JP2003138334A - Ni-BASED ALLOY HAVING EXCELLENT HIGH TEMPERATURE OXIDATION RESISTANCE AND HIGH TEMPERATURE DUCTILITY - Google Patents

Ni-BASED ALLOY HAVING EXCELLENT HIGH TEMPERATURE OXIDATION RESISTANCE AND HIGH TEMPERATURE DUCTILITY

Info

Publication number
JP2003138334A
JP2003138334A JP2001336059A JP2001336059A JP2003138334A JP 2003138334 A JP2003138334 A JP 2003138334A JP 2001336059 A JP2001336059 A JP 2001336059A JP 2001336059 A JP2001336059 A JP 2001336059A JP 2003138334 A JP2003138334 A JP 2003138334A
Authority
JP
Japan
Prior art keywords
less
high temperature
oxidation resistance
ductility
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001336059A
Other languages
Japanese (ja)
Inventor
Motoi Yamaguchi
基 山口
Toshihiro Uehara
利弘 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2001336059A priority Critical patent/JP2003138334A/en
Publication of JP2003138334A publication Critical patent/JP2003138334A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an Ni-based alloy which has improved oxidation resistance at a high temperature and improved ductility at a high temperature. SOLUTION: The Ni-based alloy having excellent high temperature oxidation resistance and high temperature ductility has a composition containing, by mass, <=0.1% C, <=1.0% Si, <=2.0% Mn, 12 to 32% Cr, <=20% Fe, <=0.05% Ti (inclusive of zero), 0.03 to 0.5% Al, 0.001 to 0.05% Mg, and one or more kinds selected from <=0.2% rare earth elements, <=0.3% Y, <=0.2% Sc, <=0.3% Hf and <=0.4% Zr so as to control their total in <=0.5%, and in which the content of S as an impurity is <=0.002%, and also, Mg/S>=1 is satisfied, and similarly, the content of O as an impurity is limited to <=0.01%, P to <=0.005%, Pb to <=0.001%, Bi to <=0.0002%, Sb to <=0.001%, Sn to <=0.005%, and As to <=0.005%, and also, (0.1×Si+0.1×Mn+0.2×Al+2×Mg+rare earth elements+Y+Sc+Hf+ Zr)/(O+2S)>=10 is satisfied, and the balance Ni with inevitable impurities other than the above ones.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、点火プラグ用電極
等の自動車部品、ガスタービンノズル等の発電設備用の
部品、熱処理炉内用部品及び燃料電池用部品等の高温で
酸化雰囲気に曝されて使用される部品及び部材に適した
高温耐酸化性及び高温延性に優れたNi基合金に関するも
のである。
TECHNICAL FIELD The present invention relates to automobile parts such as electrodes for spark plugs, parts for power generation equipment such as gas turbine nozzles, parts for heat treatment furnaces, parts for fuel cells and the like, which are exposed to an oxidizing atmosphere at high temperatures. The present invention relates to a Ni-based alloy having excellent high-temperature oxidation resistance and high-temperature ductility, which is suitable for parts and members to be used.

【0002】[0002]

【従来の技術】従来から、高温で酸化雰囲気に曝される
部材には、耐酸化性及び高温延性に優れるNi-18Cr-7Fe
(Alloy600)合金が用いられている。耐酸化性は高温大気
またはガス雰囲気中で使用される時に酸化による滅失や
脆化を防ぐために必要であり、Alloy600は高温でCr2O3
被膜が生成して母材を保護することにより耐酸化性を保
持している。また、高温における延性は熱サイクルを受
ける部材において、熱膨張や熱収縮に起因する変形によ
る破断を防ぐために必要とされる特性である。近年では
様々な部品で、従来の使用環境よりも高い温度における
耐酸化性が要求されるようになり、Alloy600を改良した
合金について検討がなされてきている。Alloy600の耐酸
化性改善したものとしては、例えば特開昭63-153236号
及び特開2000-336446号が提案されている。
2. Description of the Related Art Conventionally, Ni-18Cr-7Fe, which has excellent oxidation resistance and high temperature ductility, has been used for members exposed to an oxidizing atmosphere at high temperature.
(Alloy 600) alloy is used. Oxidation resistance is necessary to prevent loss and embrittlement due to oxidation when used at high temperature air or gas atmosphere, Alloy 600 is Cr 2 O 3 at high temperature
Oxidation resistance is maintained by forming a film and protecting the base material. Further, ductility at high temperature is a characteristic required for a member that undergoes a thermal cycle to prevent breakage due to deformation due to thermal expansion or thermal contraction. In recent years, various parts have been required to have oxidation resistance at a temperature higher than that in the conventional use environment, and alloys improved from Alloy 600 have been studied. As alloy 600 with improved oxidation resistance, for example, JP-A-63-153236 and JP-A-2000-336446 are proposed.

【0003】[0003]

【発明が解決しようとする課題】上述の特開昭63-15323
6号ではAlloy600にY、Ce、Zr、Sc及び/またはLaを添加
し、耐酸化性を改善させている。そして、本発明者らの
提案による特開2000-336446号ではAlloy600にMgを添加
して熱間加工性を改善し、Tiを無添加として耐酸化性を
改善した合金をベースとして、希土類元素、Y、Hf及び/
またはZrを添加することにより、更に耐酸化性を改善し
ている。これらの特開昭63-153236号や特開2000-336446
号に記載される合金は1050℃付近の高温においても基本
的に良好な耐酸化性を示していた。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
In No. 6, Y, Ce, Zr, Sc and / or La are added to Alloy 600 to improve the oxidation resistance. Then, in JP-A-2000-336446 proposed by the present inventors to improve the hot workability by adding Mg to Alloy600, based on the alloy with improved oxidation resistance without adding Ti, a rare earth element, Y, Hf and /
Alternatively, by adding Zr, the oxidation resistance is further improved. JP-A-63-153236 and JP-A-2000-336446.
The alloy described in No. 1 showed basically good oxidation resistance even at high temperatures around 1050 ° C.

【0004】しかしながら近年の点火プラグ用電極等の
自動車部品、ガスタービンノズル等の発電設備用の部
品、熱処理炉内用部品及び燃料電池用部品等の高温で酸
化雰囲気に曝されて使用される部品及び部材に対する要
求は厳しく、1100℃の高温において良好な耐酸化性を有
する合金が求められており、1100℃ではこれらの合金の
耐酸化性は不十分であった。更に、これらの合金につい
て検討を続けていると、幾つかのインゴットから製造さ
れた試験片において、1050℃でも耐酸化性が著しく低下
することがあった。
However, recent automobile parts such as electrodes for spark plugs, parts for power generation equipment such as gas turbine nozzles, parts for heat treatment furnaces, parts for fuel cells and the like, which are used by being exposed to an oxidizing atmosphere at high temperature, are used. Further, the requirements for members and members are strict, and alloys having good oxidation resistance at a high temperature of 1100 ° C. are required, and the oxidation resistance of these alloys was insufficient at 1100 ° C. Further, when these alloys were continuously investigated, the test pieces produced from some ingots sometimes showed a significant decrease in oxidation resistance even at 1050 ° C.

【0005】更に、本発明者らの検討によると、特開昭
63-153236号及び特開2000-336446号について高温の延性
を調査してみたところ、殆どの試験片で良好な特性が得
られたが、幾つかのインゴットから製造された試験片に
おいて高温の延性が低下することがあった。更に特開20
00-336446号ではAl量が高い5%以下添加する合金が好ま
しいとしているが、本発明者らが詳細に検討してみる
と、Alの高い合金では1100℃付近においてAl2O3被膜を
生成させて耐酸化性を改善しているが、高温特に700℃
付近における延性が著しく低下する。これらは高温耐酸
化性を必要とする合金及びそれを用いてなる製品を実用
化する上で大きな問題となる。本発明の目的は高温での
耐酸化性を向上し、更に高温における延性を改善したNi
基合金を提供することである。
Further, according to a study by the present inventors, it has been found that
When we investigated the ductility at high temperature for 63-153236 and JP-A-2000-336446, good properties were obtained in most of the test pieces, but ductility at high temperature was obtained in the test pieces manufactured from some ingots. Was sometimes reduced. Furthermore, JP 20
In 00-336446, an alloy containing a high Al amount of 5% or less is preferable, but when the present inventors examined in detail, an alloy with a high Al produced an Al 2 O 3 film at around 1100 ° C. To improve oxidation resistance, but at high temperatures, especially 700 ℃
Ductility in the vicinity is significantly reduced. These are major problems in putting alloys requiring high temperature oxidation resistance and products using them into practical use. The object of the present invention is to improve the oxidation resistance at high temperature and further improve the ductility at high temperature.
It is to provide a base alloy.

【0006】[0006]

【課題を解決するための手段】本発明者は高温での耐酸
化性の問題を検討した。先ず、特開昭63-153236号及び
特開2000-336446号に示されるAlloy600の改良合金のう
ち、1100℃での耐酸化試験を行った試験片を調べたとこ
ろ、少量のAlが酸化膜の密着性に寄与し、酸化膜の剥離
を抑制して、耐酸化性に良好な影響を及ぼしていること
を見出した。
The present inventors have examined the problem of oxidation resistance at high temperatures. First, among the improved alloys of Alloy 600 shown in JP-A-63-153236 and JP-A-2000-336446, a test piece subjected to an oxidation resistance test at 1100 ° C. was examined, and a small amount of Al was found to be an oxide film. It was found that it contributes to the adhesiveness and suppresses the peeling of the oxide film, which has a good effect on the oxidation resistance.

【0007】更に1050℃で耐酸化性が良好であった試験
片を調べたところ、希土類元素、Y、Sc、Hf、Zrが有効
に作用して、これらの元素が酸化膜の成長及び剥離を抑
制するため1100℃においても良好な耐酸化性を示してい
た。次に、特開昭63-153236号及び特開2000-336446号に
示されるAlloy600の改良合金の内、1050℃でも耐酸化性
が低下している材料を調べたところ、驚くべきことに不
純物元素であるO及びSの含有量が、希土類元素、Y、S
c、Hf及びZrの含有量に対して多くなっていると高温に
おける耐酸化性が低下し易いことを知見した。
Further, when a test piece having good oxidation resistance at 1050 ° C. was examined, the rare earth elements, Y, Sc, Hf, and Zr act effectively, and these elements cause the growth and peeling of the oxide film. In order to suppress, good oxidation resistance was exhibited even at 1100 ° C. Next, among the improved alloys of Alloy 600 shown in JP-A-63-153236 and JP-A-2000-336446, the material whose oxidation resistance was lowered even at 1050 ° C. was investigated, and it was surprising that the impurity element The contents of O and S are
It has been found that the oxidation resistance at high temperatures tends to decrease as the content of c, Hf and Zr increases.

【0008】そして、本発明者らが更に詳細に検討した
結果、1050℃でも耐酸化性が低下しているO及びSの含有
量が多い合金では、希土類元素、Y、Sc、Hf及びZrが、O
やSと結合してそれぞれ酸化物や硫化物を形成し、固溶
した状態の希土類元素、Y、Sc、Hf及びZrが少なく、こ
れらの元素が耐酸化性へ十分に寄与していない可能性が
認められたため、先ず、希土類元素、Y、Sc、Hf、Zrを
主成分とする酸化物の形成を抑えるには、溶解時にこれ
らの元素を添加する前にO含有量を十分に低減しておく
必要があることを知見した。そして、そのためには真空
溶解及びC、Si、Mnによる脱酸は必須で、Mg及び少量のA
lの添加も効果があり、これらにより十分に脱酸した溶
湯に希土類元素、Y、Sc、Hf及びZrを添加する必要があ
ることを見出した。
As a result of a further detailed study by the present inventors, the alloys containing a large amount of O and S, which have low oxidation resistance even at 1050 ° C., contain rare earth elements, Y, Sc, Hf and Zr. , O
Rare earth elements, Y, Sc, Hf, and Zr, which are solid-solved in the form of oxides and sulfides that bind to S and S, respectively, may not be sufficient to contribute to oxidation resistance. Therefore, in order to suppress the formation of oxides containing rare earth elements, Y, Sc, Hf, and Zr as the main components, the O content should be sufficiently reduced before adding these elements during dissolution. I found that it was necessary to put it. For that purpose, vacuum melting and deoxidation with C, Si and Mn are essential, and Mg and a small amount of A
It was found that the addition of l also has an effect, and it is necessary to add rare earth elements, Y, Sc, Hf and Zr to the molten metal sufficiently deoxidized by these additions.

【0009】また、希土類元素、Y、Sc、Hf及びZrの硫
化物形成を抑えるにはMgを添加することにより溶湯中の
Sを除去し、また合金中のSをMgで固定することが必要で
ある。以上のように、Alを少量添加した上で、合金中に
含まれる希土類元素、Y、Sc、Hf及びZrの酸化物形成及
び硫化物形成を抑制して、耐酸化性に有効に寄与させる
ためには、OとSを特定量以下に制限し、更に特別な関係
式を用いてSi、Mn、Al、Mg、希土類元素、Y、Sc、Hf及
びZrをOとSに対して一定量以上含有させることも必要で
あることを見出した。
Further, in order to suppress the formation of sulfides of rare earth elements, Y, Sc, Hf and Zr, Mg is added to the molten metal.
It is necessary to remove S and fix S in the alloy with Mg. As described above, after adding a small amount of Al, rare earth elements contained in the alloy, Y, Sc, to suppress the oxide formation and sulfide formation of Hf and Zr, to effectively contribute to the oxidation resistance. , O and S are limited to a specific amount or less, and by using a special relational expression, Si, Mn, Al, Mg, rare earth elements, Y, Sc, Hf, and Zr are equal to or more than a certain amount with respect to O and S. It has been found that it is necessary to include it.

【0010】次に、本発明者らは高温の延性について調
査した。前述の高温における延性が低下している試験片
を調べたところ、予想以上に不純物元素であるPb、Bi、
Sb、Sn及びAsの含有量が多くなっていることを知見し、
これら不純物が過剰にインゴット中に残存したことによ
り高温の延性が低下していることを突き止め、これら不
純物元素の低減には溶解原料を厳選することによりPb、
Bi、Sb、Sn及びAsを低く抑えることが可能であることを
知見した。
Next, the present inventors investigated ductility at high temperature. Examination of the above-mentioned test piece that the ductility at high temperature has decreased, Pb, Bi, which is an impurity element more than expected,
Finding that the content of Sb, Sn and As is high,
It was found that the high temperature ductility was reduced due to the excessive amounts of these impurities remaining in the ingot, and Pb,
It was found that Bi, Sb, Sn and As can be kept low.

【0011】また、特開2000-336446号のように積極的
にAlを5%以下の範囲で添加した場合、Alの添加量が多く
なるに従って耐酸化性は向上するが、700℃程度の温度
域でγ’相を形成し、延性を著しく低下させるため、過
剰なAlの添加は高温延性を劣化させる。しかしながら、
Alを低く抑えるだけでは耐酸化性が不十分となるためAl
を低くしても良好な耐酸化性を維持するために、少量の
Al添加に加えて前述の希土類元素、Y、Sc、Hf及び/また
はZrの添加が必要であることを見出した。以上説明す
る、(1)低Al化、(2)希土類元素、Y、Sc、Hf及び/また
はZrの耐酸化性向上元素の添加、(3)それを有効に作用
させるためのO及びSの低減、(4)更に高温延性低下をも
たらす不純物元素の低減の(1)〜(4)を同時に組合わせに
より、耐酸化性と高温延性の両立を可能にすることを見
出し本発明に至った。
Further, when Al is positively added in the range of 5% or less as in JP-A-2000-336446, the oxidation resistance is improved as the added amount of Al is increased, but the temperature is about 700 ° C. Addition of excessive Al deteriorates the high temperature ductility because it forms a γ'phase in the region and significantly reduces the ductility. However,
Since oxidation resistance is insufficient if Al is kept low, Al
In order to maintain good oxidation resistance even with a low
It was found that the above-mentioned addition of rare earth elements, Y, Sc, Hf and / or Zr is necessary in addition to Al addition. As described above, (1) low Al content, (2) addition of rare earth element, oxidation resistance improving element of Y, Sc, Hf and / or Zr, (3) addition of O and S to make it act effectively It has been found that by simultaneously combining reduction (4) and reduction of impurity elements (1) to (4) that further lowers high temperature ductility, both oxidation resistance and high temperature ductility can be achieved at the same time.

【0012】即ち本発明は、質量%でC:0.1%以下、Si:1.
0%以下、Mn:2.0%以下、Cr:12〜32%、Fe:20%以下、Ti:0.
05%以下(0を含む)、Al:0.03〜0.5%、Mg:0.001〜0.05%、
及び(希土類元素:0.2%以下、Y:0.3%以下、Sc:0.2%以
下、Hf:0.3%以下、Zr:0.4%以下)の群から選ばれる一種
または二種以上を合計で0.5%以下含有し、不純物である
Sは0.002%以下であり、且つMg/S≧1を満たし、同じく
不純物のO:0.01%以下、P:0.005%以下、Pb:0.001%以下、
Bi:0.0002%以下、Sb:0.001%以下、Sn:0.005%以下、As:
0.005%以下に制限し、且つ(0.1×Si+0.1×Mn+0.2×Al+
2×Mg+希土類元素+Y+Sc+Hf+Zr)/(O+2S)≧10を満たし、
残部はNi及び上記以外の不可避不純物からなる高温耐酸
化性及び高温延性に優れたNi基合金である。
That is, in the present invention, C: 0.1% or less by mass%, Si: 1.
0% or less, Mn: 2.0% or less, Cr: 12 to 32%, Fe: 20% or less, Ti: 0.
05% or less (including 0), Al: 0.03 to 0.5%, Mg: 0.001 to 0.05%,
And 0.5% or less in total of one or more selected from the group of (rare earth element: 0.2% or less, Y: 0.3% or less, Sc: 0.2% or less, Hf: 0.3% or less, Zr: 0.4% or less) And is an impurity
S is 0.002% or less and satisfies Mg / S ≧ 1, and similarly, impurities O: 0.01% or less, P: 0.005% or less, Pb: 0.001% or less,
Bi: 0.0002% or less, Sb: 0.001% or less, Sn: 0.005% or less, As:
Limit to less than 0.005% and (0.1 x Si + 0.1 x Mn + 0.2 x Al +
2 × Mg + rare earth element + Y + Sc + Hf + Zr) / (O + 2S) ≧ 10,
The balance is a Ni-based alloy consisting of Ni and unavoidable impurities other than the above, which has excellent high-temperature oxidation resistance and high-temperature ductility.

【0013】また本発明は、上記の高温耐酸化性及び高
温延性に優れたNi基合金のうち、CrとFeの好ましい範囲
として、質量%でCr:12〜20%、Fe:3%を超えて10%までで
ある高温耐酸化性及び高温延性に優れたNi基合金であ
る。更に好ましくは、質量%でLa:0.2%以下及びZr:0.4%
以下のうち一種または二種を含み且つそれらの合計が0.
5%以下である高温耐酸化性及び高温延性に優れたNi基合
金である。
In the present invention, among the above Ni-based alloys excellent in high temperature oxidation resistance and high temperature ductility, the preferable ranges of Cr and Fe are as follows: Cr: 12-20% by mass%, Fe: 3% or more. It is a Ni-based alloy with excellent high temperature oxidation resistance and high temperature ductility of up to 10%. More preferably, La: 0.2% or less and Zr: 0.4% in mass%
One or two of the following are included and their sum is 0.
It is a Ni-based alloy excellent in high temperature oxidation resistance and high temperature ductility of 5% or less.

【0014】[0014]

【発明の実施の形態】上述したように本発明の重要な特
徴は高温での十分な耐酸化性及び良好な高温延性を併せ
もつことができる最適組成にある。以下に各元素の作用
について説明する。Cは、Cr等と結びついて炭化物を形
成し、結晶粒粗大化を防止する作用があり、少量添加が
必要である。また、脱酸のために必要な元素でもある。
しかし、過度の添加は多量の炭化物形成による冷間加工
性の低下及びマトリックス(基地)中のCrの欠乏を招くた
め0.1%以下に限定する。Siは、溶湯に対して強力な脱酸
作用を発揮する元素である。更に鋳造性を向上させる作
用がある。また、SiO2は酸化被膜と母材の中間に形成さ
れ、酸化被膜の剥離を阻止する。これらの理由でSiを添
加するが、過度の添加は耐酸化性の低下を招くためSiの
上限は1.0%である。Mnは、Siと同じく脱酸作用を発揮す
るほか、鋳造性を向上させる作用があるが、過度の添加
は耐酸化性の低下を招くためMnの上限は2.0%である。
BEST MODE FOR CARRYING OUT THE INVENTION As described above, an important feature of the present invention is an optimum composition capable of combining sufficient oxidation resistance at high temperature and good hot ductility. The action of each element will be described below. C has a function of forming a carbide by being combined with Cr and the like and preventing coarsening of crystal grains, and it is necessary to add a small amount. It is also an element necessary for deoxidation.
However, excessive addition causes a decrease in cold workability due to the formation of a large amount of carbide and a deficiency of Cr in the matrix (matrix), so the content is limited to 0.1% or less. Si is an element that exerts a strong deoxidizing action on the molten metal. Further, it has an effect of improving castability. Further, SiO 2 is formed between the oxide film and the base material and prevents the oxide film from peeling. For these reasons, Si is added, but excessive addition causes a decrease in oxidation resistance, so the upper limit of Si is 1.0%. Mn has the same deoxidizing effect as Si and has the effect of improving the castability, but excessive addition causes a decrease in oxidation resistance, so the upper limit of Mn is 2.0%.

【0015】Crは、マトリックス中に存在することによ
り高温において材料表面にCr2O3被膜を形成し耐酸化性
を向上させる。高温で連続した酸化膜を生成し、十分な
耐酸化性を付与させるためには、下限を12%以上とする
ことが必要である。しかし、過度の添加は加工性を低下
させ、且つCr2O3被膜の剥離を引き起こすため、Crの上
限は32%とした。このCrの効果をより確実に得るための
望ましい範囲としては、12〜20%の範囲である。Feは、
高温強度を低下させる元素であり、添加しないと熱間加
工性が著しく悪くなる。従って、製造上必要な元素であ
る。しかし、過度の添加は逆に高温での強度を低下さ
せ、また耐酸化性もやや低下させる。従って、Feの添加
量の上限を20%以下とした。このFeの効果をより確実に
得るための望ましい範囲は3%を超えて10%までである。
Since Cr is present in the matrix, it forms a Cr 2 O 3 film on the surface of the material at a high temperature to improve the oxidation resistance. In order to form a continuous oxide film at high temperature and to impart sufficient oxidation resistance, the lower limit needs to be 12% or more. However, excessive addition lowers the workability and causes peeling of the Cr 2 O 3 coating, so the upper limit of Cr was 32%. A desirable range for more reliably obtaining the effect of Cr is 12 to 20%. Fe is
It is an element that lowers the high temperature strength, and if it is not added, the hot workability will be significantly deteriorated. Therefore, it is an element necessary for manufacturing. However, excessive addition, on the contrary, lowers the strength at high temperature and also slightly lowers the oxidation resistance. Therefore, the upper limit of the amount of Fe added is set to 20% or less. A desirable range for more reliably obtaining the effect of Fe is more than 3% and up to 10%.

【0016】Tiは、添加することにより酸化被膜から材
料内部に向かって粒界に沿うようにTi酸化物が生成す
る。これにより酸化被膜が剥離し易くなり、耐酸化性が
悪くなる。しかし、少量であれば酸化した際の剥離量も
少なく、また溶湯への脱酸作用もあるため極少量であれ
ば添加しても差し支えない。そのためTiの含有量の上限
は0.05%以下であり、無添加(0%)であっても良い。Al
は、過度に添加すると700℃付近でγ’を析出し、延性
を低下させる元素であり、低く抑える必要があるが、少
量の添加は耐酸化性を向上させ、且つ延性に影響を与え
ず、更に溶湯中での脱酸作用があるため、Alの少量添加
は有効である。従って、Alは0.03〜0.5%以下とした。
When Ti is added, Ti oxide is formed from the oxide film toward the inside of the material along the grain boundaries. As a result, the oxide film is easily peeled off and the oxidation resistance is deteriorated. However, if it is a small amount, the amount of exfoliation at the time of oxidation is small, and it also has a deoxidizing effect on the molten metal, so that it may be added if it is an extremely small amount. Therefore, the upper limit of the Ti content is 0.05% or less, and the Ti content may not be added (0%). Al
Is an element that precipitates γ ′ at around 700 ° C. if excessively added, and is an element that reduces ductility, and it is necessary to suppress it to a low level, but addition of a small amount improves oxidation resistance and does not affect ductility, Furthermore, since it has a deoxidizing action in the molten metal, addition of a small amount of Al is effective. Therefore, Al is set to 0.03 to 0.5% or less.

【0017】希土類元素、Y、Sc、Hf及びZrは微量添加
することにより、高温における延性を低下させることな
く、耐酸化性が著しく向上する。希土類元素の適量添加
は耐酸化性に有効であるが、中でも好ましい希土類元素
はLaとCeである。これらLaやCe等の希土類元素、Y、S
c、Hf、Zrの各元素は酸化膜の密着性を向上させ、且つ
酸化膜の成長速度を抑制する効果を有するが、過度の添
加は熱間加工性を低下させる。従って、添加量は希土類
元素0.2%以下、Y0.3%以下、Sc0.2%以下、Hf0.3%以下、Z
r0.4%以下のうち一種または二種以上を含み且つそれら
の合計が0.5%以下である。また、本発明において、上述
の希土類元素、Y、Sc、Hf、Zrの中でも特にLaとZrは膜
の密着性を向上させ、耐酸化性を向上させる効果が大き
い。従って、希土類元素、Y、Sc、Hf、Zrの内で特に望
ましい添加元素及び添加量はLa0.2%以下及びZr0.4%以下
のうち一種または二種を含み且つそれらの合計が0.5%以
下である。
By adding a small amount of rare earth elements, Y, Sc, Hf and Zr, the oxidation resistance is remarkably improved without lowering the ductility at high temperature. Addition of an appropriate amount of rare earth element is effective for oxidation resistance, but among them, preferable rare earth elements are La and Ce. Rare earth elements such as La and Ce, Y, S
Each element of c, Hf, and Zr has the effect of improving the adhesion of the oxide film and suppressing the growth rate of the oxide film, but excessive addition deteriorates the hot workability. Therefore, the addition amount of rare earth elements 0.2% or less, Y 0.3% or less, Sc 0.2% or less, Hf 0.3% or less, Z
One or more of r0.4% or less is included, and the total of them is 0.5% or less. Further, in the present invention, among the above-mentioned rare earth elements, Y, Sc, Hf, and Zr, La and Zr are particularly effective in improving the adhesion of the film and improving the oxidation resistance. Therefore, rare earth elements, Y, Sc, Hf, Zr particularly desirable additional elements and addition amount include one or two of La 0.2% or less and Zr 0.4% or less and their total is 0.5% or less. Is.

【0018】Mgは、Sと結びついて化合物を形成し、Sを
除去または固定するために必要な元素である。しかしな
がら、MgはNi中の固溶限が小さいため過度に添加すると
粒界にNi2Mgを形成する。このためNiとNi2Mgの共晶が粒
界において発生し、熱間加工時には粒界が脆弱になり、
熱間加工性及び高温延性が低下する。従って、Mgの添加
は0.001〜0.05%である。そして、Mgを0.001〜0.05%の範
囲に調整した上で、Sを確実に除去または固定するため
に質量でMg/Sの比率を1以上とすることが必要である。
Mg is an element necessary for removing or fixing S by combining with S to form a compound. However, since Mg has a small solid solubility limit in Ni, excessive addition forms Ni 2 Mg at the grain boundaries. Therefore, a eutectic of Ni and Ni 2 Mg is generated at the grain boundary, and the grain boundary becomes brittle during hot working.
Hot workability and hot ductility are reduced. Therefore, the addition of Mg is 0.001 to 0.05%. Then, it is necessary to adjust the Mg within the range of 0.001 to 0.05% and then set the ratio of Mg / S by mass to 1 or more in order to reliably remove or fix S.

【0019】次に、本発明で制限すべき不純物について
詳細に説明する。不純物であるSは、Ni中の固溶限が非
常に小さいため微量含有するだけで、耐酸化性向上に必
須の元素である希土類元素、Y、Sc、Hf及びZrと硫化物
を形成し、希土類元素、Y、Sc、Hf及びZrの耐酸化性向
上効果を低減させる。また、結晶粒界にNi3S2が偏析
し、NiとNi3S2の共晶が発生する。この共晶の融点は非
常に低く、熱間加工の温度範囲において非常に脆弱にな
る。それゆえSは熱間加工時に粒界を脆弱にし、割れ等
を引き起こし、熱間加工性及び高温延性を低下させる元
素である。従って、Sは0.002%以下である。より好まし
くは0.001%以下に制限すると良く、更に好ましくは0.00
05%以下の範囲である。
Next, the impurities to be restricted in the present invention will be described in detail. Impurity S forms a sulfide with rare earth elements, Y, Sc, Hf, and Zr, which are essential elements for improving the oxidation resistance, because the solid solution limit in Ni is very small and therefore only a small amount is contained. The effect of improving the oxidation resistance of rare earth elements, Y, Sc, Hf and Zr is reduced. Also, Ni 3 S 2 segregates at the grain boundaries, and a eutectic of Ni and Ni 3 S 2 is generated. The eutectic has a very low melting point and becomes very brittle in the temperature range of hot working. Therefore, S is an element that weakens the grain boundaries during hot working, causes cracks, and reduces hot workability and hot ductility. Therefore, S is 0.002% or less. More preferably, it should be limited to 0.001% or less, and even more preferably 0.001%.
It is within the range of 05% or less.

【0020】Oは、希土類元素、Y、Sc、Hf及びZrと結合
し酸化物を生成し、これらの元素の耐酸化性向上効果を
阻害する不純物元素であるため、Oの上限を0.01%とし
た。より好ましくは0.003%以下に制限すると良い。ここ
で、耐酸化性に有効な希土類元素、Y、Sc、Hf、Zrの効
果を十分に発揮させるためにOは、溶解時に希土類元
素、Y、Sc、Hf及びZrを添加する前に十分に低減してお
くと良い。具体的には真空溶解及びC、Si、Mnによる脱
酸が有効で、Mg及び極少量のAlの添加も効果がある。上
記の脱酸元素を添加して溶湯中のOを十分に低減した後
に、希土類元素、Y、Sc、Hf及びZrを添加すると、希土
類元素、Y、Sc、Hf、Zrの各元素が有効に機能し、優れ
た耐酸化性を付与することができる。
O is an impurity element that binds to the rare earth elements, Y, Sc, Hf and Zr to form an oxide, and inhibits the oxidation resistance improving effect of these elements, so the upper limit of O is set to 0.01%. did. More preferably, it should be limited to 0.003% or less. Here, in order to sufficiently exert the effect of the rare earth element effective for oxidation resistance, Y, Sc, Hf, and Zr, O is sufficiently added before the addition of the rare earth element, Y, Sc, Hf, and Zr during melting. It is good to reduce it. Specifically, vacuum melting and deoxidation with C, Si, and Mn are effective, and addition of Mg and a very small amount of Al is also effective. After sufficiently reducing O in the molten metal by adding the above deoxidizing element, rare earth elements, Y, Sc, Hf, and Zr are added, the rare earth elements, Y, Sc, Hf, and Zr elements are effective. It can function and impart excellent oxidation resistance.

【0021】前述のように合金中に含まれる希土類元
素、Y、Sc、Hf及びZrの酸化物形成及び硫化物形成を抑
制して、耐酸化性に有効に寄与させるためには、Si、M
n、Mg、希土類元素、Y、Sc、Hf及びZrをOとSに対して一
定量以上含有させることが必要である。従って、これら
の元素は規定された添加量の範囲内で(0.1×Si+0.1×Mn
+2×Mg+希土類元素+Y+Sc+Hf+Zr)/(O+2S)≧10を満足する
必要がある。
As described above, in order to suppress oxide formation and sulfide formation of rare earth elements, Y, Sc, Hf and Zr contained in the alloy and effectively contribute to oxidation resistance, Si, M
It is necessary that n, Mg, rare earth elements, Y, Sc, Hf, and Zr be contained in a certain amount or more with respect to O and S. Therefore, these elements are (0.1 × Si + 0.1 × Mn) within the specified addition amount range.
+ 2 × Mg + rare earth element + Y + Sc + Hf + Zr) / (O + 2S) ≧ 10 must be satisfied.

【0022】Pは熱間加工性を阻害する不純物元素であ
り、且つ500℃近傍付近の温度域で脆化させる可能性が
あるため、本発明ではPも不純物元素として制限する。P
の熱間加工性を阻害しない範囲の含有量は0.005%以下で
ある。望ましくは0.003%以下である。
Since P is an impurity element that impairs hot workability and may cause embrittlement in a temperature range near 500 ° C., P is also limited as an impurity element in the present invention. P
The content of 0.005% or less in the range that does not impair hot workability. It is preferably 0.003% or less.

【0023】次に、Pb、Bi、Sb、Sn及びAsは、500℃以
上の高温において、合金の延性を低下させる不純物元素
であり、この5つの不純物元素の含有量を特定量以下に
制限することで、良好な延性を実現することができる。
そのために制限すべき含有量は、Pb:0.001%以下、Bi:0.
0002%以下、Sb:0.001%以下、Sn:0.005%以下、As:0.005%
以下である。なお、このうちの1つでも上記範囲内から
外れてしまうと、合金の延性が劣化する場合もあるた
め、上記5つの元素全部を本発明で規定する範囲内に制
限する必要がある。ところで、この5つの元素を制限す
る方法としては、溶解原料を厳選することによりPb、B
i、Sb、Sn及びAsの元素を低減させることができる。
Next, Pb, Bi, Sb, Sn and As are impurity elements that reduce the ductility of the alloy at high temperatures of 500 ° C. or higher, and the content of these five impurity elements is limited to a specified amount or less. As a result, good ductility can be realized.
Therefore, the content to be limited is Pb: 0.001% or less, Bi: 0.
0002% or less, Sb: 0.001% or less, Sn: 0.005% or less, As: 0.005%
It is the following. If even one of them falls outside the above range, the ductility of the alloy may be deteriorated. Therefore, it is necessary to limit all of the above five elements within the range defined by the present invention. By the way, as a method of limiting these five elements, Pb, B
The elements of i, Sb, Sn and As can be reduced.

【0024】次に、以下の元素は本発明では特に規定す
るものではないが、下記の範囲内で本発明合金に添加す
ることができる。MoとWは固溶強化作用があり、常温も
しくは高温において強度が必要な場合に添加できる。し
かし、過度の添加は熱間および冷間加工性を阻害するた
め添加量はMo3%以下、W6%以下である。NbとTaは固溶
強化作用のほかに炭化物を形成して結晶粒成長を抑制す
る作用があり、高強度化または結晶粒微細化が必要な場
合は添加できる。しかし、過度の添加は高温における延
性を低下させるため、添加量はNb0.5%以下、Ta0.5%以
下である。Vも結晶粒成長を抑制する効果があり、結晶
粒微細化が必要な場合は添加できる。しかし、過度の添
加は冷間加工性を阻害するため添加量は0.5%以下であ
る。
Next, the following elements, which are not particularly specified in the present invention, can be added to the alloy of the present invention within the following ranges. Mo and W have a solid solution strengthening effect and can be added when strength is required at room temperature or high temperature. However, excessive addition hinders hot and cold workability, so the addition amount is 3% or less of Mo and 6% or less of W. Nb and Ta have the function of forming carbides and suppressing the crystal grain growth in addition to the solid solution strengthening effect, and can be added when high strength or grain refinement is required. However, excessive addition deteriorates ductility at high temperature, so the addition amount is Nb 0.5% or less and Ta 0.5% or less. V also has an effect of suppressing crystal grain growth, and can be added when crystal grain refinement is required. However, excessive addition impairs cold workability, so the addition amount is 0.5% or less.

【0025】CaはSを固定除去するために添加すること
ができ、Mg以外の元素でSを除去したい場合に添加する
と有効である。しかし、過度の添加は熱間加工性を低下
させるため添加量は0.02%以下である。Coは常温および
高温における強度を向上させる元素であり、常温もしく
は高温において強度が必要な場合は添加できる。しか
し、過度の添加はコストの増大をまねくため添加量は2
%以下である。Nは結晶粒粗大化を抑制し、また強度を
向上させる元素であり、高強度化または結晶粒微細化が
必要な場合は添加できる。しかし、過度の添加は冷間加
工性を低下させるため添加量は0.05%以下である。Bは
結晶粒粗大化を抑制する元素であり、結晶粒微細化が必
要な場合は添加できる。しかし、過度の添加は耐酸化性
を低下させるため添加量は0.01%以下である。
Ca can be added to fix and remove S, and it is effective to add when it is desired to remove S by an element other than Mg. However, excessive addition deteriorates the hot workability, so the addition amount is 0.02% or less. Co is an element that improves strength at room temperature and high temperature, and can be added when strength is required at room temperature or high temperature. However, excessive addition causes an increase in cost, so the addition amount is 2
% Or less. N is an element that suppresses crystal grain coarsening and improves strength, and can be added when higher strength or finer crystal grains are required. However, excessive addition deteriorates cold workability, so the addition amount is 0.05% or less. B is an element that suppresses crystal grain coarsening, and can be added when crystal grain refining is required. However, excessive addition lowers the oxidation resistance, so the addition amount is 0.01% or less.

【0026】また、上述した本発明のNi基合金では1100
℃までの温度域で良好な耐酸化性を示す。その優れた耐
酸化性を示す指標として、500〜1100℃の任意の温度に
おいて、大気中で100h保持した際、酸化膜の剥離が実質
的に発生せず、且つ試験片の単位面積(m2)当たりの酸化
増量が20g以下であると、規定することができる。この
範囲内に含まれる特性を有する合金は点火プラグ用電極
等の自動車部品、ガスタービンノズル等の発電設備用の
部品、熱処理炉内用部品及び燃料電池用部品等の高温で
酸化雰囲気に曝されて使用される部品及び部材において
酸化膜剥離による滅失を防ぎ、酸化による部品自体の脆
化を避けることができる。ここで、単位面積あたりの酸
化増量とは500〜1100℃の任意の温度で、大気中100h保
持し、加熱後の酸化膜を含めた試験片の重量と加熱前の
試験片の重量の差を加熱前の試験片の表面積で割ったも
のである。
In addition, the Ni-based alloy of the present invention described above is 1100.
Shows good oxidation resistance in the temperature range up to ° C. As an indicator of its excellent oxidation resistance, at any temperature of 500 ~ 1100 ℃, when held in the atmosphere for 100 h, peeling of the oxide film does not substantially occur, and the unit area of the test piece (m 2 It can be specified that the amount of increase in oxidation per) is 20 g or less. Alloys with properties within this range are exposed to oxidizing atmospheres at high temperatures such as automobile parts such as electrodes for spark plugs, parts for power generation equipment such as gas turbine nozzles, parts for heat treatment furnaces and parts for fuel cells. It is possible to prevent the components and members used for the purpose from being lost due to peeling of the oxide film, and to avoid embrittlement of the components themselves due to oxidation. Here, the oxidation weight increase per unit area is 500 to 1100 ° C, and the difference between the weight of the test piece including the oxide film after heating and the weight of the test piece before heating is maintained for 100 hours in the atmosphere. It is divided by the surface area of the test piece before heating.

【0027】更に本発明のNi基合金は常温および高温に
おける延性に優れている。本発明合金を常温から1100℃
の任意の温度での引張試験を行うと、破断伸びが35%以
上の優れた延性を示す。この常温から1100℃という温度
範囲で、何れの温度においても破断伸びが35%という特
性が得られる本発明合金は、点火プラグ用電極等の自動
車部品、ガスタービンノズル等の発電設備用の部品、熱
処理炉内用部品及び燃料電池用部品等の高温で酸化雰囲
気に曝されて使用される部品及び部材においては加熱と
冷却が繰返され、その度に熱膨張または熱収縮により変
形を受けることに起因した破断を避けることができる十
分な特性を有している。
Further, the Ni-based alloy of the present invention is excellent in ductility at normal temperature and high temperature. The alloy of the present invention is heated from room temperature to 1100 ° C
When it is subjected to a tensile test at any temperature, it exhibits excellent ductility with a breaking elongation of 35% or more. In the temperature range from this room temperature to 1100 ° C., the alloy of the present invention, which has the characteristic that the elongation at break is 35% at any temperature, is used for automobile parts such as electrodes for spark plugs, parts for power generation equipment such as gas turbine nozzles, Due to repeated heating and cooling of parts and members that are used by being exposed to an oxidizing atmosphere at high temperatures, such as parts for heat treatment furnaces and parts for fuel cells, each time they are deformed by thermal expansion or contraction. It has sufficient properties to avoid the fracture.

【0028】[0028]

【実施例】以下に実施例として本発明を詳しく説明す
る。真空溶解により、表1に示す組成のNi基合金の10kg
インゴットを溶製した。この時、本発明合金は耐酸化性
を低下させないためにC、Si、Mn、Mg及び少量のAlを添
加することにより十分に脱酸した溶湯に、希土類元素、
Y、Sc、Hf及びZrを添加し、希土類元素、Y、Sc、Hf及び
Zrの酸化物の形成を抑えた。また、本発明合金では高温
における延性を改善するために溶解原料を分析し、厳選
した原料を使用してPb、Bi、Sb、Sn及びAsの不純物混入
を防止した。
EXAMPLES The present invention will be described in detail below with reference to examples. 10kg of Ni-based alloy with composition shown in Table 1 by vacuum melting
The ingot was melted. At this time, the alloy of the present invention is C, Si, Mn, Mg and a small amount of Al in order to prevent deterioration of the oxidation resistance, the molten metal sufficiently deoxidized by adding a rare earth element,
Y, Sc, Hf and Zr are added, and rare earth elements, Y, Sc, Hf and
The formation of Zr oxide was suppressed. Further, in the alloy of the present invention, the molten raw materials were analyzed in order to improve the ductility at high temperature, and the carefully selected raw materials were used to prevent the inclusion of impurities such as Pb, Bi, Sb, Sn and As.

【0029】[0029]

【表1】 [Table 1]

【0030】表1で示すNo.1〜No.19が本発明合金であ
り、No.20〜No.26が比較合金である。なおNo.24合金
は、特開昭63-153236号に示されるAlloy600の改良合金
をベースにしているためAl無添加であり、この合金では
脱酸に対して特別な配慮をせず、Oの影響を調べるため
にOを特別高くし、Mg無添加とし、更にP、Pb、Bi、Sb、
SnおよびAsの影響も調べるためにこれらの元素も特別高
くなるように原料を選定した。更に特開2000-336446号
に含まれるAlloy600の改良合金をNo.25及びNo.26として
示す。No.25合金もAl無添加であり、且つO、P、Pb、B
i、Sb、SnおよびAsの影響を調べるためにこれらの元素
が高くなるように溶解を行い、No.26合金はAl添加量を
多くしたものである。
No. 1 to No. 19 shown in Table 1 are alloys of the present invention, and No. 20 to No. 26 are comparative alloys. Note that No. 24 alloy is Al-free because it is based on the improved alloy of Alloy 600 shown in JP-A-63-153236, and this alloy does not take special consideration for deoxidation and In order to investigate the effect, O was made extremely high, Mg was not added, and P, Pb, Bi, Sb,
In order to investigate the effects of Sn and As as well, the raw materials were selected so that these elements were also extremely high. Further, improved alloys of Alloy 600 included in JP 2000-336446 A are shown as No. 25 and No. 26. No.25 alloy is also Al-free and O, P, Pb, B
In order to investigate the effects of i, Sb, Sn and As, these elements were melted so as to be high, and the No. 26 alloy has a large amount of Al added.

【0031】このインゴットを30mm角の棒材に鍛伸し
た。この棒材に950℃×1hr空冷なる溶体化処理を施し
た。ただし、No.22及び24については割れが発生し、鍛
伸できなかった。鍛伸、溶体化処理を施した材料から試
料を切り出し、耐酸化試験と700℃における引張試験を
行った。耐酸化試験はφ10mm×20mmの試験片を1100℃×
100hr加熱後、酸化膜剥離量と酸化増量を求めた。酸化
膜剥離量が0であれば実質的に酸化膜の剥離がないとい
うことであり、更に酸化増量が20g/m2以下であれば耐酸
化性は良好である。引張試験は高温での延性を評価する
ために行った。高温引張試験は700℃においてASTM:E21
に定められた試験法で行い、破断伸びを測定した。高温
における破断伸びは35%以上であれば良好である。ただ
し、No.22及び24については鍛伸できなかったのでイン
ゴットから各種試験片採取用の鋼片を切りだし、それを
上記と同様な条件にて溶体化処理して、耐酸化試験片と
高温引張試験片を作製した。
This ingot was forged into a 30 mm square bar. This rod was subjected to solution treatment by air cooling at 950 ° C. for 1 hour. However, Nos. 22 and 24 were cracked and could not be forged. A sample was cut from the material that had been subjected to forging and solution treatment, and subjected to an oxidation resistance test and a tensile test at 700 ° C. For the oxidation resistance test, a φ10 mm × 20 mm test piece was tested at 1100 ° C ×
After heating for 100 hours, the amount of oxide film peeling and the increase in oxidation were determined. If the amount of oxide film peeling is 0, it means that there is substantially no peeling of the oxide film, and if the amount of increased oxidation is 20 g / m 2 or less, the oxidation resistance is good. Tensile tests were performed to evaluate ductility at high temperatures. High temperature tensile test is ASTM: E21 at 700 ℃
And the elongation at break was measured. The elongation at break at high temperature is good if it is 35% or more. However, since No. 22 and 24 could not be forged, cut out steel pieces for collecting various test pieces from the ingot, subject them to solution treatment under the same conditions as above, and subject them to oxidation-resistant test pieces and high temperature. Tensile test pieces were prepared.

【0032】[0032]

【表2】 [Table 2]

【0033】本発明合金は1100℃×100hrの耐酸化試験
において酸化増量が少なく且つ酸化膜剥離がない非常に
良好な耐酸化性を示した。本発明合金は700℃における
延性が良好で35%以上の破断伸びを示していた。また、
本発明合金は、熱間加工性も良好であるため鍛伸割れ等
の問題は起こらなかった。
The alloy of the present invention showed very good oxidation resistance in the oxidation resistance test at 1100 ° C. × 100 hr with little increase in oxidation and no peeling of oxide film. The alloy of the present invention had a good ductility at 700 ° C and exhibited a breaking elongation of 35% or more. Also,
Since the alloy of the present invention has good hot workability, problems such as forging cracking did not occur.

【0034】一方、比較材はCrが12%より少なくなると
(No.20)高温でCr2O3膜が不均一に生成し、保護膜として
作用しないため耐酸化試験後の酸化増量が多くなり、且
つ酸化物が剥離が発生する。Crが32%より多くなると(N
o.21)Cr2O3の剥離が発生するため酸化増量が多くなって
いる。Mgが0.001%未満でMg/S<1になると(No.22)熱間加
工性が悪くなるため鍛伸中に割れが発生して鍛造できな
かった。また、(0.1×Si+0.1×Mn+0.2×Al+2×Mg+希土
類元素+Y+Sc+Hf+Zr)/(O+2S)<10となるため耐酸化性も
悪くなっている。希土類元素、Y、Sc、Hf及びZrが添加
されていないと(No.23)酸化膜の成長が早く、且つ酸化
膜の剥離が発生するため酸化増量が多くなっている。
On the other hand, when the Cr content of the comparative material is less than 12%,
(No. 20) A Cr 2 O 3 film is non-uniformly formed at a high temperature and does not act as a protective film, so the amount of oxidation increase after the oxidation resistance test increases and the oxide peels off. If Cr exceeds 32% (N
o.21) Cr 2 O 3 peeling occurs, so the amount of oxidation increase is large. When Mg was less than 0.001% and Mg / S <1 (No. 22), the hot workability deteriorated and cracking occurred during forging, making it impossible to forge. Further, since (0.1 × Si + 0.1 × Mn + 0.2 × Al + 2 × Mg + rare earth element + Y + Sc + Hf + Zr) / (O + 2S) <10, the oxidation resistance is poor. If the rare earth elements, Y, Sc, Hf and Zr are not added (No. 23), the oxide film grows rapidly and the oxide film peels off, resulting in a large increase in oxidation.

【0035】No.24の合金はMg無添加でMg/S<1であるの
で、鍛伸中に割れが発生した。また、Alが無添加である
ため酸化膜の密着性が悪くなっていることに加えて、S
が0.002より高く、Oが0.01より高く、更に(0.1×Si+0.1
×Mn+0.2×Al+2×Mg+希土類元素+Y+Sc+Hf+Zr)/(O+2S)
<10であるので、Yが酸化物及び硫化物を形成し、耐酸
化性に対して十分寄与していないため、酸化増量が多く
なっている。更にPb>0.001%、Bi>0.0002%、Sb>0.001
%、Sn>0.005%、As>0.005%であるため700℃における破
断伸びが少なくなっている。No.24の合金は特開昭63-15
3236号に含まれる範囲の合金でO、S、Pb、Bi、Sb、Sn及
びAsの影響を調べるためにこれらを特別多く含有させた
合金である。
The alloy of No. 24 had Mg / S <1 without addition of Mg, so that cracking occurred during forging. Also, in addition to the fact that the adhesion of the oxide film is poor because Al is not added, S
Is higher than 0.002, O is higher than 0.01, and (0.1 × Si + 0.1
× Mn + 0.2 × Al + 2 × Mg + Rare earth element + Y + Sc + Hf + Zr) / (O + 2S)
Since it is <10, Y forms an oxide and a sulfide and does not sufficiently contribute to the oxidation resistance, so the amount of oxidation increase is large. Furthermore, Pb> 0.001%, Bi> 0.0002%, Sb> 0.001
%, Sn> 0.005%, As> 0.005%, so the elongation at break at 700 ° C is small. No. 24 alloy is JP 63-15
It is an alloy in the range included in No. 3236, which contains O, S, Pb, Bi, Sb, Sn, and As in an extremely large amount in order to investigate the effects of As.

【0036】また、No.25の合金はAlが無添加であり酸
化膜の密着性が悪くなっていることに加えて、Oが0.01
より高く、更に(0.1×Si+0.1×Mn+2×Mg+0.2×Al+希土
類元素+Y+Sc+Hf+Zr)/(O+2S)<10であるので、Laが酸化
物を形成し、耐酸化性に寄与しないため、酸化増量が多
くなっている。更にPb>0.001%、Bi>0.0002%、Sb>0.0
01%、Sn>0.005%、As>0.005%であるため700℃における
破断伸びが少なくなっている。No.25の合金は特開2000-
336446号に含まれる範囲の合金でO、S、Pb、Bi、Sb、Sn
及びAsの影響を調べるためにこれらの元素を多く含有さ
せた合金である。更に、No.26の合金はAlが高いため700
℃における破断伸びが著しく少なくなっている。No.26
の合金も特開2000-336446号に含まれる範囲の合金であ
る。このように各々の元素が本発明の範囲内に含まれて
初めて、高温での使用に耐えられ、鍛伸可能であり、且
つ高温における延性が良好な合金を得られることがわか
る。
In addition, in the No. 25 alloy, Al was not added and the adhesion of the oxide film was poor, and in addition, O was 0.01
It is higher and (0.1 × Si + 0.1 × Mn + 2 × Mg + 0.2 × Al + rare earth element + Y + Sc + Hf + Zr) / (O + 2S) <10, so La forms an oxide. However, since it does not contribute to the oxidation resistance, the increase in oxidation amount is large. Furthermore, Pb> 0.001%, Bi> 0.0002%, Sb> 0.0
Since it is 01%, Sn> 0.005% and As> 0.005%, the breaking elongation at 700 ° C is small. No. 25 alloy is JP 2000-
O, S, Pb, Bi, Sb, Sn in alloys in range 336446
It is an alloy containing a large amount of these elements in order to investigate the effect of Al and As. Furthermore, the alloy of No. 26 has a high Al content, so 700
The elongation at break at ° C is significantly reduced. No.26
The above alloy is also within the range included in JP-A-2000-336446. As described above, it is understood that the alloy which can withstand use at high temperature, can be forged, and has good ductility at high temperature can be obtained only when each element is included in the scope of the present invention.

【0037】最後に本発明の合金のうちNo.1組成の合金
を5本前述の実施例と同様に10kg溶解して、このインゴ
ットを30mm角の棒材に鍛伸し、950℃×1hr空冷なる溶体
化処理を施し、その耐酸化試験片と引張試験片を採取
し、特性のバラツキを調査した。その結果、耐酸化性お
よび高温引張延性においてバラツキは確認されなかっ
た。
Finally, among the alloys of the present invention, five No. 1 composition alloys were melted in an amount of 10 kg in the same manner as in the above-mentioned embodiment, and the ingot was wrought into a 30 mm square bar and air-cooled at 950 ° C. for 1 hr. Was subjected to solution treatment, and oxidation resistance test pieces and tensile test pieces were sampled to investigate the variation in properties. As a result, no variation was confirmed in oxidation resistance and high temperature tensile ductility.

【0038】[0038]

【発明の効果】本発明によれば、点火プラグ用電極等の
自動車部品、ガスタービンノズル等の発電設備用の部
品、熱処理炉内用部品及び燃料電池用部品等の高温で酸
化雰囲気に曝されて使用される部品及び部材に適した高
温耐酸化性及び高温延性に優れたNi基合金を作製するこ
とができる。
According to the present invention, automobile parts such as electrodes for spark plugs, parts for power generation equipment such as gas turbine nozzles, parts for heat treatment furnaces and parts for fuel cells are exposed to an oxidizing atmosphere at high temperatures. It is possible to produce a Ni-based alloy having excellent high-temperature oxidation resistance and high-temperature ductility, which is suitable for parts and members to be used as such.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成13年11月14日(2001.11.
14)
[Submission date] November 14, 2001 (2001.11.
14)

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0021[Correction target item name] 0021

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0021】前述のように合金中に含まれる希土類元
素、Y、Sc、Hf及びZrの酸化物形成及び硫化物形成を抑
制して、耐酸化性に有効に寄与させるためには、Si、M
n、Mg、希土類元素、Y、Sc、Hf及びZrをOとSに対して一
定量以上含有させることが必要である。従って、これら
の元素は規定された添加量の範囲内で(0.1×Si+0.1×Mn
+0.2×Al+2×Mg+希土類元素+Y+Sc+Hf+Zr)/(O+2S)≧10を
満足する必要がある。
As described above, in order to suppress oxide formation and sulfide formation of rare earth elements, Y, Sc, Hf and Zr contained in the alloy and effectively contribute to oxidation resistance, Si, M
It is necessary that n, Mg, rare earth elements, Y, Sc, Hf, and Zr be contained in a certain amount or more with respect to O and S. Therefore, these elements are (0.1 × Si + 0.1 × Mn) within the specified addition amount range.
+ 0.2 × Al + 2 × Mg + rare earth element + Y + Sc + Hf + Zr) / (O + 2S) ≧ 10 must be satisfied.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 質量%でC:0.1%以下、Si:1.0%以下、Mn:
2.0%以下、Cr:12〜32%、Fe:20%以下、Ti:0.05%以下(0を
含む)、Al:0.03〜0.5%、Mg:0.001〜0.05%、及び(希土
類元素:0.2%以下、Y:0.3%以下、Sc:0.2%以下、Hf:0.3%
以下、Zr:0.4%以下)の群から選ばれる一種または二種
以上を合計で0.5%以下含有し、不純物であるSは0.002%
以下であり且つMg/S≧1を満たし、同じく不純物のO:0.
01%以下、P:0.005%以下、Pb:0.001%以下、Bi:0.0002%以
下、Sb:0.001%以下、Sn:0.005%以下、As:0.005%以下に
制限し、且つ(0.1×Si+0.1×Mn+0.2×Al+2×Mg+希土類
元素+Y+Sc+Hf+Zr)/(O+2S)≧10を満たし、残部はNi及び
上記以外の不可避不純物からなることを特徴とする高温
耐酸化性及び高温延性に優れたNi基合金。
1. Mass% C: 0.1% or less, Si: 1.0% or less, Mn:
2.0% or less, Cr: 12 to 32%, Fe: 20% or less, Ti: 0.05% or less (including 0), Al: 0.03 to 0.5%, Mg: 0.001 to 0.05%, and (rare earth element: 0.2% or less , Y: 0.3% or less, Sc: 0.2% or less, Hf: 0.3%
(Zr: 0.4% or less) contains 0.5% or less in total of one kind or two or more kinds selected from the group of), and S as an impurity is 0.002%.
Is less than or equal to and satisfies Mg / S ≧ 1, and also O of impurities: 0.
01% or less, P: 0.005% or less, Pb: 0.001% or less, Bi: 0.0002% or less, Sb: 0.001% or less, Sn: 0.005% or less, As: limited to 0.005% or less, and (0.1 × Si + 0.1 × Mn + 0.2 × Al + 2 × Mg + rare earth element + Y + Sc + Hf + Zr) / (O + 2S) ≧ 10, the balance is Ni and inevitable impurities other than the above, high temperature acid resistance Ni-based alloy with excellent chemical resistance and hot ductility.
【請求項2】 質量%でCr:12〜20%、Fe:3%を超えて10%
までを含むことを特徴とする請求項1に記載の高温耐酸
化性及び高温延性に優れたNi基合金。
2. Cr: 12-20% by mass%, Fe: 3% over 10%
The Ni-based alloy excellent in high temperature oxidation resistance and high temperature ductility according to claim 1, characterized in that
【請求項3】 質量%でLa:0.2%以下及びZr:0.4%以下の
うち一種または二種を含み且つそれらの合計が0.5%以下
を含むことを特徴とする請求項1または2に記載の高温
耐酸化性及び高温延性に優れたNi基合金。
3. The composition according to claim 1 or 2, characterized in that it contains one or two kinds of La: 0.2% or less and Zr: 0.4% or less in mass% and the total thereof is 0.5% or less. Ni-based alloy with excellent high temperature oxidation resistance and high temperature ductility.
JP2001336059A 2001-11-01 2001-11-01 Ni-BASED ALLOY HAVING EXCELLENT HIGH TEMPERATURE OXIDATION RESISTANCE AND HIGH TEMPERATURE DUCTILITY Pending JP2003138334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001336059A JP2003138334A (en) 2001-11-01 2001-11-01 Ni-BASED ALLOY HAVING EXCELLENT HIGH TEMPERATURE OXIDATION RESISTANCE AND HIGH TEMPERATURE DUCTILITY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001336059A JP2003138334A (en) 2001-11-01 2001-11-01 Ni-BASED ALLOY HAVING EXCELLENT HIGH TEMPERATURE OXIDATION RESISTANCE AND HIGH TEMPERATURE DUCTILITY

Publications (1)

Publication Number Publication Date
JP2003138334A true JP2003138334A (en) 2003-05-14

Family

ID=19150953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001336059A Pending JP2003138334A (en) 2001-11-01 2001-11-01 Ni-BASED ALLOY HAVING EXCELLENT HIGH TEMPERATURE OXIDATION RESISTANCE AND HIGH TEMPERATURE DUCTILITY

Country Status (1)

Country Link
JP (1) JP2003138334A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008092419A2 (en) * 2007-01-31 2008-08-07 Thyssenkrupp Vdm Gmbh Iron-nickel-chromium- silicon alloy
WO2009000230A1 (en) * 2007-06-26 2008-12-31 Thyssenkrupp Vdm Gmbh Iron-nickel-chromium-silicon alloy
WO2014109335A1 (en) * 2013-01-08 2014-07-17 日本特殊陶業株式会社 Electrode material and spark plug
KR20150006871A (en) * 2012-06-05 2015-01-19 파우데엠 메탈스 게엠베하 Nickel-chromium alloy having good processability, creep resistance and corrosion resistance
US9657373B2 (en) 2012-06-05 2017-05-23 Vdm Metals International Gmbh Nickel-chromium-aluminum alloy having good processability, creep resistance and corrosion resistance
US10870908B2 (en) 2014-02-04 2020-12-22 Vdm Metals International Gmbh Hardening nickel-chromium-iron-titanium-aluminium alloy with good wear resistance, creep strength, corrosion resistance and processability
US11098389B2 (en) 2014-02-04 2021-08-24 Vdm Metals International Gmbh Hardened nickel-chromium-titanium-aluminum alloy with good wear resistance, creep resistance, corrosion resistance and workability
WO2022145064A1 (en) * 2020-12-28 2022-07-07 日本製鉄株式会社 Steel material

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008092419A2 (en) * 2007-01-31 2008-08-07 Thyssenkrupp Vdm Gmbh Iron-nickel-chromium- silicon alloy
WO2008092419A3 (en) * 2007-01-31 2008-10-16 Thyssenkrupp Vdm Gmbh Iron-nickel-chromium- silicon alloy
WO2009000230A1 (en) * 2007-06-26 2008-12-31 Thyssenkrupp Vdm Gmbh Iron-nickel-chromium-silicon alloy
US9650698B2 (en) 2012-06-05 2017-05-16 Vdm Metals International Gmbh Nickel-chromium alloy having good processability, creep resistance and corrosion resistance
KR101698075B1 (en) * 2012-06-05 2017-01-19 파우데엠 메탈스 게엠베하 Nickel-chromium alloy having good processability, creep resistance and corrosion resistance
US9657373B2 (en) 2012-06-05 2017-05-23 Vdm Metals International Gmbh Nickel-chromium-aluminum alloy having good processability, creep resistance and corrosion resistance
JP2015520300A (en) * 2012-06-05 2015-07-16 ファオデーエム メタルズ ゲゼルシャフト ミット ベシュレンクテル ハフツングVDM Metals GmbH Nickel-chromium alloy with good workability, creep strength and corrosion resistance
KR20150006871A (en) * 2012-06-05 2015-01-19 파우데엠 메탈스 게엠베하 Nickel-chromium alloy having good processability, creep resistance and corrosion resistance
CN104919666A (en) * 2013-01-08 2015-09-16 日本特殊陶业株式会社 Electrode material and spark plug
KR101625349B1 (en) 2013-01-08 2016-05-27 니뽄 도쿠슈 도교 가부시키가이샤 Electrode material and spark plug
CN104919666B (en) * 2013-01-08 2016-08-24 日本特殊陶业株式会社 Electrode material and spark plug
EP2930802A4 (en) * 2013-01-08 2016-02-24 Ngk Spark Plug Co Electrode material and spark plug
WO2014109335A1 (en) * 2013-01-08 2014-07-17 日本特殊陶業株式会社 Electrode material and spark plug
JP5662622B2 (en) * 2013-01-08 2015-02-04 日本特殊陶業株式会社 Electrode material and spark plug
US9783872B2 (en) 2013-01-08 2017-10-10 Ngk Spark Plug Co., Ltd. Electrode material and spark plug
US10870908B2 (en) 2014-02-04 2020-12-22 Vdm Metals International Gmbh Hardening nickel-chromium-iron-titanium-aluminium alloy with good wear resistance, creep strength, corrosion resistance and processability
US11098389B2 (en) 2014-02-04 2021-08-24 Vdm Metals International Gmbh Hardened nickel-chromium-titanium-aluminum alloy with good wear resistance, creep resistance, corrosion resistance and workability
WO2022145064A1 (en) * 2020-12-28 2022-07-07 日本製鉄株式会社 Steel material

Similar Documents

Publication Publication Date Title
JP4861651B2 (en) Advanced Ni-Cr-Co alloy for gas turbine engines
EP2826877B1 (en) Hot-forgeable Nickel-based superalloy excellent in high temperature strength
JP4387940B2 (en) Nickel-base superalloy
JP4277113B2 (en) Ni-base alloy for heat-resistant springs
EP1433865A1 (en) High-strength Ni-base superalloy and gas turbine blades
CA1066922A (en) Heat-resistant allow for welded structures
EP1262569B1 (en) Ni-based single crystal super alloy
US7922969B2 (en) Corrosion-resistant nickel-base alloy
EP1325965B1 (en) Ni-based alloy improved in oxidation-resistance, high temperature strength and hot workability
JP2003113434A (en) Superalloy excellent in high-temperature sulfur corrosion resistance and manufacturing method therefor
US20090308507A1 (en) Ni-BASED COMPOUND SUPERALLOY HAVING EXCELLENT OXIDATION RESISTANCE, METHOD FOR MANUFACTURING THE SAME, AND HEAT-RESISTANT STRUCTURAL MATERIAL
JP6160942B1 (en) Low thermal expansion super heat resistant alloy and manufacturing method thereof
JPH09272933A (en) High strength nickel-base superalloy for directional solidification
EP0593824A1 (en) Nickel aluminide base single crystal alloys and method
JP2003138334A (en) Ni-BASED ALLOY HAVING EXCELLENT HIGH TEMPERATURE OXIDATION RESISTANCE AND HIGH TEMPERATURE DUCTILITY
JPH04218642A (en) Low thermal expansion superalloy
JP3625262B2 (en) Spark plug electrode material with excellent high-temperature oxidation resistance and hot workability
JP4172011B2 (en) Ni-based alloy with excellent oxidation resistance, high-temperature strength and hot workability
JP2001234292A (en) LOW THERMAL EXPANSION Fe-BASE HEAT RESISTANT ALLOY, EXCELLENT IN HIGH TEMPERATURE STRENGTH
JPH06287667A (en) Heat resistant cast co-base alloy
JP2002129268A (en) Electrode material for spark plug having high temperature strength and cold workability
JP3921943B2 (en) Ni-base heat-resistant alloy
JPH07238349A (en) Heat resistant steel
JP6095237B2 (en) Ni-base alloy having excellent high-temperature creep characteristics and gas turbine member using this Ni-base alloy
JPH05209249A (en) Low thermal expansion superalloy