JP3289847B2 - Low thermal expansion super heat resistant alloy with excellent oxidation resistance - Google Patents

Low thermal expansion super heat resistant alloy with excellent oxidation resistance

Info

Publication number
JP3289847B2
JP3289847B2 JP01826293A JP1826293A JP3289847B2 JP 3289847 B2 JP3289847 B2 JP 3289847B2 JP 01826293 A JP01826293 A JP 01826293A JP 1826293 A JP1826293 A JP 1826293A JP 3289847 B2 JP3289847 B2 JP 3289847B2
Authority
JP
Japan
Prior art keywords
less
alloy
thermal expansion
phase
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01826293A
Other languages
Japanese (ja)
Other versions
JPH06228714A (en
Inventor
光司 佐藤
丈博 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP01826293A priority Critical patent/JP3289847B2/en
Publication of JPH06228714A publication Critical patent/JPH06228714A/en
Application granted granted Critical
Publication of JP3289847B2 publication Critical patent/JP3289847B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高温での耐酸化性と強
度に優れ、かつ低い熱膨張係数を必要とされる超耐熱合
金に関するもので、特に望ましい用途としてはガスター
ビンやセラミックスおよび超硬合金との複合材等の部品
として使用される合金に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a super heat-resistant alloy which is required to have excellent oxidation resistance and strength at high temperatures and to have a low coefficient of thermal expansion. The present invention relates to an alloy used as a component such as a composite material with a hard alloy.

【0002】[0002]

【従来の技術】近年、ガスタービン部品の使用温度の上
昇に伴い、常温から高温までより高い強度と、各種の部
品や部材間に設けられたクリアランスを常温から高温ま
で一定量に維持できる材料の要求や、セラミックスや超
硬合金のような低熱膨張材料と金属材料との接合性の向
上に対する要求は、ますます高まる傾向にある。その用
途の一例が、自動車のタービンロータの軸部と翼部(通
常セラミックスである)を接合するターボカラーであ
る。他の使用例はガスタービンのコンプレッサーケー
ス、排気ケースおよびシール材等の部品や、セラミック
ス製の内筒と低熱膨張超耐熱合金製の外筒からなるアル
ミダイカスト用スリーブ、あるいは超硬合金と台金の緩
衝材として、低熱膨張超耐熱合金を用いた超硬合金製刃
物などがある。
2. Description of the Related Art In recent years, as the operating temperature of gas turbine parts has risen, materials that can maintain a higher strength from room temperature to high temperature and a constant clearance between various parts and members from room temperature to high temperature have been developed. Demands and demands for improving the bondability between low thermal expansion materials such as ceramics and cemented carbide and metal materials tend to increase more and more. One example of the application is a turbo collar for joining a shaft part and a wing part (usually ceramics) of a turbine rotor of an automobile. Other applications include parts such as compressor cases, exhaust cases and seals for gas turbines, aluminum die-casting sleeves consisting of an inner cylinder made of ceramics and an outer cylinder made of low thermal expansion super heat-resistant alloy, or cemented carbide and base metal As a cushioning material, there is a cemented carbide blade using a low thermal expansion super heat resistant alloy.

【0003】これらの用途に適用可能な合金として、現
用最も高温強度と耐酸化性に優れる合金として、THERMO
-SPAN(公称組成:0.35Si-5.5Cr-24.5Ni-29Co-0.45Al-
0.85Ti-4.8Nb-0.004B-残部Fe)と称される合金が挙げら
れる。この合金は、PCT92/03584号および
“Development of a New Controlled Thermal Expansio
nSuperalloy with Improved Oxidation Resistance”;
E.A. Wanner and D. A. DeAntonio, Superalloys 1992
edited by S. D. Antolovich et al., TMS, (1992), pp
237-246にて詳細に述べられている。
[0003] As an alloy applicable to these applications, as an alloy having the highest high-temperature strength and oxidation resistance in use today, THERMO
-SPAN (Nominal composition: 0.35Si-5.5Cr-24.5Ni-29Co-0.45Al-
An alloy referred to as 0.85Ti-4.8Nb-0.004B-balance Fe). This alloy is described in PCT 92/03584 and “Development of a New Controlled Thermal Expansio
nSuperalloy with Improved Oxidation Resistance ”;
EA Wanner and DA DeAntonio, Superalloys 1992
edited by SD Antolovich et al., TMS, (1992), pp
237-246.

【0004】[0004]

【発明が解決しようとする課題】上述のTHERMO-SPAN
は、確かに従来の低熱膨張超耐熱合金よりも、700〜
900℃の高温耐酸化性に優れているが、高温でのクリ
ープ破断強度が不十分であり、実用上、高温強度をより
必要とされる部品には適用できない。本発明の目的は、
700〜900℃程度までの高温の耐酸化性に優れ、常
温から高温まで高強度で、かつ低い熱膨張係数を有し、
特にガスタービンやセラミックスおよび超硬合金との複
合材等の部品に適した超耐熱合金を提供することであ
る。
[Problems to be Solved by the Invention] THERMO-SPAN
Is 700-700 from the conventional low thermal expansion super heat resistant alloy.
Although it has excellent resistance to high-temperature oxidation at 900 ° C., its creep rupture strength at high temperatures is insufficient, so that it cannot be applied to parts that require high-temperature strength in practical use. The purpose of the present invention is
Excellent high-temperature oxidation resistance up to about 700 to 900 ° C, high strength from room temperature to high temperature, and low thermal expansion coefficient,
In particular, it is an object of the present invention to provide a super heat-resistant alloy suitable for components such as gas turbines, composite materials of ceramics and cemented carbide.

【0005】[0005]

【課題を解決するための手段】本願発明者は、かかる問
題点を解決すべく、Fe−Co−Ni系合金を対象に実
験を行なった結果、高温クリープ破断強度の改善には、
析出強化相であるγ’(ガンマプライム)相をより安定
化させることが重要であることを見出した。γ’相はNi
3Alからなる金属間化合物で、Ti,Nb,Ta,C
r,Mo,Wなどの種々の強化元素が固溶した状態で存
在している。とくに、γ’相中でAl側に固溶して強化
する元素は、Ti,NbおよびTaである。このγ’相
の安定化は、Alも含め、これらAl,Ti,Nbおよ
びTaの4元素の添加量に占めるAlの割合を従来合金
よりもずっと高い範囲とすることで達成された。
The inventors of the present invention conducted an experiment on an Fe-Co-Ni alloy in order to solve the above-mentioned problems.
It has been found that it is important to further stabilize the γ ′ (gamma prime) phase, which is the precipitation strengthening phase. γ 'phase is Ni
3 Intermetallic compound consisting of Al, Ti, Nb, Ta, C
Various strengthening elements such as r, Mo, and W exist in a solid solution state. In particular, Ti, Nb, and Ta are elements that form a solid solution on the Al side in the γ ′ phase to strengthen them. The stabilization of the γ 'phase was achieved by setting the ratio of Al to the addition amount of the four elements including Al, Ti, Nb and Ta, including Al, to a much higher range than that of the conventional alloy.

【0006】添加4元素に占めるAlの量比は原子比で
記述され、Nbを基準とすると、3.44Al/(3.
44Al+1.94Ti+Nb+0.51Ta)で表わ
される。このAl量比を0.3〜0.6の範囲内とする
ことで、従来合金よりも高温域までγ’相を安定化させ
ることができ、より高い高温クリープラプチャー強度が
得られることをあきらかにした。参考までに、PCT9
2/03584号に開示される実施例中の合金のAl量
比はいずれも0.2以下で、本発明とはあきらかに異質
の発明である。
[0006] The amount ratio of Al in the four added elements is described by an atomic ratio, and based on Nb, 3.44Al / (3.
44Al + 1.94Ti + Nb + 0.51Ta). By setting the Al content ratio in the range of 0.3 to 0.6, it is possible to stabilize the γ ′ phase up to a higher temperature range than the conventional alloy, and it is apparent that higher temperature creep rupture strength can be obtained. I made it. For reference, PCT9
The Al content ratios of the alloys in the examples disclosed in 2/03584 are all 0.2 or less, which is obviously different from the present invention.

【0007】このようなγ’相中での高いAl量比は、
重量%では、従来の低熱膨張超耐熱合金よりもずっと高
い1%を超える添加量とすることで得ることができる。
それと同時に、高いAl量は、γ’相の析出量が増える
ことに繋がり、熱間加工性を害する方向に向かうので、
γ’相を固溶強化する効果の大きいTiやNb,Taの
最適な添加範囲も見出すことで加工性と強度を両立させ
ることができた。さらに熱膨張係数を下げる効果の大き
いNi,Coと耐酸化性は高めるが熱膨張係数を高める
作用の大きいCrの最適な添加範囲を見出すことで、低
熱膨張特性と高温耐酸化性の両立も図ることができた。
The high Al content ratio in the γ 'phase is as follows:
In terms of% by weight, it can be obtained by adding more than 1%, which is much higher than that of the conventional low thermal expansion super heat resistant alloy.
At the same time, a high Al content leads to an increase in the precipitation amount of the γ 'phase, and tends to impair hot workability.
Workability and strength could both be achieved by finding the optimal addition range of Ti, Nb, and Ta, which have a large effect of solid solution strengthening the γ 'phase. Further, by finding an optimal addition range of Ni and Co, which have a large effect of lowering the thermal expansion coefficient, and Cr, which has a high effect of increasing the oxidation resistance but has a large effect of increasing the thermal expansion coefficient, it is intended to achieve both low thermal expansion characteristics and high-temperature oxidation resistance. I was able to.

【0008】すなわち本発明は、重量%にて、C0.2
%以下、Si1%以下、Mn2%以下、Cr4%を超え
10%以下、Al1%を超え2%以下、Ti0.3〜3
%、NbおよびTaの1種または2種をNb+1/2T
aで1.5〜7%で、Al、Ti、NbおよびTaの関
係が3.44Al/(3.44Al+1.94Ti+N
b+0.51Ta)で0.3〜0.6、さらにB0.0
2%以下とZr0.1%以下の1種または2種を含み、
Ni20%以上30%未満、Co20〜35%を含有
し、残部は不純物を除き、実質的にFeからなることを
特徴とする低熱膨張超耐熱合金であり、必要に応じて、
MoおよびWの1種または2種をMo+1/2Wで3%
以下を添加することができ、さらに必須の添加元素とし
て、Mg0.02%以下とCa0.02%以下の1種ま
たは2種と、またはさらにY0.2%以下とREM0.
2%以下の1種または2種を含む。
[0008] That is, the present invention provides a C0.2
%, Si 1% or less, Mn 2% or less, Cr more than 4% and 10% or less, Al more than 1% and 2% or less, Ti 0.3 to 3
%, One or two of Nb and Ta are Nb + / T
a, 1.5 to 7%, and the relationship among Al, Ti, Nb and Ta is 3.44 Al / (3.44 Al + 1.94 Ti + N).
b + 0.51 Ta), 0.3 to 0.6, and B0.0
Containing 1% or less of 2% or less and Zr 0.1% or less,
A low thermal expansion super heat resistant alloy containing 20% to less than 30% of Ni and 20 to 35% of Co, and the balance is substantially Fe, excluding impurities.
One or two of Mo and W are Mo + 1 / 2W at 3%
It can be added the following, a further essential additive element
Te, and one or two of the following Mg0.02% or less and Ca0.02%, or even Y0.2% or less and REM0.
2% or less of one or the including.

【0009】[0009]

【作用】以下、本発明合金の成分限定理由について述べ
る。CはTiやNb,Taと結合して炭化物を形成し、
結晶粒の粗大化を防ぎ、強度の向上に寄与するが、0.
2%を越える過度の添加はTiやNb,Taの炭化物が
多くなりすぎて析出強化元素として作用するTiやN
b,Taを減少させるとともに、合金の熱膨張係数を増
大させるので、Cは0.2%以下とする。望ましいCの
範囲は0.1%以下である。
The reasons for limiting the components of the alloy of the present invention will be described below. C combines with Ti, Nb and Ta to form carbides,
It prevents crystal grains from coarsening and contributes to improvement in strength.
Excessive addition exceeding 2% results in excessive amounts of carbides of Ti, Nb, and Ta, which act as precipitation strengthening elements.
Since B and Ta are reduced and the coefficient of thermal expansion of the alloy is increased, C is set to 0.2% or less. A desirable range of C is 0.1% or less.

【0010】Siは脱酸剤としての効果のほかに、結晶
粒微細化と粒界形状を改善し粒界の強度を高めるLav
es相の析出を促進させるので必須の添加元素である。
Laves相はFe2(Nb,Ta)を基本組成とし、SiはN
b,Ta側に固溶して析出を促進させる。この粒界強化
の作用はSiを少量添加するところから効果が現れる。
しかし、1%を越える過度の添加は熱間加工性と高温強
度の低下を招くので、Siは1%以下に限定する。より
望ましいSiの範囲は0.1〜0.6%の範囲である。
Mnは、脱酸剤として添加されるので合金中に含まれる
が、過度の添加は合金の熱膨張係数を増加させるので好
ましくない。したがって、Mnは2%以下に限定する。
より望ましくは1%以下である。
[0010] In addition to the effect of Si as a deoxidizing agent, Lav improves the refinement of crystal grains and the shape of grain boundaries to increase the strength of grain boundaries.
It is an essential additive element because it promotes the precipitation of the es phase.
The Laves phase has a basic composition of Fe 2 (Nb, Ta), and Si has N
b, to form a solid solution on the Ta side to promote precipitation. The effect of strengthening the grain boundary appears when a small amount of Si is added.
However, excessive addition exceeding 1% causes reduction in hot workability and high-temperature strength, so that Si is limited to 1% or less. A more desirable range of Si is a range of 0.1 to 0.6%.
Mn is included in the alloy because it is added as a deoxidizing agent, but excessive addition is undesirable because it increases the coefficient of thermal expansion of the alloy. Therefore, Mn is limited to 2% or less.
More preferably, it is 1% or less.

【0011】Crは、本発明において、高温加熱時にC
23の酸化皮膜を形成し、耐酸化性を改善させる。そ
のためにCrは最低4%を超える添加を必要とするが、
10%を超える過度の添加は、逆に、キュリー点を下げ
て、熱膨張係数を増加させてしまうために、マトリック
スを構成するFeとCoおよびNiの比をいかに調整し
ても、十分な低熱膨張特性が得られなくなる。したがっ
て、Crは4%を超え10%以下の範囲に限定する。望
ましいCrの範囲は4.5〜7%、より望ましいCrの
範囲は4.8〜6.5%である。
[0011] In the present invention, Cr is C when heated at a high temperature.
An oxide film of r 2 O 3 is formed to improve oxidation resistance. Therefore, Cr needs to be added at least more than 4%,
Excessive addition of more than 10% conversely lowers the Curie point and increases the coefficient of thermal expansion. Therefore, no matter how the ratio of Fe to Co and Ni constituting the matrix is adjusted, a sufficiently low heat resistance is obtained. Expansion characteristics cannot be obtained. Therefore, Cr is limited to a range of more than 4% and 10% or less. A desirable range of Cr is 4.5 to 7%, and a more desirable range of Cr is 4.8 to 6.5%.

【0012】Alは本発明合金において高温クリープ破
断強度を高めるのに最も有効な元素である。Alは、時
効処理によって、(Ni,Co)3(Al,Ti,Nb,Ta)からなる組成
の直径数10nm程度の微細なγ’相を析出し、高温長時間
のクリープ破断強度を著しく向上させる。γ’相中のA
lの濃度が低下すると、700〜800℃程度の高温
で、γ’相が不安定となり、六方晶のη相や斜方晶のδ
相が析出するようになり、クリープ破断強度は著しく低
下するようになる。したがって、安定なγ’相を析出さ
せるために、Alは、以下に述べるAl単独での成分規
定の他に、γ’相中でAl側を構成するAl,Ti,N
bおよびTaの4元素の添加量に占めるAlの割合を従
来合金よりもずっと高い範囲とすることが必要である。
添加4元素に占めるAlの量比は原子比で記述され、N
bを基準とすると、3.44Al/(3.44Al+
1.94Ti+Nb+0.51Ta)で表わされる。
Al is the most effective element for increasing the high temperature creep rupture strength in the alloy of the present invention. Al precipitates a fine γ 'phase with a composition of (Ni, Co) 3 (Al, Ti, Nb, Ta) with a diameter of about 10 nm by aging treatment, and significantly improves creep rupture strength at high temperature and long time. Let it. A in the γ 'phase
When the concentration of 1 decreases, the γ ′ phase becomes unstable at a high temperature of about 700 to 800 ° C., and the hexagonal η phase and the orthorhombic δ phase
Phases will precipitate and the creep rupture strength will be significantly reduced. Therefore, in order to precipitate a stable γ ′ phase, Al is not limited to a component defined by Al alone, but Al, Ti, N constituting the Al side in the γ ′ phase.
It is necessary that the ratio of Al to the addition amount of the four elements b and Ta be in a range much higher than that of the conventional alloy.
The amount ratio of Al to the four added elements is described by the atomic ratio,
b, 3.44 Al / (3.44 Al +
1.94Ti + Nb + 0.51Ta).

【0013】このAl量比が0.3よりも小さくなると
高温応力負荷状態で、γ相が不安定となり、十分なクリ
ープ強度が得られなくなる。一方、このAl量比が0.
6を超えると、γ’相が安定にはなるが、十分に固溶強
化されていないため、十分にクリープ抵抗を高めること
ができず、かえってクリープ強度が低下するようにな
る。したがって、従来合金よりも高温域までγ’相を安
定化させて、より高い高温クリープラプチャー強度を得
るためには、3.44Al/(3.44Al+1.94
Ti+Nb+0.51Ta)が0.3〜0.6の範囲内
であることが必要である。より、好適な範囲は0.35
〜0.55である。
If the Al content ratio is smaller than 0.3, the γ phase becomes unstable under a high temperature stress load, and sufficient creep strength cannot be obtained. On the other hand, when the Al content ratio is 0.1.
If it exceeds 6, the γ 'phase becomes stable, but since the solid solution strengthening is not sufficient, the creep resistance cannot be sufficiently increased, and the creep strength is rather lowered. Therefore, in order to stabilize the γ ′ phase up to a higher temperature range than the conventional alloy and obtain a higher high-temperature creep rupture strength, 3.44 Al / (3.44 Al + 1.94).
Ti + Nb + 0.51 Ta) needs to be in the range of 0.3 to 0.6. A more preferable range is 0.35
0.50.55.

【0014】このようなγ’相中での高いAl量比を得
るために、Alは最低1%を超える添加を必要とする
が、2%を超える過度の添加はγ’相を多量に析出さ
せ、熱間加工性を低下させるので、Alは1%を超え2
%以下に限定する。低熱膨張超耐熱合金の範疇におい
て、このようなγ’相中での高いAl量比と単独での高
いAlの添加量に、高温クリープ破断強度を最も高める
組成が存在することを見出したことは、本発明の最も特
徴とするところであり、従来合金には見られない新規の
発明と言える。
In order to obtain such a high Al content ratio in the γ ′ phase, Al needs to be added in an amount of at least more than 1%, but excessive addition of more than 2% causes precipitation of a large amount of the γ ′ phase. And lowers the hot workability, so that Al exceeds 1% and 2%.
% Or less. In the category of low thermal expansion super heat resistant alloys, it has been found that there is a composition that maximizes the high temperature creep rupture strength at such a high Al content ratio in the γ 'phase and the high Al addition amount alone. This is the most characteristic feature of the present invention, and can be said to be a novel invention not found in conventional alloys.

【0015】前述したようにTiとNb,Taは、まず
Cと結合して炭化物を形成し、残りのTiとNb,Ta
が下記に説明するようにAlとともにNi、Co等と結
合し、γ’相を形成して合金を強化する。Tiは時効処
理によって、Ni、Co、Al、Nb,Taと共にγ’
相を析出し、高温引張強度を著しく向上させる。そのた
めに必要なTi量は最低0.3%であるが、3%を越え
る過度の添加はγ’相を不安定にするとともに、熱膨張
係数の増加や熱間加工性の低下を招くので、Tiは0.
3〜3%に限定する。より望ましいTiの添加は0.9
〜1.8%である。
As described above, Ti, Nb, and Ta first combine with C to form a carbide, and the remaining Ti, Nb, and Ta are combined.
Combines with Al, Ni, Co, etc. together with Al to form a γ ′ phase to strengthen the alloy as described below. Ti is γ ′ together with Ni, Co, Al, Nb and Ta by aging treatment.
Precipitates phases and significantly improves high temperature tensile strength. The necessary amount of Ti is at least 0.3%, but excessive addition exceeding 3% destabilizes the γ 'phase, increases the coefficient of thermal expansion and lowers the hot workability. Ti is 0.
Limited to 3 to 3%. A more desirable addition of Ti is 0.9.
~ 1.8%.

【0016】NbとTaはTiと同様に、時効処理によ
ってNi、Co、Alとともにγ’相を析出し、熱間強
度を著しく向上させる。さらに一部のNbとTaは直径
数μm程度のLaves相を粒界および粒内に析出さ
せ、結晶粒の微細化を可能にすると共に、粒界の強度を
高める作用を持ち、クリープ破断強度度を著しく向上さ
せる作用を持つ。またNbとTaは、同族の元素で、比
重、価格の点では、Nbの方が有利であるが、強度上は
原子比で同様の効果をもつ。したがって、NbとTa
は、Nb+1/2Taで1.5〜7%の添加とする。よ
り望ましいNbとTaの添加範囲はNb+1/2Taで
2.8〜4.5%である。
Nb and Ta, like Ti, precipitate a γ ′ phase together with Ni, Co and Al by aging treatment, and significantly improve the hot strength. Further, some of Nb and Ta precipitate a Laves phase having a diameter of about several μm at the grain boundaries and in the grains, thereby enabling the crystal grains to be refined, and also having an effect of increasing the strength of the grain boundaries, and have a creep rupture strength. Has the effect of significantly improving Nb and Ta are homologous elements. Nb is more advantageous in terms of specific gravity and price, but has the same effect on the strength in terms of atomic ratio. Therefore, Nb and Ta
Is 1.5 to 7% of Nb + 1 / 2Ta. A more desirable addition range of Nb and Ta is 2.8 to 4.5% in Nb + 1 / 2Ta.

【0017】BとZrは、1種または2種の添加で、結
晶粒界に偏析して粒界強度を高め、熱間加工性とクリー
プ破断強度の向上に寄与する。その効果は極く微量の添
加から現れるが、両者の多量の添加は逆に合金の初期溶
融温度を低下させ、熱間加工性を害するので、Bの場合
は0.02%以下に、Zrの場合は0.1%以下に限定
する。
B and Zr, when added alone or in combination, segregate at crystal grain boundaries to increase the grain boundary strength and contribute to the improvement of hot workability and creep rupture strength. The effect is manifested by the addition of a very small amount, but the addition of a large amount of the two conversely lowers the initial melting temperature of the alloy and impairs the hot workability. In this case, it is limited to 0.1% or less.

【0018】NiはCo,Feとともにマトリックスを
構成し、FeとCoおよびNiの比は合金の熱膨張係数
と金属間化合物の析出形態に著しく影響を及ぼす。本発
明合金は、従来合金の中でも最も高いレベルの高温強度
を付与するために、TiやNbさらにはAlなどの析出強
化元素を多く含んでいるが、従来合金にないFe、Co、
Niの割合を見出して高い高温引張強度と低熱膨張係数
の両立が可能となった。さらに、本発明合金のFeとC
oとNiの量とその割合においては、微細球状のLav
es相の析出量が多く、粒界強化に役立ち、高温のクリ
ープ破断強度強度を高める効果を持つ。
Ni forms a matrix together with Co and Fe, and the ratio of Fe to Co and Ni significantly affects the coefficient of thermal expansion of the alloy and the form of precipitation of intermetallic compounds. The alloy of the present invention contains a large amount of precipitation strengthening elements such as Ti, Nb, and Al in order to provide the highest level of high-temperature strength among conventional alloys, but Fe, Co,
By finding the ratio of Ni, it was possible to achieve both high high-temperature tensile strength and low thermal expansion coefficient. Further, Fe and C of the alloy of the present invention
In terms of the amounts and ratios of o and Ni, the fine spherical Lav
A large amount of es phase precipitates, helps strengthen grain boundaries, and has the effect of increasing high temperature creep rupture strength.

【0019】また、Niは、γ’相の構成元素でもあ
り、γ’相が十分に析出するためには、析出したあとも
基地が安定なオーステナイト相となりうるだけの十分な
Ni量が必要である。そのために必要なNi量は20%
以上である。逆に30%以上のNiは熱膨張係数を増加
させ、Laves相の析出量を減少させるので、結晶粒
の微細化や粒界強化が困難となり、本発明の目的が達成
できなくなる。したがって、Niは20%以上30%未
満であることが重要である。望ましいNiの範囲は24
%以上30%未満であり、さらに望ましくは28〜2
9.8%である。
Ni is also a constituent element of the γ ′ phase, and in order for the γ ′ phase to be sufficiently precipitated, a sufficient amount of Ni is necessary so that the matrix becomes a stable austenite phase even after the precipitation. is there. The required Ni content is 20%
That is all. Conversely, Ni of 30% or more increases the coefficient of thermal expansion and decreases the amount of precipitation of the Laves phase, so that it becomes difficult to refine the crystal grains and strengthen the grain boundary, and the object of the present invention cannot be achieved. Therefore, it is important that Ni is not less than 20% and less than 30%. Desirable Ni range is 24
% To less than 30%, more preferably 28 to 2%.
9.8%.

【0020】CoもNiと同様Feとともにマトリック
スを構成し、熱膨張係数の低下とLaves相の析出に
役立つ。さらに一部のCoはγ’相中で、Ni側に固溶
する。そのためにCoは20%以上の添加を必要とす
る。逆に35%を越えるCoの添加は熱膨張係数の増加
と、過度のLaves相析出にともなう高温強度の低下
をまねくので、Coは20〜35%の範囲とする。望ま
しいCoの範囲は24〜32%であり、より望ましくは
24〜26%である。 MoとWは、本発明合金におい
て必須の添加元素ではないが、両者のうちの1種または
2種を添加することで、マトリックスを強化することが
でき、高温の強度をより高めることができる。しかし、
両者はともに合金の熱膨張係数を高めるので過度の添加
は好ましくない。また、両者は同属の元素であり、比重
の面からはMoが、耐酸化性においてはWが有利である
が、強度面において両者の効果は原子比で表わされる。
よって、本発明においてMoやWを添加する場合には、
Mo+1/2Wで3%以下の添加とする。この範囲内で
あれば、本発明合金の熱膨張特性、耐酸化性、比重を特
に害することなく製造ができる。
Co, like Ni, forms a matrix together with Fe, and serves to lower the coefficient of thermal expansion and precipitate the Laves phase. Further, some Co forms a solid solution on the Ni side in the γ ′ phase. Therefore, Co needs to be added in an amount of 20% or more. Conversely, the addition of Co exceeding 35% leads to an increase in the coefficient of thermal expansion and a decrease in the high-temperature strength due to excessive Laves phase precipitation, so Co is set in the range of 20 to 35%. A desirable range of Co is 24-32%, more preferably 24-26%. Mo and W are not essential addition elements in the alloy of the present invention, but by adding one or two of them, the matrix can be strengthened and the strength at high temperatures can be further increased. But,
Since both increase the thermal expansion coefficient of the alloy, excessive addition is not preferable. Both are elements belonging to the same genus, and Mo is advantageous in terms of specific gravity and W is advantageous in terms of oxidation resistance, but their effects are expressed in terms of atomic ratio in terms of strength.
Therefore, when adding Mo or W in the present invention,
Mo + 1 / 2W and 3% or less. Within this range, the alloy of the present invention can be produced without particularly deteriorating the thermal expansion characteristics, oxidation resistance and specific gravity.

【0021】さらに、次の選択添加元素のうち、少なく
とも1種は必須で添加する。MgとCaの1種または2
種を添加することは、それぞれ単独および複合で、脱酸
・脱硫効果を高めるとともに、合金の熱間加工性と高温
延性を高める効果をもつ。そのために、Mgは0.02
%以下、Caは0.02%以下の範囲で添加できる。ま
た、Yと希土類金属(REM)の1種または2種はそれ
ぞれ単独および複合でCr2O3の密着性改善に寄与する
ため、選択元素として添加できる。YとREMの耐酸化
性改善の効果はともにごく少量の添加から現れるが、過
度の添加はYまたはREMとNi,Fe,Coの金属間
化合物を晶出し、その共晶温度が合金の熱間加工温度よ
りも低くなるために、合金の熱間加工性を低下させる。
したがって、Yは0.2%以下、REMは0.2%以下
の添加とする。
Furthermore, of the following optional elements , at least
One of them is essential. One or two of Mg and Ca
The addition of a seed, both individually and in combination, enhances the deoxidizing and desulfurizing effects, and also has the effect of increasing the hot workability and hot ductility of the alloy. Therefore, Mg is 0.02
% And Ca can be added in a range of 0.02% or less. In addition, one or two of Y and rare earth metal (REM) can be added as selective elements because they alone and in combination contribute to improving the adhesion of Cr2O3. The effect of improving the oxidation resistance of Y and REM both appears from a very small amount of addition, but excessive addition crystallizes Y or REM and an intermetallic compound of Ni, Fe, and Co, and the eutectic temperature of the alloy is lower than that of the alloy. Since the temperature is lower than the working temperature, the hot workability of the alloy is reduced.
Therefore, Y is added at 0.2% or less, and REM is added at 0.2% or less.

【0022】上述の添加合金元素の他に下記の合金元素
は、以下に示す範囲で含有するならば特性上とくに問題
とはならないが、いずれも極力低い方が望ましい。 V≦1% Cu≦1% Re≦1% Hf≦0.2% P≦0.01% S≦0.005% O≦0.005% N≦0.005% 以上述べた元素の他は、残部Feで構成される。また、
本発明合金の溶製は、真空溶解で製造されることが望ま
しい。インゴット重量が200〜300kg以下の場合
は、真空の1回溶解のみでも良好な特性が得られるが、
それより大きな重量のインゴットを製造する場合は、エ
レクトロスラグ再溶解や真空アーク再溶解等の組織改善
効果の高い再溶解によるインゴットの製造がより望まし
い。
If the following alloying elements other than the above-mentioned additional alloying elements are contained in the following ranges, there is no particular problem in characteristics, but it is preferable that all of them are as low as possible. V ≦ 1% Cu ≦ 1% Re ≦ 1% Hf ≦ 0.2% P ≦ 0.01% S ≦ 0.005% O ≦ 0.005% N ≦ 0.005% Other than the elements described above, The balance is composed of Fe. Also,
Preferably, the alloy of the present invention is produced by vacuum melting. When the ingot weight is 200 to 300 kg or less, good properties can be obtained only by one-time melting in a vacuum,
When an ingot having a larger weight is manufactured, it is more preferable to manufacture the ingot by remelting having a high structure improving effect such as electroslag remelting or vacuum arc remelting.

【0023】このようなインゴットは通常の超耐熱合金
と同様の熱間加工プロセスによって高温成形が可能であ
る。さらに必要に応じて冷間の成形を加えて目的とする
製品形状に仕上げることができる。固溶化処理は、La
ves相が残存あるいは析出するとともにγ’相が十分
に固溶する範囲で行なう。固溶化処理に先立つ熱間加工
が、固溶化処理を代用できる場合は固溶化処理を省略し
てもよい。固溶化処理の好ましい温度範囲は850〜1
100℃の範囲である。時効処理は、γ’相が基地と十
分整合に数10nm程度の微細析出粒子として析出する
温度で実施する。時効処理の望ましい温度範囲は600
〜850℃である。
Such an ingot can be formed at a high temperature by a hot working process similar to that of a normal super heat-resistant alloy. Further, if necessary, cold forming may be added to finish the product in a desired shape. The solution treatment is La
The process is performed within a range in which the ves phase remains or precipitates and the γ 'phase sufficiently dissolves. If the hot working prior to the solution treatment can substitute for the solution treatment, the solution treatment may be omitted. The preferred temperature range for the solution treatment is 850-1.
It is in the range of 100 ° C. The aging treatment is carried out at a temperature at which the γ 'phase precipitates as fine precipitate particles having a size of about several tens of nanometers in sufficient consistency with the matrix. Desirable temperature range of aging treatment is 600
8850 ° C.

【0024】[0024]

【実施例】表1に本発明合金、比較合金および従来合金
の化学組成、ならびにγ’相中でのAl側を構成するA
l,Ti,NbおよびTaの4元素の添加量に占めるA
lの割合を表わした式である3.44Al/(3.44
Al+1.94Ti+Nb+0.51Ta)の値を示
す。本発明合金、比較合金および従来合金は、真空誘導
溶解炉にて溶解し、10kgのインゴットとした後、1
180℃×20h保持の均質化処理を施し、その後加熱
温度1100℃で鍛伸して、30mm角の試料とした。
その後、従来合金No.31を除く他の合金はすべて9
82℃×1h保持後空冷する固溶化処理を、No.31
は1093℃×1h保持後空冷する固溶化処理を実施し
た。
EXAMPLES Table 1 shows the chemical compositions of the alloys of the present invention, comparative alloys and conventional alloys, and A constituting the Al side in the γ 'phase.
A in the amount of addition of the four elements l, Ti, Nb and Ta
3.44Al / (3.44Al)
Al + 1.94Ti + Nb + 0.51Ta). The alloy of the present invention, the comparative alloy and the conventional alloy were melted in a vacuum induction melting furnace to form a 10 kg ingot.
A homogenization treatment of 180 ° C. × 20 hours was performed, and then forging was performed at a heating temperature of 1100 ° C. to obtain a 30 mm square sample.
Thereafter, the conventional alloy No. All other alloys except 31 are 9
The solution treatment in which the solution was air-cooled after holding at 82 ° C. × 1 h was performed as described in “No. 31
Was subjected to a solution treatment in which air was cooled after holding at 1093 ° C. × 1 h.

【0025】[0025]

【表1】 [Table 1]

【0026】従来合金No.31はTHERMO-SPANであ
り、この合金の固溶化処理温度は前述の文献に従い、他
の合金より高い1093℃で実施した。時効処理は、す
べて720℃×8h保持後、55℃/hの冷却速度で6
20℃まで冷却し、引続き8h保持後空冷の熱処理を実
施した。表2に本発明合金、比較合金および従来合金の
常温および700℃の引張強さ、700℃−50kgf/mm
2におけるクリープ破断特性、30℃から700℃まで
の平均熱膨張係数、および大気中における900℃×1
6h×5回後の酸化減量値を示す。
Conventional alloy no. 31 is THERMO-SPAN, and the solution treatment temperature of this alloy was higher than that of other alloys at 1093 ° C. in accordance with the above-mentioned literature. The aging treatment was performed at a cooling rate of 55 ° C / h for 6 hours after holding at 720 ° C for 8 hours.
After cooling to 20 ° C. and holding for 8 hours, air-cooled heat treatment was performed. Table 2 shows the tensile strengths of the alloys of the present invention, comparative alloys and conventional alloys at room temperature and 700 ° C., 700 ° C.-50 kgf / mm.
2 , creep rupture characteristics, average coefficient of thermal expansion from 30 ° C to 700 ° C, and 900 ° C x 1 in air
The oxidation weight loss value after 6 h × 5 times is shown.

【0027】引張試験は常温、700℃ともASTM法
に規定された試験方法に基づき、平行部直径6.35m
m、標点間距離25.4mmのA370の縮小引張試験片
で実施した。また、クリープ破断試験は、平滑−切欠の
複合試験片により切欠強度も含めた特性を評価した。こ
の試験もASTM法に規定された試験方法に基づき、平
滑部、切欠部とも直径4.52mm、平滑部の標点間距離
18.08mmのA453の9号試験片を用いた。試験温
度は700℃で応力は50kgf/mm2で試験を行ない、破
断寿命と伸びを測定した。熱膨張係数の測定は示差熱膨
張測定装置により実施した。耐酸化試験は、直径10m
m、長さ20mmの丸棒試験片を用いて抵抗加熱炉によ
り、大気中雰囲気にて、900℃×16h×5回後、酸
化減量値を測定することにより耐酸化性を評価した。
The tensile test was conducted at room temperature and 700 ° C. at a parallel part diameter of 6.35 m based on the test method specified by the ASTM method.
The test was carried out on a reduced tensile test specimen of A370 having a gauge length of 25.4 mm. In the creep rupture test, characteristics including notch strength were evaluated using a smooth-notch composite specimen. This test was also performed based on the test method specified by the ASTM method, using a No. 9 A453 test piece having a diameter of 4.52 mm for both the smooth portion and the notch portion and a distance between the gauges of the smooth portion of 18.08 mm. The test was conducted at a test temperature of 700 ° C. and a stress of 50 kgf / mm 2 , and the rupture life and elongation were measured. The measurement of the thermal expansion coefficient was performed by a differential thermal expansion measuring device. Oxidation resistance test, diameter 10m
Using a round bar test piece having a length of 20 mm and a length of 20 mm, in a resistance heating furnace, at 900 ° C. × 16 h × 5 times in an air atmosphere, the oxidation resistance was evaluated by measuring the oxidation weight loss value.

【0028】[0028]

【表2】 [Table 2]

【0029】表1および表2より本発明合金No.1〜
はいずれも優れた常温および700℃の引張強さを有
している。また、700℃の平滑−切欠複合クリープ破
断試験において、いずれも平滑部での破断で、切欠強度
が平滑部の強度を上回っていた。破断寿命はいずれも1
00時間以上で、比較合金No.21や従来合金No.
31に比べ、あきらかに高い寿命が得られた。また、図
1にクリープ破断寿命とγ’相中でのAl側を構成する
Al,Ti,NbおよびTaの4元素の添加量に占める
Alの割合を表わした式である3.44Al/(3.4
4Al+1.94Ti+Nb+0.51Ta)の関係を
示すが、本発明合金がもつ高いγ’相中でのAl量比は
あきらかにクリープ破断強度に有効に働いていることが
わかる。さらに、常温から700℃までの平均熱膨張係
数において、本発明合金は11.9〜13.2×10マ
イナス6乗/℃の値を示し、従来合金No.31と同等
の低い熱膨張係数を併せ持つことがわかる。また、90
0℃の耐酸化性も従来合金No.31と同等以上で、実
用上まったく問題のないレベルである。
From Tables 1 and 2, the alloy No. of the present invention was obtained. 1 to
No. 8 has excellent room temperature and 700 ° C. tensile strength. In addition, in the smooth-notch composite creep rupture test at 700 ° C., all of the fractures occurred at the smooth portion, and the notch strength exceeded the strength of the smooth portion. Break life is 1
When the comparison alloy No. 21 and conventional alloy no.
Obviously, a longer life was obtained as compared with No. 31. FIG. 1 is a formula showing the creep rupture life and the ratio of Al to the added amount of the four elements Al, Ti, Nb and Ta constituting the Al side in the γ 'phase, which is 3.44 Al / (3 .4
4Al + 1.94Ti + Nb + 0.51Ta), which clearly shows that the high Al content ratio in the high γ 'phase of the alloy of the present invention effectively works on the creep rupture strength. Further, the alloy of the present invention shows a value of 11.9 to 13.2 × 10−6 / ° C. at an average coefficient of thermal expansion from room temperature to 700 ° C. It can be seen that it has a low thermal expansion coefficient equivalent to 31. Also, 90
Oxidation resistance at 0 ° C is the same as that of the conventional alloy The level is equal to or higher than 31 and has no practical problem.

【0030】一方、比較合金No.21は、本発明合金
よりもAlが低い組成である。No.21の場合、γ’
相の組成が本発明合金に対して、Al量に対するNbと
Tiの量が相対的に高い組成となっている。そのために
γ’相が本発明合金よりも固溶強化され、常温や700
℃の短時間引張強さなどでは、むしろ高強度が得られ
る。しかし、No.21のようにγ’相を過度に固溶強
化すると、γ’相が不安定となり、実際の使用において
もっとも重要となるクリープ破断強度が本発明合金より
もあきらかに低下するようになる。この結果より、本発
明における従来の低熱膨張超耐熱合金にない高いAl量
の添加の有効性というものがあきらかである。また、従
来合金No.31は、比較合金No.21よりもさらに
Al量が低く、クリープ破断強度は本発明合金はもとよ
り、比較合金No.21よりも劣っている。また、常温
および700℃の引張強さも本発明合金よりも劣ってい
る。
On the other hand, Comparative Alloy No. 21 is a composition in which Al is lower than that of the alloy of the present invention. No. In the case of 21, γ ′
The composition of the phase is a composition in which the amounts of Nb and Ti are relatively higher than the amount of Al with respect to the alloy of the present invention. Therefore, the γ 'phase is solid-solution strengthened more than the alloy of the present invention,
In the case of a short-time tensile strength of, for example, a high strength can be obtained. However, no. If the γ ′ phase is excessively solid-solution strengthened as in 21, the γ ′ phase becomes unstable, and the creep rupture strength, which is the most important in practical use, becomes clearly lower than that of the alloy of the present invention. These results clearly show the effectiveness of the addition of a high amount of Al which is not present in the conventional low thermal expansion super heat resistant alloy in the present invention. In addition, the conventional alloy No. 31 is a comparative alloy No. 31. 21 and the creep rupture strength of the alloy of the present invention as well as the comparative alloy No. Inferior to 21. Also, the tensile strength at room temperature and 700 ° C. is inferior to the alloy of the present invention.

【0031】[0031]

【発明の効果】本発明の合金をガスタービン部品、セラ
ミックス接合部品および超硬合金接合部品等の用途に使
用すれば、従来合金では得られなかった高い高温強度、
高い高温耐酸化性ならびに低熱膨張特性を同時に満足す
ることができ、常温から高温まで高強度かつ各種の部材
や部品間に設けられたクリアランスを常温から高温まで
一定量に維持することが必要な構造用材料への長時間の
適応が可能となる。また、セラミックスや超硬合金のよ
うな低熱膨張材料と構造用の材料との接合に際し高強度
で信頼性の高い接合が長時間にわたり得られる。さら
に、これらの用途以外の部品への適用に際しても、発明
合金が有する強度、耐酸化性および熱膨張特性の特色を
いかした部品ならば、いずれも良好な特性が得られる。
When the alloy of the present invention is used for gas turbine parts, ceramic joint parts, cemented carbide joint parts, etc., high temperature strength, which cannot be obtained with conventional alloys,
A structure that can simultaneously satisfy high high-temperature oxidation resistance and low thermal expansion characteristics, has high strength from room temperature to high temperature, and needs to maintain a constant amount of clearance provided between various members and components from room temperature to high temperature. Long-term adaptation to materials for use becomes possible. Also, when joining a low thermal expansion material such as ceramics and cemented carbide to a structural material, high strength and highly reliable joining can be obtained for a long time. Furthermore, even when applied to parts other than these uses, good characteristics can be obtained for any part that utilizes the characteristics of the invention alloy such as strength, oxidation resistance and thermal expansion characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明合金、比較合金および従来合金のクリー
プ破断寿命に及ぼすγ’相中でのAl量比の影響につい
て示した図である。
FIG. 1 is a view showing the effect of the Al content ratio in the γ ′ phase on the creep rupture life of the alloys of the present invention, comparative alloys and conventional alloys.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%にて、C0.2%以下、Si1%
以下、Mn2%以下、Cr4%を超え10%以下、Al
1%を超え2%以下、Ti0.3〜3%、NbおよびT
aの1種または2種をNb+1/2Taで1.5〜7%
で、Al、Ti、NbおよびTaの関係が3.44Al
/(3.44Al+1.94Ti+Nb+0.51T
a)で0.3〜0.6、さらにB0.02%以下とZr
0.1%以下の1種または2種を含み、Ni20%以上
30%未満、Co20〜35%、且つMg0.02%以
下とCa0.02%以下の1種または2種と、またはさ
らにY0.2%以下とREM0.2%以下の1種または
2種を含有し、残部は不純物を除き、実質的にFeから
なることを特徴とする低熱膨張超耐熱合金。
(1) In terms of% by weight, C is 0.2% or less, and Si is 1%.
Below, Mn 2% or less, Cr more than 4%, 10% or less, Al
More than 1% and 2% or less, 0.3 to 3% of Ti, Nb and T
a or 1.5% to 7% of Nb + 1 / 2Ta
And the relationship among Al, Ti, Nb and Ta is 3.44 Al
/(3.44Al+1.94Ti+Nb+0.51T)
a) 0.3 to 0.6, further B2% or less and Zr
0.1% or less of one or two kinds, Ni 20% or more and less than 30%, Co 20-35% , and Mg 0.02% or less
Bottom and one or two kinds of Ca 0.02% or less, or
And one of Y 0.2% or less and REM 0.2% or less
A low thermal expansion, super heat resistant alloy comprising two types , with the balance being substantially free of impurities except for impurities.
【請求項2】 重量%にて、C0.1%以下、Si0.
1〜0.6%、Mn1%以下、Cr4.5〜7%、Al
1.05〜1.8%、Ti0.9〜1.8%、Nbおよ
びTaの1種または2種をNb+1/2Taで2.8〜
4.5%で、Al、Ti、NbおよびTaの関係が3.
44Al/(3.44Al+1.94Ti+Nb+0.
51Ta)で0.3〜0.6、さらにB0.02%以下
とZr0.1%以下の1種または2種を含み、Ni24
%以上30%未満、Co24〜32%、且つMg0.0
2%以下とCa0.02%以下の1種または2種と、ま
たはさらにY0.2%以下とREM0.2%以下の1種
または2種を含有し、残部は不純物を除き、実質的にF
eからなることを特徴とする低熱膨張超耐熱合金。
2. The method according to claim 1, wherein the content of C is 0.1% or less and the content of Si0.
1 to 0.6%, Mn 1% or less, Cr 4.5 to 7%, Al
1.05 to 1.8%, Ti 0.9 to 1.8%, one or two of Nb and Ta are Nb + 1 / 2Ta at 2.8 to
At 4.5%, the relationship between Al, Ti, Nb and Ta is 3.
44Al / (3.44Al + 1.94Ti + Nb + 0.
51Ta), containing one or two kinds of 0.3 to 0.6, further B 0.02% or less and Zr 0.1% or less;
% To less than 30%, Co 24 to 32% , and Mg 0.0
2% or less and one or two kinds of Ca 0.02% or less, and
Or one of Y 0.2% or less and REM 0.2% or less
Or two kinds , and the remainder is substantially free of impurities, and is substantially F
e, a low heat expansion super heat resistant alloy.
【請求項3】 重量%にて、C0.1%以下、Si0.
1〜0.6%、Mn1%以下、Cr4.8〜6.5%、
Al1.05〜1.8%、Ti0.9〜1.8%、Nb
およびTaの1種または2種をNb+1/2Taで2.
8〜4.5%で、Al、Ti、NbおよびTaの関係が
3.44Al/(3.44Al+1.94Ti+Nb+
0.51Ta)で0.35〜0.55、さらにB0.0
2%以下とZr0.1%以下の1種または2種を含み、
Ni28〜29.8%、Co24〜26%、且つMg
0.02%以下とCa0.02%以下の1種または2種
と、またはさらにY0.2%以下とREM0.2%以下
の1種または2種を含有し、残部は不純物を除き、実質
的にFeからなることを特徴とする低熱膨張超耐熱合
金。
3. The method according to claim 1, wherein the content of C is 0.1% or less and the content of Si0.
1 to 0.6%, Mn 1% or less, Cr 4.8 to 6.5%,
Al 1.05 to 1.8%, Ti 0.9 to 1.8%, Nb
And one or two of Ta and Nb + / Ta.
8 to 4.5%, the relationship between Al, Ti, Nb and Ta is 3.44 Al / (3.44 Al + 1.94 Ti + Nb +
0.55 Ta), 0.35 to 0.55, and B0.0
Containing 1% or less of 2% or less and Zr 0.1% or less,
Ni 28-29.8%, Co 24-26% , and Mg
One or two kinds of 0.02% or less and Ca 0.02% or less
Or even Y 0.2% or less and REM 0.2% or less
A low-thermal-expansion super-heat-resistant alloy comprising one or two of the following , and the balance being substantially free of impurities except for impurities.
【請求項4】 重量%にて、C0.2%以下、Si1%
以下、Mn2%以下、Cr4%を超え10%以下、Mo
およびWの1種または2種をMo+1/2Wで3%以
下、Al1%を超え2%以下、Ti0.3〜3%、Nb
およびTaの1種または2種をNb+1/2Taで1.
5〜7%で、Al、Ti、NbおよびTaの関係が3.
44Al/(3.44Al+1.94Ti+Nb+0.
51Ta)で0.3〜0.6、さらにB0.02%以下
とZr0.1%以下の1種または2種を含み、Ni20
%以上30%未満、Co20〜35%、且つMg0.0
2%以下とCa0.02%以下の1種または2種と、ま
たはさらにY0.2%以下とREM0.2%以下の1種
または2種を含有し、残部は不純物を除き、実質的にF
eからなることを特徴とする低熱膨張超耐熱合金。
4. The composition according to claim 1, wherein C is 0.2% or less and Si is 1% in weight%.
Below, Mn 2% or less, Cr more than 4%, 10% or less, Mo
One or two of W and W at Mo + WW of 3% or less, Al exceeding 1% and 2% or less, Ti 0.3 to 3%, Nb
One or two of Ta and Nb + 1 / 2Ta.
At 5 to 7%, the relationship between Al, Ti, Nb and Ta is 3.
44Al / (3.44Al + 1.94Ti + Nb + 0.
51Ta), containing one or two kinds of 0.3 to 0.6, further B 0.02% or less and Zr 0.1% or less;
% To less than 30%, Co 20 to 35% , and Mg 0.0
2% or less and one or two kinds of Ca 0.02% or less, and
Or one of Y 0.2% or less and REM 0.2% or less
Or two kinds , and the remainder is substantially free of impurities, and is substantially F
e, a low heat expansion super heat resistant alloy.
JP01826293A 1993-02-05 1993-02-05 Low thermal expansion super heat resistant alloy with excellent oxidation resistance Expired - Fee Related JP3289847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01826293A JP3289847B2 (en) 1993-02-05 1993-02-05 Low thermal expansion super heat resistant alloy with excellent oxidation resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01826293A JP3289847B2 (en) 1993-02-05 1993-02-05 Low thermal expansion super heat resistant alloy with excellent oxidation resistance

Publications (2)

Publication Number Publication Date
JPH06228714A JPH06228714A (en) 1994-08-16
JP3289847B2 true JP3289847B2 (en) 2002-06-10

Family

ID=11966765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01826293A Expired - Fee Related JP3289847B2 (en) 1993-02-05 1993-02-05 Low thermal expansion super heat resistant alloy with excellent oxidation resistance

Country Status (1)

Country Link
JP (1) JP3289847B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005061790A1 (en) * 2005-12-23 2007-07-05 Mtu Aero Engines Gmbh Material for component of gas turbine comprises matrix based on iron alloy with intermetallic material of Laves phase
US10633717B2 (en) 2015-09-29 2020-04-28 Hitachi Metals, Ltd. Low thermal expansion superalloy and manufacturing method thereof
CN111496417B (en) * 2020-05-11 2021-12-24 中国航发北京航空材料研究院 Ti-Ni-Nb-Zr brazing material of Nb-Si-based ultrahigh-temperature structural material and brazing connection process

Also Published As

Publication number Publication date
JPH06228714A (en) 1994-08-16

Similar Documents

Publication Publication Date Title
JP4037929B2 (en) Low thermal expansion Ni-base superalloy and process for producing the same
JP3753143B2 (en) Ni-based super heat-resistant cast alloy and turbine wheel using the same
TWI359870B (en) Ni-cr-co alloy for advanced gas turbine engines
JP2778705B2 (en) Ni-based super heat-resistant alloy and method for producing the same
WO2012026354A1 (en) Co-based alloy
JPS5816047A (en) Nickel base alloy
JP5186215B2 (en) Nickel-based superalloy
JP4387331B2 (en) Ni-Fe base alloy and method for producing Ni-Fe base alloy material
JP2000256770A (en) LOW THERMAL EXPANSION Ni BASE SUPERALLOY
JP2955778B2 (en) Controlled thermal expansion alloys and products made thereby
US8048368B2 (en) High temperature and oxidation resistant material
JP3127471B2 (en) Low thermal expansion super heat resistant alloy
JPH01255632A (en) Ti-al intermetallic compound-type alloy having toughness at ordinary temperature
JP4288821B2 (en) Low thermal expansion Fe-based heat-resistant alloy with excellent high-temperature strength
JPH0578769A (en) Heat resistant alloy on intermetallic
JP3289847B2 (en) Low thermal expansion super heat resistant alloy with excellent oxidation resistance
JP5595495B2 (en) Nickel-base superalloy
JPS58120758A (en) High strength nickel base superalloy product
JPH09268337A (en) Forged high corrosion resistant superalloy alloy
JP3135691B2 (en) Low thermal expansion super heat resistant alloy
JPH07238353A (en) Iron-aluminum alloy and application of this alloy
JP2003138334A (en) Ni-BASED ALLOY HAVING EXCELLENT HIGH TEMPERATURE OXIDATION RESISTANCE AND HIGH TEMPERATURE DUCTILITY
JPH07300643A (en) Heat resistant cast cobalt-base alloy
JP3281685B2 (en) Hot bolt material for steam turbine
JP2002294374A (en) Ni BASED CAST HEAT RESISTANT SUPERALLOY AND TURBINE WHEEL MADE OF THE Ni BASED SUPERALLOY

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080322

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090322

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090322

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100322

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110322

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees