、電磁油量制御弁24を経て油槽47へ戻
す。逃し弁45は油圧ポンプ14の吐出油圧が所定値を
超えると開いて油槽47へ逃し、油圧モータ25へ供給
される油圧をほぼ一定に保つ。油圧モータ25は電磁切
換弁44の動作に伴い逆転可能であり、油圧モータ25
の入口の油圧が過大になつた時は、逃し弁41または4
2が開いて油圧モータ25の過負荷状態を防止する。
As shown in FIG. 2, the hydraulic pump 14 sucks oil from an oil tank 47 through a filter 46, and
3. The oil is supplied to the hydraulic motor 25 via the electromagnetic switching valve 44, and is returned to the oil tank 47 via the electromagnetic switching valve 44 and the electromagnetic oil amount control valve 24. When the discharge oil pressure of the hydraulic pump 14 exceeds a predetermined value, the relief valve 45 opens and escapes to the oil tank 47 to keep the hydraulic pressure supplied to the hydraulic motor 25 substantially constant. The hydraulic motor 25 can rotate in reverse according to the operation of the electromagnetic switching valve 44.
When the oil pressure at the inlet of the valve becomes excessive, the relief valve 41 or 4
2 opens to prevent the hydraulic motor 25 from being overloaded.

【0013】図1に示すように、機関2により駆動され
る推進軸10の回転は、傘歯車15,35を経て1対の
リング歯車35aへ伝達され、さらに自転と公転を伴う
遊星歯車28、太陽歯車32、後車軸30を経て後輪2
6へ伝達される。車両の旋回走行時、電子制御装置12
は舵角と各輪23,26の荷重と各輪23,26の回転
数に基づき電磁油量制御弁24を駆動し、1対の油圧モ
ータ25により左右のキヤリヤ31の回転数を各別に制
御する。
As shown in FIG. 1, the rotation of the propulsion shaft 10 driven by the engine 2 is transmitted to a pair of ring gears 35a via bevel gears 15 and 35, and further, planetary gears 28 that rotate and revolve. Sun gear 32, rear wheel 2 via rear axle 30
6 is transmitted. When the vehicle is turning, the electronic control unit 12
Drives the electromagnetic oil amount control valve 24 based on the steering angle, the load on each wheel 23, 26 and the rotation speed of each wheel 23, 26, and controls the rotation speed of the left and right carriers 31 separately by a pair of hydraulic motors 25. I do.

【0014】車両の旋回走行時、車体に働く力は駆動輪
即ち後輪26に働く力であり、駆動輪の内輪に働く力は
ヨーレートを減じるようなヨーモーメントになり、外輪
に働く力は内輪と逆のヨーモーメントになる。
When the vehicle is turning, the force acting on the vehicle body is the force acting on the driving wheel, that is, the rear wheel 26. The force acting on the inner wheel of the driving wheel becomes a yaw moment that reduces the yaw rate, and the force acting on the outer wheel is the inner wheel. And the opposite yaw moment.

【0015】 Iy*dγr /dt=LF (FyFL +FyFR )−LR (FyRL +FyRR ) +TR (FxRR −FxRL )/2 m・g1 =FyFL +FyFR +FyRL +FyRR ……(1) ただし、γr :実ヨーレート(角速度R/sec ) FxRL ,FxRR :前推力 FyFL 〜FyRR :各車輪の横力 g1 :横加速度 Iy :車体のヨー慣性モーメント LF ,LR :車体重心と前・後軸との間隔 m:車体質量 TR :後輪のトレツド 左右の後輪、即ち内外輪が車体へ与えるヨーモーメント
ΔMin,ΔMout は、次の式で表される。
Iy * dγr / dt = LF (FyFL + FyFR) −LR (FyRL + FyRR) + TR (FxRR−FxRL) / 2 m · g1 = FyFL + FyFR + FyRL + FyRR (1) where γr is the actual yaw rate. / Sec) FxRL, FxRR: Front thrust FyFL to FyRR: Lateral force of each wheel g1: Lateral acceleration Iy: Yaw inertia moment of vehicle body LF, LR: Distance between vehicle center of gravity and front / rear axis m: Body mass TR: Rear Wheel Tread The yaw moments ΔMin, ΔMout given to the vehicle body by the right and left rear wheels, ie, the inner and outer wheels, are expressed by the following equations.

【0016】 ΔMin=−LR FyRL −TR FxRL /2 ΔMout =−LR FyRR +TR FxRR /2 ……(2) 車両の旋回走行時内外輪の発生する力は、前推力Fx と
横力Fy であり、前推力Fx と横力Fy は内外輪のスリ
ツプ率Sにより変化する。前推力Fx と横力Fy は車輪
荷重Fz で徐すことにより一般化できる。車体へ与える
ヨーモーメントΔMは前推力Fx と横力Fy に起因する
と考えると、スリツプ率Sがある値以下では、ヨーモー
メントΔMはスリツプ率Sの増加につれて比例的に増加
するとみてよい。
ΔMin = −LR FyRL−TR FxRL / 2 ΔMout = −LR FyRR + TR FxRR / 2 (2) The forces generated by the inner and outer wheels during turning of the vehicle are the forward thrust Fx and the lateral force Fy. The forward thrust Fx and the lateral force Fy change depending on the slip ratio S of the inner and outer wheels. The forward thrust Fx and the lateral force Fy can be generalized by reducing the wheel load Fz. Considering that the yaw moment ΔM applied to the vehicle body is caused by the forward thrust Fx and the lateral force Fy, when the slip ratio S is less than a certain value, the yaw moment ΔM may be proportionally increased as the slip ratio S increases.

【0017】つまり、現在の左右の後輪26のスリツプ
率So の範囲を0.2〜0.3に抑えれば、内外輪が車
体に及ぼすヨーモーメントΔMを線形化でき、内外輪の
ヨーモーメントΔMin,ΔMout は次のように表すこと
ができる。
That is, if the current range of the slip ratio So of the right and left rear wheels 26 is suppressed to 0.2 to 0.3, the yaw moment ΔM exerted on the vehicle body by the inner and outer wheels can be linearized, and the yaw moment of the inner and outer wheels can be linearized. ΔMin and ΔMout can be expressed as follows.

【0018】 ΔMin=aS+b, ΔMout =cS+d ……(3) ただし、a〜d:係数 S:スリツプ率 車両の旋回走行時、内外輪のヨーモーメントΔMin,Δ
Mout と車輪荷重Fzの積から、車体に発生するヨーレ
ートの変化量を求めることができる。外輪の荷重が内輪
の荷重よりも非常に大きくなるので、外輪だけの回転数
を制御し、外輪だけの制御ではヨーレートの偏差を小さ
くできない場合は、内輪の回転数をも制御する。
ΔMin = aS + b, ΔMout = cS + d (3) where a to d: coefficient S: slip rate When the vehicle is turning, the yaw moments ΔMin, Δ of the inner and outer wheels
From the product of Mout and the wheel load Fz, the amount of change in the yaw rate generated in the vehicle body can be determined. Since the load on the outer wheel is much larger than the load on the inner wheel, the rotation speed of the outer wheel alone is controlled. If the deviation of the yaw rate cannot be reduced by the control of the outer wheel alone, the rotation speed of the inner wheel is also controlled.

【0019】本発明では各輪23,26の回転数センサ
16、各輪23,26の車高センサ(または荷重セン
サ)22、舵角センサ8の各検出値から規範ヨーレート
γm を求め、ヨーレートセンサ13から検出した実ヨー
レートγr との偏差Δγをなくすように油圧モータ25
の回転数を制御し、機関2から左右の内外輪へ伝達され
るトルクを適正に配分する。
In the present invention, the reference yaw rate γm is obtained from the detected values of the rotational speed sensor 16 of each wheel 23, 26, the vehicle height sensor (or load sensor) 22 of each wheel 23, 26, and the steering angle sensor 8, and the yaw rate sensor 13 so as to eliminate the deviation Δγ from the actual yaw rate γr detected from the hydraulic motor 25.
, And appropriately distribute the torque transmitted from the engine 2 to the left and right inner and outer wheels.

【0020】規範ヨーレートγm は舵角入力δの1次遅
れ系とすれば次の式が成り立つ。
If the reference yaw rate γm is a first-order delay system of the steering angle input δ, the following equation is established.

【0021】 γm =G・δ/(1+sT) ……(4) ただし、γm :規範ヨーレート δ:舵角 G:ゲイン s:ラプラス演算子 T:時定数 規範ヨーレートγm とヨーレートセンサ13から検出し
た実ヨーレートγr との差Δγを0にするためにヨーレ
ートを変化させるに必要なヨーモーメントΔMを求め
る。
Γm = G · δ / (1 + sT) (4) where γm: standard yaw rate δ: steering angle G: gain s: Laplace operator T: time constant standard yaw rate γm and actual value detected from yaw rate sensor 13 The yaw moment ΔM required to change the yaw rate to make the difference Δγ with the yaw rate γr zero is determined.

【0022】 Δγ=γm −γr ……(5) ΔM=Iy*Δγ ……(6) 各輪23,26の荷重変化量ΔFzRL 〜ΔFzRR は、車
体のロール角Δφ、ピツチ角Δθから次の式で与えら
れ、初期荷重FzoFL〜FzoRRと荷重変化量ΔFzFL 〜Δ
FzRR の和が各輪23,26の荷重FzFL 〜FzRR にな
る。
Δγ = γm−γr (5) ΔM = Iy * Δγ (6) The amount of load change ΔFzRL to ΔFzRR of each of the wheels 23 and 26 is obtained from the following equation based on the roll angle Δφ and the pitch angle Δθ of the vehicle body. And the initial load FzoFL to FzoRR and the load change ΔFzFL to Δ
The sum of FzRR is the load FzFL to FzRR of each wheel 23, 26.

【0023】 Δφ=(ΔZFL−ΔZFR)/TF +(ΔZRL−ΔZRR)/TR Δθ={(ΔZFL+ΔZFR)−(ΔZRL+ΔZRR)}/(LF +LR ) ……(7) ΔFzFL =KF(−LF Δθ/2−TF Δφ/2) ΔFzFR =KF(−LF Δθ/2+TF Δφ/2) ΔFzRL =KR(LR Δθ/2−TR Δφ/2) ΔFzRR =KR(LR Δθ/2+TR Δφ/2) ……(8) FzFL =FzoFL+ΔFzFL FzFR =FzoFR+ΔFzFR FzRL =FzoRL+ΔFzRL FzRR =FzoRR+ΔFzRR ……(9) ただし、Δφ:ロール角 Δθ:ピツチ角 ΔFzFL 〜ΔFzRR :荷重変化量 FzFL 〜FzRR :車輪荷重 FzoFL〜FzoRR:初期荷重 KF,KR:ばね定数 TF :前輪のトレツド ΔZFL〜ΔZRR:車高変位量 各輪23,26の荷重FzFL 〜FzRR と現在のスリツプ
率SoRL ,SoRR から、ヨーレートを変化させるに必要
なヨーモーメントΔMを求め、線形化したS−M線図
(スリツプ率SとヨーモーメントΔMの関係を表す線
図)により、ヨーレートを変化させるに必要なスリツプ
率SRL,SRRを求める。
Δφ = (ΔZFL−ΔZFR) / TF + (ΔZRL−ΔZRR) / TR Δθ = {(ΔZFL + ΔZFR) − (ΔZRL + ΔZRR)} / (LF + LR) (7) ΔFzFL = KF (−LF Δθ / 2 −TF Δφ / 2) ΔFzFR = KF (−LF Δθ / 2 + TF Δφ / 2) ΔFzRL = KR (LR Δθ / 2−TR Δφ / 2) ΔFzRR = KR (LR Δθ / 2 + TR Δφ / 2) (8) FzFL = FzoFL + ΔFzFL FzFR = FzoFR + ΔFzFR FzRL = FzoRL + ΔFzRL FzRR = FzoRR + ΔFzRR (9) where, Δφ: roll angle Δθ: pitch angle ΔFzFL to ΔFzRR: load change amount: FzFLK to FzFL KZ Spring constant TF: front wheel tread ΔZFL to ΔZRR: vehicle height displacement The yaw moment ΔM required to change the yaw rate is obtained from the loads FzFL to FzRR of the wheels 23 and 26 and the current slip ratios SoRL and SoRR, and is linear. The S-M diagram and (diagram representing the relationship between slips ratio S and the yaw moment .DELTA.M), slips ratio SRL necessary to change the yaw rate to determine the SRR.

【0024】例えば左旋回走行の場合は、現在の左後輪
のスリツプ率SoRL は、前輪23の回転数の平均値を車
速とすれば次の式で与えられる。
For example, in the case of a left turn, the current slip ratio SoRL of the left rear wheel is given by the following equation, assuming that the average value of the rotation speed of the front wheels 23 is the vehicle speed.

【0025】 SoRL ={(VFL+VFR)/2−VRL}/VRL ……(10) SRL=(SoRL −b)/a ……(11) ただし、SoRL :現在のスリツブ率 SRL:ヨーレートを変化させるに必要なスリツブ率 VFL〜VRR:各輪の回転数 ここで、必要とするヨーモーメントΔMの線形性は、ス
リツプ率Sが0.3程度までであるので、これをしきい
値SL とし、求めたスリツプ率SRLがしきい値SL より
も小さい場合は、上記スリツプ率SRLを得るように、電
磁油量制御弁24の制御電流を制御し、油圧モータ25
による遊星歯車28の回転数NRLを制御する。
SoRL = {(VFL + VFR) / 2−VRL} / VRL (10) SRL = (SoRL−b) / a (11) where SoRL: current slip rate SRL: when changing yaw rate Required slip rate VFL-VRR: Number of rotations of each wheel Here, the required linearity of the yaw moment .DELTA.M was determined as a threshold value SL because the slip rate S was up to about 0.3. When the slip ratio SRL is smaller than the threshold value SL, the control current of the electromagnetic oil amount control valve 24 is controlled so as to obtain the slip ratio SRL, and the hydraulic motor 25 is controlled.
To control the rotation speed NRL of the planetary gear 28.

【0026】スリツプ率SRLがしきい値SL よりも大き
い場合は、スリツプ率SRLをしきい値SL (0.3〜
0.4の値)に設定し、内輪のスリツプ率を同様にして
求めた後、内輪におけるしきい値SM を設定し、油圧モ
ータ25の回転数NRRを求め、内輪を駆動する。この場
合、ヨーレートを変化させるに必要なヨーモーメントΔ
Mから外輪で得られたヨーモーメントΔMout を引き、
上述の外輪の場合と同様の方法で内輪のスリツプ率SRR
を求める。
If the slip ratio SRL is larger than the threshold value SL, the slip ratio SRL is set to the threshold value SL (0.3 to
After setting the slip ratio of the inner wheel similarly, the threshold value SM of the inner wheel is set, the rotational speed NRR of the hydraulic motor 25 is obtained, and the inner wheel is driven. In this case, the yaw moment Δ required to change the yaw rate
Subtract the yaw moment ΔMout obtained from the outer wheel from M,
The slip ratio SRR of the inner ring is obtained in the same manner as the outer ring described above.
Ask for.

【0027】図3,4は上述の制御をマイクロコンピユ
ータからなる電子制御装置により実行する制御プログラ
ムの流れ図である。本制御プログラムは所定時間ごとに
繰り返し実行する。p11で制御プログラムを開始し、p
12で舵角δから規範ヨーレートγm を求め、p13で実ヨ
ーレートγr と規範ヨーレートγm の差Δγを求める。
p14でヨーレートを変化させるに必要なヨーモーメント
ΔMを求める。p15で左舵か否かを判別し、左舵でない
場合は図4に示すp36へ進む。
FIGS. 3 and 4 are flow charts of a control program for executing the above-mentioned control by an electronic control unit comprising a microcomputer. This control program is repeatedly executed at predetermined time intervals. The control program is started at p11 and p
At 12, the standard yaw rate γm is obtained from the steering angle δ, and at p13, the difference Δγ between the actual yaw rate γr and the standard yaw rate γm is obtained.
At p14, a yaw moment ΔM required to change the yaw rate is obtained. At p15, it is determined whether the vehicle is left rudder. If the vehicle is not left rudder, the process proceeds to p36 shown in FIG.

【0028】p15で左舵の場合は、p16で右後輪荷重F
zRR を求め、p17で右後輪荷重で徐した、ヨーレートを
変化させるに必要なヨーモーメントΔMzRR を求め、p
18で現在の右後輪のスリツプ率SoRR を求め、p19でヨ
ーレートを変化させるに必要な右後輪のスリツプ率SRR
を求め、p20でヨーレートを変化させるに必要な右後輪
のスリツプ率SRRがしきい値SL よりも大か否かを判別
し、ヨーレートを変化させるに必要な右後輪のスリツプ
率SRRがしきい値SL よりも小の場合は、p21で遊星歯
車の回転数NRRを求め、p28へ進む。
In the case of left rudder at p15, the right rear wheel load F at p16
zRR is calculated, and the yaw moment ΔMzRR required to change the yaw rate, which is reduced by the right rear wheel load in p17, is calculated.
The current right rear wheel slip rate SoRR is obtained at 18 and the right rear wheel slip rate SRR required to change the yaw rate at p19.
Is determined at p20 to determine whether the slip ratio SRR of the right rear wheel required to change the yaw rate is greater than a threshold value SL, and the slip ratio SRR of the right rear wheel required to change the yaw rate is determined. If it is smaller than the threshold value SL, the rotational speed NRR of the planetary gear is obtained at p21, and the program proceeds to p28.

【0029】p20でヨーレートを変化させるに必要な右
後輪のスリツプ率SRRがしきい値SL よりも大の場合
は、p22で左後輪の荷重FzRL を求め、p23で後輪荷重
で徐した、ヨーレートを変化させるに必要なモーメント
ΔMz'RLを求め、p24で現在の左後輪のスリツプ率SoR
L を求め、p25でヨーレートを変化させるに必要な左後
輪のスリツプ率S'RL を求め、p26でヨーレートを変化
させるに必要な左後輪のスリツプ率S'RL がしきい値S
M よりも大か否かを判別し、ヨーレートを変化させるに
必要な左後輪のスリツプ率S'RL がしきい値SM よりも
小の場合はp28へ進む。
If the slip ratio SRR of the right rear wheel required to change the yaw rate is larger than the threshold value SL at p20, the load FzRL of the left rear wheel is obtained at p22, and the load is reduced by the rear wheel load at p23. , The moment ΔMz'RL necessary to change the yaw rate is obtained, and the current rear left wheel slip rate SoR is determined at p24.
L, the left rear wheel slip rate S'RL required to change the yaw rate is determined at p25, and the left rear wheel slip rate S'RL required to change the yaw rate at p26 is equal to the threshold S.
It is determined whether or not it is larger than M. If the slip ratio S'RL of the left rear wheel required to change the yaw rate is smaller than the threshold value SM, the process proceeds to p28.

【0030】p26でヨーレートを変化させるに必要な左
後輪のスリツプ率S'RL がしきい値SM よりも大の場合
は、左後輪のスリツプ率S'RL をしきい値SM とし、p
28で各油量制御弁24の電流を求め、油圧モータ25を
駆動し、p26で終了する。
If the slip rate S'RL of the left rear wheel required to change the yaw rate at p26 is larger than the threshold value SM, the slip rate S'RL of the left rear wheel is set to the threshold value SM, and p
At 28, the current of each oil amount control valve 24 is obtained, the hydraulic motor 25 is driven, and the process ends at p26.

【0031】[0031]

【発明の効果】本発明は上述のように、左右の車軸に結
合した1対の太陽歯車と機関により駆動される1対のリ
ング歯車との間にそれぞれ遊星歯車を噛み合せ、各遊星
歯車を支持する1対のキヤリヤにモータを結合し、ヨー
センサにより検出した実ヨーレートと、舵角と各車輪の
回転数と車輪荷重とから求めたヨーレートとの偏差をな
くすように、前記モータの回転数を各別に制御するもの
であり、遊星歯車を支持する1対のキヤリヤの回転数
は、旋回走行条件に対応してモータにより制御されるの
で、各車輪のスリツプが抑えられ、円滑な安定した旋回
走行が得られる。
As described above, the present invention meshes planetary gears between a pair of sun gears connected to the left and right axles and a pair of ring gears driven by the engine, and supports each planetary gear. A motor is coupled to a pair of carriers to be driven, and the rotation speed of the motor is adjusted so as to eliminate the deviation between the actual yaw rate detected by the yaw sensor and the yaw rate obtained from the steering angle, the rotation speed of each wheel, and the wheel load. The rotation speed of the pair of carriers supporting the planetary gears is controlled by a motor in accordance with the turning traveling conditions, so that slip of each wheel is suppressed, and smooth and stable turning traveling is achieved. can get.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る車輪の動力配分制御装置の正面断
面図である。
FIG. 1 is a front sectional view of a power distribution control device for a wheel according to the present invention.

【図2】同動力配分制御装置の油圧回路図である。FIG. 2 is a hydraulic circuit diagram of the power distribution control device.

【図3】同動力配分制御装置の制御プログラムの流れ図
である。
FIG. 3 is a flowchart of a control program of the power distribution control device.

【図4】同動力配分制御装置の制御プログラムの流れ図
である。
FIG. 4 is a flowchart of a control program of the power distribution control device.

【符号の説明】[Explanation of symbols]

2:機関 8:舵角センサ 12:電子制御装置 1
3:ヨーレートセンサ 16:回転数センサ 22:車
高センサ 23:前輪 24:油量制御弁 25:油圧
モータ 26:後輪 28:遊星歯車 30:後車軸
31:キヤリヤ 35a:リング歯車
2: engine 8: steering angle sensor 12: electronic control unit 1
3: Yaw rate sensor 16: Rotation speed sensor 22: Vehicle height sensor 23: Front wheel 24: Oil amount control valve 25: Hydraulic motor 26: Rear wheel 28: Planetary gear 30: Rear axle
31: Carrier 35a: Ring gear

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F16H 48/10 B60K 23/04 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) F16H 48/10 B60K 23/04

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】左右の車軸に結合した1対の太陽歯車と機
関により駆動される1対のリング歯車との間にそれぞれ
遊星歯車を噛み合せ、各遊星歯車を支持する1対のキヤ
リヤにモータを結合し、ヨーセンサにより検出した実ヨ
ーレートと、舵角と各車輪の回転数と車輪荷重とから求
めたヨーレートとの偏差をなくすように、前記モータの
回転数を各別に制御することを特徴とする、車輪の動力
配分制御装置。
A planetary gear is meshed between a pair of sun gears coupled to left and right axles and a pair of ring gears driven by an engine, and a motor is mounted on a pair of carriers supporting each planetary gear. In combination, the rotation speed of the motor is separately controlled so as to eliminate the deviation between the actual yaw rate detected by the yaw sensor and the yaw rate obtained from the steering angle, the rotation speed of each wheel, and the wheel load. , Wheel power distribution control device.
JP10498493A 1993-04-07 1993-04-07 Wheel power distribution control device Expired - Fee Related JP3309872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10498493A JP3309872B2 (en) 1993-04-07 1993-04-07 Wheel power distribution control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10498493A JP3309872B2 (en) 1993-04-07 1993-04-07 Wheel power distribution control device

Publications (2)

Publication Number Publication Date
JPH06293226A JPH06293226A (en) 1994-10-21
JP3309872B2 true JP3309872B2 (en) 2002-07-29

Family

ID=14395363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10498493A Expired - Fee Related JP3309872B2 (en) 1993-04-07 1993-04-07 Wheel power distribution control device

Country Status (1)

Country Link
JP (1) JP3309872B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997010114A1 (en) * 1995-09-11 1997-03-20 Honda Giken Kogyo Kabushiki Kaisha Coupling device between right and left wheels of a vehicle
JP2007177984A (en) * 2005-12-28 2007-07-12 Toyota Motor Corp Drive unit
US9815494B2 (en) 2012-12-04 2017-11-14 Mtd Products Inc Vehicle drive control systems

Also Published As

Publication number Publication date
JPH06293226A (en) 1994-10-21

Similar Documents

Publication Publication Date Title
US5301768A (en) Four-wheel drive torque transfer mechanism
US6634451B2 (en) Power distribution control system for a vehicle
EP0314453B1 (en) Traction control system for a four-wheel drive motor vehicle
GB2255057A (en) Torque distribution control system for a four-wheel drive motor vehicle.
EP1882618B1 (en) Steering device for vehicle
EP0415554B1 (en) Torque distribution control system for a four-wheel drive motor vehicle
CN112297839A (en) Driving device of four-wheel driven vehicle
JP3144717B2 (en) Torque distribution control method for four-wheel drive vehicle
JP3340038B2 (en) Left and right wheel driving force distribution device
JP3008250B2 (en) Torque distribution control device for left and right non-main driving wheels of vehicle
JPH01136830A (en) Front rear wheel drive force distribution control device
JP3827837B2 (en) Vehicle motion control device
JP7310703B2 (en) Four-wheel drive power distribution device
JP3309872B2 (en) Wheel power distribution control device
JP3660027B2 (en) Yaw moment control method for vehicle
JPH08282320A (en) Transfer for wheel
JP2020192962A (en) Four-wheel drive car
JP3573382B2 (en) Method of controlling yaw moment in vehicle
JPH05208623A (en) Driving power distributing control device of right and left wheel of differential control type
JPH04129837A (en) Driving force control device
US20040011572A1 (en) Vehicle dynamic ride control
JP2612718B2 (en) Torque split control device for four-wheel drive vehicle
JP3055709B2 (en) Control device for rear wheel differential limiter
JP2646764B2 (en) Driving force distribution control device for four-wheel drive vehicle
JPH04151333A (en) Driving force controller

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees