JP3282676B2 - Recovery method for solvents, etc. - Google Patents

Recovery method for solvents, etc.

Info

Publication number
JP3282676B2
JP3282676B2 JP07603992A JP7603992A JP3282676B2 JP 3282676 B2 JP3282676 B2 JP 3282676B2 JP 07603992 A JP07603992 A JP 07603992A JP 7603992 A JP7603992 A JP 7603992A JP 3282676 B2 JP3282676 B2 JP 3282676B2
Authority
JP
Japan
Prior art keywords
gas
solvent
adsorption
flow path
adsorption tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07603992A
Other languages
Japanese (ja)
Other versions
JPH05237333A (en
Inventor
学 浅野
松弘 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP07603992A priority Critical patent/JP3282676B2/en
Publication of JPH05237333A publication Critical patent/JPH05237333A/en
Application granted granted Critical
Publication of JP3282676B2 publication Critical patent/JP3282676B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は吸着により溶剤等を含む
ガスからその溶剤等を除去して清浄なガスを得るととも
に、さらにその溶剤等を濃縮回収する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing a solvent or the like from a gas containing the solvent or the like by adsorption to obtain a clean gas and further concentrating and recovering the solvent or the like.

【0002】[0002]

【従来の技術】化学工場等では溶剤やその他の有害な気
体を含有する空気やガスが発生するためそうしたガスか
ら溶剤等を除去して空気やガスの浄化を行なう必要があ
る。また除去された成分が溶剤のごとく価値のある成分
の場合にはこれを回収して再使用に供することが省資源
の見地からも重要である。このようなガス中から微量の
成分を除去する方法として従来より吸着法が用いられて
いる。
2. Description of the Related Art In a chemical factory or the like, air or gas containing a solvent or other harmful gas is generated, so that it is necessary to remove the solvent or the like from such gas to purify the air or gas. When the removed component is a valuable component such as a solvent, it is important from the viewpoint of resource saving to recover and reuse the component. As a method for removing trace components from such a gas, an adsorption method has conventionally been used.

【0003】吸着法には種々の方法があるが最も一般的
に行なわれてきたのは活性炭に溶剤等を吸着させた後そ
の活性炭に水蒸気を直接吹き込んで吸着成分を脱離さ
せ、得られた蒸気混合物を冷却凝縮して溶剤等を回収す
る方法である。この方法は非常に簡単な操作で効率よく
溶剤等を回収できる優れた方法ではあるが一方で溶剤等
の回収にともなって、使用した水蒸気の凝縮水がかなり
の量生成する。こうした凝縮水には溶剤等の成分を含む
ことが多く排水処理を要する場合もある。また回収成分
が水溶性である場合には凝縮水との分離が容易ではなく
水蒸気脱離方法は適しない。こうした理由から凝縮水に
溶剤等の回収成分が混入しない、すなわち吸着成分の脱
離に直接水蒸気を使用しない処理方法または装置が必要
とされる。
[0003] There are various adsorption methods, but the most common one is to adsorb a solvent or the like on activated carbon and then directly blow steam on the activated carbon to desorb adsorbed components. In this method, the vapor mixture is cooled and condensed to recover a solvent and the like. Although this method is an excellent method that can efficiently recover a solvent or the like with a very simple operation, on the other hand, a considerable amount of condensed water of used steam is generated with the recovery of the solvent or the like. Such condensed water often contains components such as solvents, and sometimes requires wastewater treatment. When the recovered component is water-soluble, separation from condensed water is not easy, and the steam desorption method is not suitable. For these reasons, there is a need for a treatment method or apparatus that does not mix condensed water with a recovered component such as a solvent, that is, does not directly use steam for desorbing adsorbed components.

【0004】吸着成分の脱離に水蒸気を用いない方式と
しては空気などを再生ガスとして用いるガス脱離方式が
ある。これは吸着成分の脱離に水蒸気の代わりに高温の
ガスを用いるものである。一般に溶剤等を回収するため
には脱離した溶剤等の蒸気を凝縮させる必要がある。し
かしながら、ガス脱離方式の場合には再生ガスは非凝縮
性ガスを含むので、溶剤等の蒸気を凝縮させるためには
凝縮温度における溶剤等の飽和蒸気圧以上の分圧を有す
るようなかなり高濃度の再生ガスを得る必要がある。高
濃度の再生ガスを得るには極力少ない量の再生ガス中で
極力多くの溶剤等を脱離させなければならない。
As a method not using water vapor for desorbing adsorbed components, there is a gas desorption method using air or the like as a regeneration gas. In this method, a high-temperature gas is used in place of water vapor for desorption of an adsorbed component. Generally, in order to recover a solvent or the like, it is necessary to condense vapor of the solvent or the like that has been desorbed. However, in the case of the gas desorption method, the regenerating gas contains a non-condensable gas. Therefore, in order to condense the vapor of the solvent or the like, a considerably high pressure such as a partial pressure higher than the saturated vapor pressure of the solvent or the like at the condensation temperature is required. It is necessary to obtain a concentration of regeneration gas. In order to obtain a high-concentration regeneration gas, it is necessary to desorb as much solvent and the like as possible in a minimum amount of regeneration gas.

【0005】ところで溶剤等の脱離には所定の熱量が必
要である。ガス脱離方式ではその熱量は回収ガスの保有
する顕熱によって与えられるから、多くの溶剤を脱離さ
せるには多くの熱量を与えなければならない。そのため
には再生ガスの温度を上げるかあるいは再生ガス量を多
くしなければならない。再生ガス温度を高くすると吸着
体の耐久性や回収すべき溶剤の分解が問題になるため一
定の限界があり、また再生ガス量を多くすると再生ガス
濃度は低下する。このように通常のガス脱離方式では得
られる再生ガス濃度には限界があるため、ある程度溶剤
等の濃縮はできるが溶剤を凝縮回収することはかなり困
難である。
[0005] By the way, a predetermined amount of heat is required for desorption of a solvent or the like. In the gas desorption method, the amount of heat is given by the sensible heat of the recovered gas, so that a large amount of heat must be given to desorb many solvents. To do so, the temperature of the regeneration gas must be increased or the regeneration gas amount must be increased. If the temperature of the regeneration gas is increased, the durability of the adsorbent and the decomposition of the solvent to be recovered become a problem, so there is a certain limit. If the regeneration gas amount is increased, the concentration of the regeneration gas decreases. As described above, since the concentration of the regenerated gas obtained by the ordinary gas desorption method is limited, it is possible to concentrate the solvent and the like to some extent, but it is very difficult to condense and recover the solvent.

【0006】さらにまた可燃性溶剤等を処理する場合、
水蒸気による直接脱離方式では問題ないがガス脱離方式
では爆発燃焼の危険性を避けるため高濃度となる回収工
程は窒素ガス等の不活性ガス雰囲気下で実施する必要が
あるが、吸着工程から回収工程への移行にともなう効率
的な窒素ガス等の置換は一般に非常に難しい。
Further, when treating a flammable solvent or the like,
There is no problem with the direct desorption method using water vapor, but in the gas desorption method, it is necessary to carry out the recovery process in which the concentration becomes high in order to avoid the danger of explosive combustion in an inert gas atmosphere such as nitrogen gas. In general, it is very difficult to efficiently replace nitrogen gas or the like with the transition to the recovery step.

【0007】[0007]

【発明が解決しようとする課題】水蒸気による直接脱離
方式以外の方法で、溶剤等を含有する空気等のガスから
溶剤等を除去しかつ除去した溶剤等を効率よく濃縮回収
すること、またこれは可燃性溶剤等の処理にも応用でき
るものであってかつその際窒素ガス等の不活性ガスの使
用量をできる限り少なくすることが本発明が解決しよう
とする課題である。
SUMMARY OF THE INVENTION A method other than the direct desorption method using steam removes a solvent or the like from a gas such as air containing a solvent or the like, and efficiently concentrates and recovers the removed solvent or the like. Is applicable to the treatment of flammable solvents and the like, and it is an object of the present invention to minimize the use of inert gas such as nitrogen gas.

【0008】[0008]

【課題を解決するための手段】前記したような課題に関
し鋭意検討した結果以下に示すように特殊な構造を有し
た吸着体を使用して間接熱交換による脱離方式を行なう
ことにより解決できることを見い出した。
As a result of intensive studies on the above-mentioned problems, it is found that the problems can be solved by performing a desorption method by indirect heat exchange using an adsorbent having a special structure as shown below. I found it.

【0009】すなわち本発明は、吸着、再生ガスの通流
する吸着剤を含む流路層Aとこれとは別の流体流路であ
る流路層Bとが交互に積層され、かつ流路層Aは波形の
シート状物により独立した多数の小流路に分割された構
造の吸着体を用いた吸着塔において、流路層Aに溶剤等
を含む原ガスを通流させて溶剤等を吸着させる吸着工
程、および流路層Bに高温の流体を通流させながら流路
層Aに少量のパージガスを通流させて吸着した溶剤等を
脱離させ、その脱離した溶剤等を冷却、凝縮、分離する
回収工程を交互に実施する操作を基本とし、複数の吸着
塔による前記吸着工程および回収工程を順次切り替えて
実施し連続的に原ガスを処理する。
That is, according to the present invention, a flow path layer A containing an adsorbent through which adsorption and regeneration gas flows and a flow path layer B which is another fluid flow path are alternately laminated, and A is an adsorption tower using an adsorber having a structure divided into a number of small channels independent of each other by a corrugated sheet-like material, in which a raw gas containing a solvent or the like is passed through the channel layer A to adsorb the solvent or the like. And a small amount of purge gas is allowed to flow through the flow path layer A while flowing a high-temperature fluid through the flow path layer B to desorb the adsorbed solvent and the like, and cool and condense the desorbed solvent and the like. On the basis of an operation of alternately performing a recovery process for separation, the above-mentioned adsorption process and a recovery process by a plurality of adsorption towers are sequentially switched and performed to continuously process a raw gas.

【0010】また溶剤等が可燃性の場合には、原ガスの
吸着終了後、流路層Aを含む流路Aを不活性ガスでパー
ジし、その際パージガスは原ガスに合流させ、流路A内
の酸素濃度が溶剤等の燃焼範囲以下になった後、やはり
パージガスに不活性ガスを用いて前記回収工程を実施す
る。さらに本発明を有利に実施する方法として、少なく
とも3基の吸着塔を設け前記吸着工程、回収工程を順次
連続的に行うに際し、前記回収工程からの未凝縮ガス
を、吸着工程を終了しかつ回収工程を開始する前の段階
にある吸着塔に通流させ、未凝縮ガス中の溶剤等をその
吸着塔内の吸着体に吸着せしめ、その後再び回収工程の
パージガスとして用いる。この方法は再生ガスとして不
活性ガス(特に窒素ガス)を使用する場合に特に有効で
ある。こうした方法により前記課題を解決するという目
的が達せられる。
If the solvent or the like is flammable, after the adsorption of the raw gas is completed, the flow path A including the flow path layer A is purged with an inert gas. After the oxygen concentration in A has fallen below the combustion range of a solvent or the like, the above-mentioned recovery step is performed again using an inert gas as a purge gas. Further, as a method of advantageously carrying out the present invention, at least three adsorption towers are provided, and when the adsorption step and the recovery step are sequentially and continuously performed, the non-condensed gas from the recovery step is terminated and recovered. It is passed through the adsorption tower at the stage before the start of the process, the solvent and the like in the uncondensed gas are adsorbed by the adsorbent in the adsorption tower, and then used again as a purge gas in the recovery process. This method is particularly effective when using an inert gas (particularly nitrogen gas) as the regeneration gas. The objective of solving the above-mentioned problem is achieved by such a method.

【0011】[0011]

【作用】本発明に用いる吸着体の一例を図2に示すが、
処理されるべき原ガスや脱離時のパージガスが通流する
流通層A(31)と再生時の加熱流体等が通流する流路
層B(32)とが隔離されている。なお36はシール枠
である。また図3に示すのが吸着塔の概要図であるが、
吸着塔は主に1個または複数個の吸着体とそれらに各流
体を分配するためのダクト等からなる分配室(33、3
4、35、36)で構成されていて、分配室33、34
は吸着体の流路層A側に通じており、分配室35、36
は流路層B側に通じていてそれぞれの流路層に対し別々
に流体を供給できるようになっている。また吸着体の流
路層A、それに通じる分配室および前後の導管を合わせ
て流路Aと呼ぶ。流路Bについても同様である。
FIG. 2 shows an example of the adsorbent used in the present invention.
A flow layer A (31) through which a raw gas to be processed or a purge gas at the time of desorption flows and a flow path layer B (32) through which a heating fluid or the like flows during regeneration are isolated. Reference numeral 36 denotes a seal frame. FIG. 3 is a schematic diagram of the adsorption tower.
The adsorption tower is mainly composed of one or a plurality of adsorbents and a distribution chamber (33, 3) composed of ducts for distributing each fluid to them.
4, 35, 36) and the distribution chambers 33, 34
Are connected to the flow path layer A side of the adsorbent, and the distribution chambers 35 and 36
Are connected to the channel layer B side so that fluid can be separately supplied to each channel layer. In addition, the flow path layer A of the adsorbent, the distribution chamber leading to it, and the front and rear conduits are collectively referred to as flow path A. The same applies to the channel B.

【0012】つぎに本発明の基本的な操作を説明する。
溶剤等を含んだ原ガスはまず一つの吸着塔に導入されそ
の内部の吸着体の流路層Aに通流される。原ガスに含ま
れる溶剤等は吸着体の流路層Aに含まれる吸着剤に吸着
除去された清浄ガスとして吸着体の他端から排出され
る。吸着体に吸着された溶剤等の濃度は徐々に増加して
行くが吸着破過が生じる前に吸着操作が停止される。原
ガスは別の吸着塔に切り替えられそこで引き続き吸着工
程が行われる。前記吸着を停止した吸着塔は回収工程に
移る。
Next, the basic operation of the present invention will be described.
A raw gas containing a solvent or the like is first introduced into one adsorption tower, and is passed through a flow path layer A of an adsorbent therein. The solvent or the like contained in the raw gas is discharged from the other end of the adsorbent as a clean gas that has been adsorbed and removed by the adsorbent contained in the flow path layer A of the adsorbent. The concentration of the solvent or the like adsorbed on the adsorbent gradually increases, but the adsorption operation is stopped before the breakthrough of adsorption occurs. The raw gas is switched to another adsorption tower, where the adsorption step is subsequently performed. The adsorption tower that has stopped the adsorption moves to a recovery step.

【0013】回収工程では流路層Aに再生ガスとして少
量のパージガスが通流されるとともにこれとは隔離され
た流路層Bに加熱流体が通流されることにより溶剤等が
脱離され非常に高濃度の溶剤等含有ガスが得られるので
これを冷却凝縮させて溶剤等を回収することができるの
である。もちろん再生ガスをパージの前に予熱しておい
てもよい。吸着体の再生温度は一般に80〜150℃で
あるが吸着体の材質によってはそれ以上の温度でも可能
である。
In the recovery step, a small amount of purge gas is passed as a regenerating gas through the flow path layer A, and a heating fluid is passed through the flow path layer B, which is separated from the purge gas, so that the solvent and the like are desorbed, and the flow rate becomes extremely high. Since a gas containing a solvent or the like having a high concentration is obtained, the gas can be cooled and condensed to recover the solvent or the like. Of course, the regeneration gas may be preheated before purging. The regeneration temperature of the adsorbent is generally 80 to 150 ° C., but a higher temperature may be possible depending on the material of the adsorbent.

【0014】前記吸着体は交互に多数積層された流路層
Aと流路層Bから成っている。その構成の一例を図4に
示す。流路層Aは通常波形の吸着性シート42と平板状
の吸着性シート41を積み重ねたいわゆるハニカム状を
なし多数の独立した小流路を有するように構成される。
吸着性シートの波形のピッチや波高は小さいほど吸着剤
の充填密度が高くなり吸着容量が大きくなるが反面、ガ
スが通流する場合の圧力損失が大きくなるので適当なピ
ッチが採用されなければならない。ピッチ、波高は通常
1〜5mm程度にとることが可能であるがピッチについ
ては2〜3mmが好ましく、波高については1〜3mm
が好ましい。吸着性シートは吸着剤と骨材とをバインダ
ーを用いて抄紙したものが用いられ、吸着材には活性炭
素繊維、粉末活性炭、各種ゼオライト、吸着性樹脂等
が、また骨材にはパルプ、ガラス繊維、アスベスト繊
維、アラミド繊維が使用可能である。もちろん流路層A
は、例えば突起を持った吸着性シートを重ねるなど吸着
性物質で構成されかつガスの適度の流通性があればよく
上記の構成にこだわらない。
The adsorbent comprises a plurality of alternately laminated flow passage layers A and B. FIG. 4 shows an example of the configuration. The flow path layer A has a so-called honeycomb shape in which a normally corrugated adsorbent sheet 42 and a flat adsorbent sheet 41 are stacked, and has a large number of independent small flow paths.
The smaller the pitch and wave height of the adsorptive sheet, the higher the packing density of the adsorbent and the larger the adsorption capacity. On the other hand, the pressure loss when the gas flows increases, so an appropriate pitch must be adopted. . The pitch and wave height can be usually about 1 to 5 mm, but the pitch is preferably 2 to 3 mm, and the wave height is 1 to 3 mm.
Is preferred. The adsorbent sheet is a sheet made of an adsorbent and an aggregate using a binder, and the adsorbent is activated carbon fiber, powdered activated carbon, various zeolites, an adsorbent resin, etc., and the aggregate is pulp or glass. Fibers, asbestos fibers, and aramid fibers can be used. Of course, channel layer A
Is not limited to the above-described configuration as long as it is made of an adsorptive substance, for example, by stacking adsorptive sheets having projections and has an appropriate gas flow.

【0015】なお一つの流路層A内では波形と平板状シ
ートの組合せは1組であってもよく、またその流路層A
内の熱伝達に支障のない範囲で2組以上にしてもよい。
図6は流路層A内の波形と平板状シートの組合せを2組
にした例である。流路層Bは隣接する流路層Aの間の間
隔を保ち流体が通流する構造であればなんでもよく例え
ば流路層Aと同じような波形シートを用いてもよい。図
2や図6は波形シートを用いた例であり、図4は山形ス
ペーサー44を用いた例である。ただしこれらはできる
だけ熱容量の小さい素材で構成することが好ましくペー
パー、樹脂や金属が用いられる。
In one channel layer A, the combination of the corrugated sheet and the flat sheet may be one set.
Two or more sets may be used as long as heat transfer in the inside is not hindered.
FIG. 6 shows an example in which the combination of the waveform in the channel layer A and the flat sheet is set to two sets. The channel layer B may have any structure as long as a fluid flows while maintaining the interval between the adjacent channel layers A. For example, a corrugated sheet similar to the channel layer A may be used. 2 and 6 are examples using a corrugated sheet, and FIG. 4 is an example using a chevron spacer 44. However, these are preferably made of a material having as small a heat capacity as possible, and paper, resin and metal are used.

【0016】流路層Aと流路層Bの間は極力熱伝達がよ
く、かつ良好な隔離性すなわちガスの透過漏洩の極力少
ない隔壁43で仕切られていることが必要である。従っ
てその隔壁としては例えばアルミや銅などの金属シート
やその他樹脂フィルム等を用いることができる。図5は
小突起を形成するように加工した金属シートを隔壁の片
方に使用してスペーサーと隔壁を兼ねさせた例である。
流路層Aと流路層Bは上述のように別々の流路を形成し
なければならないので通常は吸着体の互いに直交した位
置に出入口端面が設けられシール枠で相互にシールされ
る。吸着塔内には1個または複数個の前記吸着体がある
が、流路Aは各吸着体のそれぞれの流路層Aガスが通流
するように、また流路Bについても同様に流路層Bに流
体が通流するように設置される。
It is necessary that the flow path layer A and the flow path layer B be separated by a partition wall 43 which has good heat transfer as much as possible and has good separability, that is, as little leakage of gas permeation as possible. Therefore, as the partition, for example, a metal sheet such as aluminum or copper, or another resin film can be used. FIG. 5 shows an example in which a metal sheet processed so as to form small projections is used as one of the partition walls so as to serve as a spacer and a partition.
Since the flow path layer A and the flow path layer B must form separate flow paths as described above, the inlet / outlet end faces are usually provided at positions orthogonal to each other on the adsorbent, and are mutually sealed by a seal frame. One or a plurality of the adsorbents are provided in the adsorption tower, and the flow path A is formed so that the gas of each flow path layer A of each adsorbent flows. It is installed so that the fluid flows through the layer B.

【0017】本発明のガス処理方法では吸着後の回収工
程において再生用のパージガスと脱離のための熱量を供
給する加熱用の流体とを分離することができる。従って
再生ガス量に関係なく加熱流体量を供給することができ
るため従来のガス脱離方法よりもはるかに高い濃度の再
生ガスをうることができるのである。また熱交換が用意
であるから吸着工程において吸着熱を除去して吸着を促
進させるために流路層Bに冷却流体を通流することもで
きる。
In the gas treatment method of the present invention, a purge gas for regeneration and a heating fluid for supplying heat for desorption can be separated in a recovery step after adsorption. Therefore, the heating fluid amount can be supplied irrespective of the regeneration gas amount, so that a regeneration gas having a much higher concentration than the conventional gas desorption method can be obtained. Further, since heat exchange is ready, a cooling fluid can be passed through the flow path layer B in order to remove heat of adsorption in the adsorption step to promote adsorption.

【0018】また回収工程を終了した吸着塔をそのまま
吸着工程に移行して原ガスを通流すると、吸着体は高温
であるため初期の吸着不良が生じ清浄ガス中の溶剤等の
濃度が高くなる場合がある。その場合は回収工程終了後
流路層Bに冷却流体を通流させて吸着体の温度を所定の
温度まで冷却してから吸着工程に移行させることができ
る。回収工程で濃縮後冷却して、含有溶剤等を凝縮、分
離した後の再生ガスは量は少ないが凝縮温度での飽和蒸
気圧の溶剤を有しかなりの高濃度であるため別途処理工
程を設けてもよいが普通は原ガスと合流させて吸着工程
に戻す。
Further, when the adsorption tower after the recovery step is directly transferred to the adsorption step and the raw gas is passed, initial adsorption failure occurs due to the high temperature of the adsorbent, and the concentration of the solvent and the like in the clean gas increases. There are cases. In that case, after the completion of the recovery step, the cooling fluid is allowed to flow through the flow path layer B to cool the temperature of the adsorbent to a predetermined temperature, and then the process can be shifted to the adsorption step. After concentration in the recovery step, cooling, and condensing and separating the contained solvent, etc.The amount of regenerated gas is small, but it has a solvent with a saturated vapor pressure at the condensation temperature and has a considerably high concentration. However, it is usually combined with the raw gas and returned to the adsorption step.

【0019】次にそうした操作方法の例として吸着塔が
2基の場合につき図1に従って説明する。送風機4によ
り原ガスライン10から原ガスが、第一吸着塔1にその
流路A側の導管11から供給される。この原ガスは流路
Aに連絡している吸着体の各流路層Aに通流され含有す
る溶剤等が吸着される。溶剤等の除去されたガスは清浄
ガスとして導管13より大気中に排出される。この吸着
操作において必要な場合には冷却流体循環手段9により
導管21から第一吸着塔の流路Bに冷却流体が供給され
導管23を通って元に戻る。この冷却流体は吸着体の各
流路層Bを通り、これにより流路層Aで生成する吸着熱
が隔壁を通して除去される。
Next, as an example of such an operation method, a case where there are two adsorption towers will be described with reference to FIG. The raw gas is supplied from the raw gas line 10 to the first adsorption tower 1 from the conduit 11 on the flow path A side by the blower 4. This raw gas flows through each flow path layer A of the adsorbent connected to the flow path A, and the contained solvent and the like are adsorbed. The gas from which the solvent or the like has been removed is discharged into the atmosphere through a conduit 13 as a clean gas. If necessary in this adsorption operation, the cooling fluid is supplied from the conduit 21 to the flow path B of the first adsorption tower by the cooling fluid circulating means 9 and returned through the conduit 23. The cooling fluid passes through each of the flow path layers B of the adsorbent, whereby heat of adsorption generated in the flow path layer A is removed through the partition walls.

【0020】これら第一吸着塔で吸着体が破過する前に
吸着工程を終了させ、原ガスの処理は第二吸着塔2に切
り替えられる。すなわち原ガスが送風機から導管12を
通って第二吸着塔の流路Aに供給され、そこで吸着工程
が引続きおこなわれる。一方第一吸着塔は回収工程に移
る。加熱流体循環手段8から導管21、23により第一
吸着塔の流路Bに加熱流体が供給され、吸着体の各流路
層Bに通流される。それとともに導管15、13を通っ
て少量の再生ガスが流路Aに吸着時とは逆方向に供給さ
れる。
The adsorption step is terminated before the adsorbent breaks through the first adsorption tower, and the processing of the raw gas is switched to the second adsorption tower 2. That is, the raw gas is supplied from the blower through the conduit 12 to the flow path A of the second adsorption tower, where the adsorption step is continuously performed. On the other hand, the first adsorption tower shifts to the recovery step. The heating fluid is supplied from the heating fluid circulating means 8 to the flow path B of the first adsorption tower by the conduits 21 and 23, and flows through each flow path layer B of the adsorbent. At the same time, a small amount of regeneration gas is supplied to the flow path A through the conduits 15 and 13 in a direction opposite to the direction at the time of adsorption.

【0021】流路層Bの加熱流体の熱量が流路層Bから
流路層Aにその間にある隔壁を通して伝えられ流路層A
に吸着された溶剤等を脱離する。吸着体の各流路層Aか
ら脱離された溶剤等により濃度の高い再生ガスを生じ
る。この再生ガスは流路層Aから取り出され導管11、
17を通って凝縮器6に導かれ冷却されて、含まれる溶
剤等の一部が凝縮され溶剤等として分離され回収容器7
に回収される。なお未凝縮の溶剤等を含むガスは導管2
0から送風機の吸入側に戻され、原ガスに合流されて吸
着工程で処理される。流路層Aから十分に溶剤等の脱離
が行なわれると加熱流体の供給が停止され、また必要に
より冷却流体循環手段から導管21、23を通って流路
Bに冷却流体が循環され吸着体が冷却され、その温度が
十分に低下した時点で冷却流体を停止し第一吸着塔の回
収工程を終了する。
The amount of heat of the heating fluid in the flow channel layer B is transmitted from the flow channel layer B to the flow channel layer A through the partition wall therebetween.
The solvent and the like adsorbed on are desorbed. A high-concentration regeneration gas is generated by the solvent or the like desorbed from each flow path layer A of the adsorbent. This regenerated gas is taken out from the flow path layer A and is supplied to the conduit 11,
17, the liquid is guided to the condenser 6 and cooled, and a part of the contained solvent and the like is condensed and separated as the solvent and the like.
Will be collected. The gas containing uncondensed solvent etc. is supplied to the conduit 2
From 0, it is returned to the suction side of the blower, merged with the raw gas, and processed in the adsorption step. When the solvent or the like is sufficiently removed from the flow path layer A, the supply of the heating fluid is stopped, and if necessary, the cooling fluid is circulated from the cooling fluid circulating means to the flow path B through the conduits 21 and 23, thereby adsorbing the adsorbent. Is cooled and the cooling fluid is stopped when the temperature is sufficiently lowered, and the recovery step of the first adsorption tower is completed.

【0022】そして第二吸着塔での吸着工程が終了した
時点で原ガスはこの第一吸着塔に切り替えられて吸着工
程に入り、第二吸着塔は回収工程に移行する。図1に示
すように加熱流体循環手段、冷却流体循環手段から各吸
着塔へはそれぞれ別個に独立して循環できるように導管
回路が設けられている。また吸着塔が3基以上ある場合
も同様に吸着工程を第一吸着塔から第二吸着塔へ、第二
から第三へと順次切り替えていき、吸着工程の終了した
吸着塔は、他の吸着塔で吸着工程が実施されている間に
回収工程が行なわれる。
When the adsorption step in the second adsorption tower is completed, the raw gas is switched to the first adsorption tower and enters the adsorption step, and the second adsorption tower shifts to the recovery step. As shown in FIG. 1, a conduit circuit is provided so that circulation from the heating fluid circulation means and the cooling fluid circulation means to each adsorption tower can be performed independently and independently. Similarly, when there are three or more adsorption towers, the adsorption step is sequentially switched from the first adsorption tower to the second adsorption tower, and from the second adsorption step to the third adsorption tower. The recovery step is performed while the adsorption step is being performed in the tower.

【0023】溶剤等が可燃性である場合には回収工程で
の濃縮で再生ガス濃度が爆発燃焼範囲に入る可能性があ
って危険なため窒素ガス等の不活性ガスの雰囲気下で操
作をする必要があるので次のような操作を行なう。第一
吸着塔での吸着工程はこれまでに示したような通常の操
作で行なう。次に回収工程に入る前に導管15、導管1
3を通って第一吸着塔の流路Aに吸着時とは反対方向に
不活性ガスをパージして吸着塔内の流路層Aを含む流路
Aを不活性ガスで置換する。この間のパージ後のガスは
導管17、酸素濃度計5、導管19、20を通って原ガ
スに還流されて別の吸着工程にある吸着塔にて処理され
る。
When the solvent or the like is flammable, the concentration in the recovery step may cause the concentration of the regenerated gas to fall within the explosive combustion range, which is dangerous. Therefore, the operation is performed in an atmosphere of an inert gas such as nitrogen gas. You need to do the following. The adsorption step in the first adsorption tower is performed by the usual operation as described above. Next, before starting the recovery process, the conduit 15 and the conduit 1
The inert gas is purged in the direction opposite to the direction of the adsorption in the flow path A of the first adsorption tower through 3 to replace the flow path A including the flow path layer A in the adsorption tower with the inert gas. The gas after the purge during this time is returned to the raw gas through the conduit 17, the oxygen concentration meter 5, and the conduits 19 and 20, and is processed in the adsorption tower in another adsorption step.

【0024】そして酸素濃度計により系内酸素そが溶剤
塔の爆発燃焼範囲以下の安全な濃度に低下したのを確認
してから不活性ガスパージを中止して回収工程に移行す
る。一般的には可燃性溶剤等の燃焼範囲は酸素濃度10
%(vol)以上である。従ってそれ以下の酸素濃度で
あれば一応安全といえるが実際には安全をみて5〜6%
程度以下に保持するのが好ましい。回収工程では再生ガ
スとしてはやはり不活性ガスを使用し、加熱流体循環手
段から流路Bに加熱流体を循環供給して流路層Aから溶
剤等を脱離させ、それらを冷却して溶剤等を凝縮分離回
収する。また未凝縮のガスは原ガスに還流させ吸着工程
にある他の吸着塔で処理される。
After confirming by the oxygen concentration meter that the oxygen concentration in the system has fallen to a safe concentration below the explosive combustion range of the solvent tower, the inert gas purge is stopped and the process proceeds to the recovery step. Generally, the combustion range of a flammable solvent is 10% oxygen.
% (Vol) or more. Therefore, if the oxygen concentration is lower than this, it can be said that it is safe for the time being, but in actuality it is 5-6% for safety
It is preferable to keep the temperature below the level. In the recovery step, an inert gas is also used as a regeneration gas, and a heating fluid is circulated and supplied from the heating fluid circulation means to the flow channel B to desorb solvents and the like from the flow channel layer A. Is condensed, separated and recovered. The uncondensed gas is returned to the raw gas and processed in another adsorption tower in the adsorption step.

【0025】本発明に使用する吸着体の流路層Aは流路
方向に多数の小透孔を有する、いわゆるハニカム構造な
のでデッドスペースが少なくピストン流れが得られやす
い。従って非常に効率よく不活性ガスによる置換ができ
る。流路層Aを不活性ガス雰囲気下で操作する場合、流
路層Bに通流する加熱流体あるいは冷却流体は空気を使
用してもよいが、吸着体の構造やシール部分からの漏洩
等による空気と再生ガスの混合が生じる可能性がある。
そのために常に流路層Aよりも流路層B側の圧力を高め
に保って操作し流路層Bの空気中への濃厚な溶剤等含有
ガスの侵入を阻止するのがよい。なお流路層Aへは再生
ガスとして不活性ガスがパージされるのでいくらかの空
気が流路層Bより漏洩しても補えるわけである。この場
合酸素分析計によって常時酸素濃度を監視するのが好ま
しい。また流路層Bにおいても不活性ガスを使用すれば
なお好ましい。なお不活性ガスとしては窒素ガスが最も
一般的であるがそれ以外に反応オフガスなど酸素濃度の
低いガスを利用することもできる。
The flow path layer A of the adsorbent used in the present invention has a so-called honeycomb structure having a large number of small through holes in the flow direction, so that a dead space is small and a piston flow can be easily obtained. Therefore, the replacement with the inert gas can be performed very efficiently. When the flow path layer A is operated under an inert gas atmosphere, air may be used as the heating fluid or the cooling fluid flowing through the flow path layer B, but it may be caused by leakage from the structure of the adsorbent or the seal portion. Mixing of air and regeneration gas can occur.
For this purpose, it is preferable to always maintain the pressure on the flow channel layer B side higher than that of the flow channel layer A so as to prevent entry of a gas containing a rich solvent or the like into the air of the flow channel layer B. Since the flow path layer A is purged with an inert gas as a regeneration gas, even if some air leaks from the flow path layer B, it can be compensated. In this case, it is preferable to constantly monitor the oxygen concentration with an oxygen analyzer. It is more preferable to use an inert gas also in the flow path layer B. As the inert gas, a nitrogen gas is the most common, but a gas having a low oxygen concentration such as a reaction off-gas can also be used.

【0026】不活性ガスとして窒素ガスを使用する場
合、再生ガスとしてのパージ量は少量とはいいながら空
気を使用する場合に比べて運転コストが高くなる。そこ
で次のような方法によりパージ用窒素ガスを循環再使用
して節約することもできる。すなわち吸着塔を3塔以上
使用し、回収工程にある吸着塔からの再生ガスから溶剤
等を回収した後の未凝縮ガスを、吸着工程終了後の窒素
ガス置換後であってかつ回収工程前の吸着塔の流路Aに
供給して、未凝縮で残留している溶剤等をさらに吸着さ
せる。これにより清浄になったガスを回収工程に還流さ
せ再生用のパージガスとして用いる。図7はその場合の
運転系統図である。また図8は実際の各吸着塔の作動状
況を示す工程図である。
When nitrogen gas is used as the inert gas, the operation cost is higher than when air is used, though the purge amount as the regeneration gas is small. Therefore, the nitrogen gas for purging can be circulated and reused in the following manner to save energy. That is, three or more adsorption towers are used, and the uncondensed gas after recovering the solvent and the like from the regeneration gas from the adsorption tower in the recovery step is replaced with nitrogen gas after the adsorption step and before the recovery step. It is supplied to the channel A of the adsorption tower to further adsorb the solvent and the like remaining uncondensed. The gas thus cleaned is returned to the recovery step and used as a purge gas for regeneration. FIG. 7 is an operation system diagram in that case. FIG. 8 is a process chart showing the actual operation of each adsorption tower.

【0027】第一吸着塔は吸着工程にあり溶剤等を含ん
だ原ガスを処理している。この際冷却流体循環手段(図
示せず)よりその流路Bに冷却流体を通流させてもよ
い。第三吸着塔は回収工程にあり加熱流体循環手段(図
示せず)による流路Bに加熱流体を通流しながら再生ガ
スを流路Aに通流させて流路層Aから溶剤等を脱離させ
凝縮器にて冷却し溶剤等を凝縮分離している。
The first adsorption tower is in the adsorption step and is processing the raw gas containing the solvent and the like. At this time, a cooling fluid may be passed through the flow path B from a cooling fluid circulation means (not shown). The third adsorption tower is in the recovery step, and the regeneration gas flows through the flow path A while flowing the heating fluid through the flow path B by the heating fluid circulation means (not shown) to desorb solvents and the like from the flow path layer A. Then, the mixture is cooled in a condenser to condense and separate the solvent and the like.

【0028】第二吸着塔は吸着工程を終了して窒素ガス
置換が行なわれる。この窒素ガス置換時の排出ガスは原
ガスに合流され吸着工程にある第一吸着塔で処理され
る。それから第三吸着塔での回収工程で溶剤等が冷却凝
縮分離された後の未凝縮ガスが供給され流路層Aの吸着
体に残留溶剤が吸着される。溶剤が除かれて清浄になっ
た未凝縮ガスは第三吸着塔に還流され再生ガスとして使
用される。この第二吸着塔での工程を未凝縮ガス処理工
程という。なおこの未凝縮ガス処理工程でも吸着熱除去
のため流路層Bに冷却流体循環手段(図示せず)から冷
却流体を循環させてもよい。第一吸着塔での吸着工程が
終了すれば吸着工程は第三吸着塔に、また回収工程は第
二吸着塔に移る。第一吸着塔は窒素ガス置換されてから
未凝縮ガス処理工程に移り第二吸着塔での回収工程から
生じる未凝縮ガスの吸着に供せられる。
In the second adsorption tower, the adsorption step is completed and the nitrogen gas is replaced. The exhaust gas at the time of this nitrogen gas replacement is combined with the raw gas and processed in the first adsorption tower in the adsorption step. Then, the uncondensed gas after the solvent and the like are cooled, condensed and separated in the recovery step in the third adsorption tower is supplied, and the residual solvent is adsorbed on the adsorbent of the flow path layer A. The uncondensed gas that has been cleaned by removing the solvent is returned to the third adsorption tower and used as a regeneration gas. This process in the second adsorption tower is called an uncondensed gas treatment process. In this non-condensed gas processing step, a cooling fluid may be circulated from the cooling fluid circulating means (not shown) to the flow path layer B for removing heat of adsorption. When the adsorption step in the first adsorption tower is completed, the adsorption step shifts to the third adsorption tower, and the recovery step shifts to the second adsorption tower. After the first adsorption tower is replaced with nitrogen gas, the first adsorption tower shifts to an uncondensed gas treatment step and is used to adsorb uncondensed gas generated from the recovery step in the second adsorption tower.

【0029】回収工程での未凝縮ガス量は少量ではある
が溶剤等の濃度が原ガスよりもはるかに高い。従って原
ガスによる吸着工程の後であってもさらに吸着が行なわ
れる。しかもこの操作を行なうと吸着体の溶剤等の吸着
濃度は単に原ガスを吸着させた場合よりも高くなるので
回収工程でより高い濃度の再生ガスがえられ溶剤等の回
収効率がよくなるという利点もある。これを原ガスに還
流させず未凝縮ガス処理工程を通すことにより吸着工程
の負荷を軽減でき溶剤除去率の向上に貢献できる。
Although the amount of uncondensed gas in the recovery step is small, the concentration of the solvent and the like is much higher than that of the raw gas. Therefore, further adsorption is performed even after the adsorption step with the raw gas. Moreover, when this operation is performed, the adsorption concentration of the solvent or the like of the adsorbent becomes higher than when the original gas is simply adsorbed, so that a higher concentration of the regenerated gas is obtained in the recovery step and the efficiency of recovering the solvent and the like is improved. is there. By passing this through a non-condensed gas treatment step without refluxing the raw gas, the load on the adsorption step can be reduced and the solvent removal rate can be improved.

【0030】本発明によって処理できるものは有機溶剤
類が最も一般的であり例えば各種フロンやトリクロルエ
チレン、1・1・1−トリクロルエタンなどの塩素系溶
剤、ベンゼン、トルエンなどの芳香族類、アセトン、メ
チルイソブチルケトンなどのケトン類、酢酸メチル、酢
酸エチルなどのエステル類、エタンール、イソプロパノ
ールなどのアルコール類、ガソリン、灯油などの石油類
などが回収できる。もちろんこれらに限定されるもので
はなく吸着可能な成分であれば処理が可能である。また
本発明の方法は回収工程における冷却、凝縮操作を行な
わず単にガス中の希薄な成分の濃縮に応用することもで
きる。
Organic solvents which can be treated by the present invention are most commonly organic solvents such as chlorofluorocarbons, chlorinated solvents such as trichloroethylene and 1.1 / 1-trichloroethane, aromatics such as benzene and toluene, and acetone. And ketones such as methyl isobutyl ketone, esters such as methyl acetate and ethyl acetate, alcohols such as ethanel and isopropanol, and petroleum such as gasoline and kerosene. Of course, the present invention is not limited thereto, and any component that can be adsorbed can be treated. Further, the method of the present invention can also be applied to simply concentration of a dilute component in a gas without performing cooling and condensation operations in the recovery step.

【0031】[0031]

【実施例】【Example】

(実施例1)図1のフローで示される装置を用いて1・
1・1−トリクロロエタンを2000ppm含む30℃
の空気を1m3 /minの割合で処理した。図4の構造
の吸着体を用いた。流路層Aの吸着剤は活性炭素繊維
(比表面積15m2 /g)を75%含む目付120g/
2 のペーパーおよびそれを波形加工したものである。
波形の波長ピッチは3mm、また波高は2.5mmであ
る。隔壁はアルミシートを使用した。流路層Bにはアル
ミシートを加工した山形スペーサーを10mmピッチで
挿入し隔壁の間隔を2.5mmに保持した。吸着体内で
の流速を0.4m/secとし一つの吸着塔での吸着工
程の時間を30分とした。まず最初に原ガスを導管11
から第一吸着塔1に送り吸着処理後清浄になった空気は
導管13より大気中に排出する(吸着工程)。この間第
一吸着塔における吸着体の流路層Bに冷却流体循環手段
9より導管21を通って常温の空気を通流した。
(Embodiment 1) Using the apparatus shown in the flow of FIG.
30 ° C containing 2000 ppm of 1.1-trichloroethane
Of air was treated at a rate of 1 m 3 / min. The adsorbent having the structure shown in FIG. 4 was used. The adsorbent of the channel layer A has a basis weight of 120 g / 75 containing 75% of activated carbon fibers (specific surface area: 15 m 2 / g).
m 2 of paper and it is obtained by waveform processing.
The wavelength pitch of the waveform is 3 mm, and the wave height is 2.5 mm. The partition used an aluminum sheet. The mountain-shaped spacer formed by processing an aluminum sheet was inserted into the flow path layer B at a pitch of 10 mm, and the interval between the partition walls was maintained at 2.5 mm. The flow rate in the adsorber was 0.4 m / sec, and the time of the adsorption step in one adsorption tower was 30 minutes. First, feed the raw gas to the conduit 11
Then, the air that has been sent to the first adsorption tower 1 and cleaned after the adsorption treatment is discharged into the atmosphere through the conduit 13 (adsorption step). During this time, air at room temperature was passed through the conduit 21 from the cooling fluid circulation means 9 to the flow path layer B of the adsorbent in the first adsorption tower.

【0032】上記吸着工程終了後原ガスは第二吸着塔へ
切り替え第一吸着塔吸着体の流路層Bには加熱流体循環
手段8より130℃に加熱された空気を循環させるとと
もに、一方導管15、13より空気を10リットル/分
で第一吸着塔の流路A側を吸着工程時とは逆方向に通流
パージさせた。このパージガスは導管17にて凝縮器6
に導き溶剤容器7に溶剤を回収した(回収工程)。この
際の凝縮器温度は3℃である。これら回収工程の時間は
約15分である。また凝縮器での未凝縮ガスは導管20
を通って送風機4の吸入側に還流させ原ガスに混合し
た。
After completion of the adsorption step, the raw gas is switched to the second adsorption tower, and the air heated to 130 ° C. by the heating fluid circulating means 8 is circulated through the flow path layer B of the first adsorption tower adsorber. From 15 and 13, air was purged through the flow path A of the first adsorption tower in a direction opposite to that in the adsorption step at 10 liter / min. This purge gas is supplied to the condenser 6 through a conduit 17.
And the solvent was recovered in the solvent container 7 (recovery step). The condenser temperature at this time is 3 ° C. The time for these recovery steps is about 15 minutes. The non-condensed gas in the condenser is
To the suction side of the blower 4 and mixed with the raw gas.

【0033】回収工程終了後第一吸着塔吸着体の流路層
Bに冷却流体循環手段より常温の空気を約10分循環さ
せて吸着体を冷却した。かくして第二吸着塔の吸着工程
の終了後また吸着工程を第一吸着塔に切り替えるといっ
た操作を繰り返した。各所の濃度などは時間的に変動す
るが3時間以上の連続運転における平均値はつぎのよう
であった。 清浄ガス濃度 30 ppm 溶剤除去率 98.5 % (1−清浄ガス濃
度/原ガス濃度) 回収溶剤量 625 g/h 溶剤回収率 97.0 % (回収溶剤量/原
ガス含有溶剤量)
After completion of the recovery step, normal temperature air was circulated through the cooling fluid circulating means through the flow path layer B of the first adsorption tower adsorbent for about 10 minutes to cool the adsorbent. Thus, the operation of switching the adsorption step to the first adsorption tower after the end of the adsorption step of the second adsorption tower was repeated. Although the concentration at each place fluctuates with time, the average value in continuous operation for 3 hours or more was as follows. Clean gas concentration 30 ppm Solvent removal rate 98.5% (1-clean gas concentration / raw gas concentration) Recovered solvent amount 625 g / h Solvent recovery ratio 97.0% (recovered solvent amount / raw gas-containing solvent amount)

【0034】(実施例2)次に溶剤としてトルエンを用
いて同様のテストを行なった。実施例1と同じ装置を用
いてトルエンを2000ppm含む30℃の空気を1m
3 /minの割合で処理した。吸着体内での流速、吸着
工程の時間、その他の主な運転条件も実施例1と同様で
ある。まず第一吸着塔で吸着工程を行なう。吸着工程の
間、第一吸着塔における吸着体の流路層Bには冷却流体
循環手段9より導管21を通って常温の窒素ガスを循環
させた。上記吸着工程終了後原ガスは第二吸着塔へ切り
替えた。
(Example 2) Next, a similar test was conducted using toluene as a solvent. Using the same apparatus as in Example 1, 1 m of air at 30 ° C. containing 2000 ppm of toluene was used.
The treatment was performed at a rate of 3 / min. The flow rate in the adsorbent, the time of the adsorption step, and other main operating conditions are the same as those in the first embodiment. First, an adsorption step is performed in the first adsorption tower. During the adsorption step, nitrogen gas at normal temperature was circulated from the cooling fluid circulating means 9 through the conduit 21 to the flow path layer B of the adsorbent in the first adsorption tower. After the end of the adsorption step, the raw gas was switched to the second adsorption tower.

【0035】第一吸着塔では導管15、13より窒素ガ
スを30リットル/分の流量で吸着工程時とは逆方向に
パージし流路A側を窒素ガス置換した。そのパージガス
は導管17から酸素濃度計5に導き系内の酸素濃度を測
定した。3分で酸素濃度は約1%になった。なおその間
のパージガスはバイパス導管19から導管20を通って
原ガスに還流させた。それから第一吸着塔吸着体の流路
層Bには加熱流体循環手段8より130℃に加熱された
窒素ガスを循環させるとともに、やはり導管15、13
より窒素ガスを10リットル/分で第一吸着塔の流路A
側を吸着工程時とは逆方向に通流パージさせた。このパ
ージガスは導管17にて凝縮器6に導き冷却し凝縮した
溶剤を溶剤容器7に回収した。
In the first adsorption tower, nitrogen gas was purged from the conduits 15 and 13 at a flow rate of 30 L / min in the opposite direction to that during the adsorption step, and the flow path A side was replaced with nitrogen gas. The purge gas was led from the conduit 17 to the oxygen concentration meter 5 to measure the oxygen concentration in the system. After 3 minutes, the oxygen concentration was about 1%. The purge gas during that time was returned to the raw gas from the bypass conduit 19 through the conduit 20. Then, the nitrogen gas heated to 130 ° C. by the heating fluid circulation means 8 is circulated through the flow path layer B of the first adsorption tower adsorbent, and the conduits 15 and 13 are also circulated.
Flow rate A of the first adsorption tower at a rate of 10 liter / min.
The side was purged by flowing in the opposite direction to that during the adsorption step. This purge gas was introduced into the condenser 6 through the conduit 17 and cooled and condensed. The solvent condensed was recovered in the solvent container 7.

【0036】凝縮器での未凝縮ガスは導管20を通って
送風機4の吸入側に還流させ原ガスに混合した。回収工
程終了後第一吸着塔吸着体の流路層Bに冷却流体循環手
段8より常温の空気を約10分間循環させて吸着体を冷
却した。以後吸着塔を順次切り替え、連続運転を行なっ
た。連続運転における平均値はつぎのようであった。 清浄ガス濃度 16 ppm 溶剤除去率 99.2 % 回収溶剤量 435 g/h 溶剤回収率 98.0 %
The uncondensed gas in the condenser was returned to the suction side of the blower 4 through the conduit 20 and mixed with the raw gas. After the completion of the recovery step, air at room temperature was circulated through the cooling fluid circulating means 8 for about 10 minutes through the channel layer B of the adsorbent of the first adsorption tower to cool the adsorbent. Thereafter, the adsorption tower was sequentially switched to perform a continuous operation. The average value in continuous operation was as follows. Clean gas concentration 16 ppm Solvent removal rate 99.2% Recovered solvent amount 435 g / h Solvent recovery rate 98.0%

【0037】(実施例3)実施例2と同じ原ガスを図7
のように3基の吸着塔を用いて処理しパージ窒素ガスを
回収した。個々の吸着塔、凝縮器、その他の機器類は実
施例1と同じである。トルエンを2000ppm含む3
0℃の空気を1m3 /minの割合で処理した。吸着体
内での流速、吸着工程の時間、その他の主な運転条件も
実施例2と同様である。まず第一段階では第一吸着塔は
吸着工程にあり原ガスを処理している。第一吸着塔にお
ける吸着体の流路層Bに冷却流体循環手段(図示せず)
より常温の窒素ガスを循環させている。
(Embodiment 3) The same raw gas as in Embodiment 2 is used in FIG.
The treatment was carried out using three adsorption towers as described above, and purged nitrogen gas was recovered. The individual adsorption towers, condensers, and other equipment are the same as in the first embodiment. 3 containing 2000 ppm of toluene
Air at 0 ° C. was treated at a rate of 1 m 3 / min. The flow rate in the adsorbent, the time of the adsorption step, and other main operating conditions are the same as in the second embodiment. First, in the first stage, the first adsorption tower is in the adsorption step and is processing the raw gas. Cooling fluid circulating means (not shown) in flow path layer B of the adsorbent in the first adsorption tower
More room temperature nitrogen gas is circulated.

【0038】第二吸着塔は第一吸着塔が吸着工程に入る
前に吸着工程にあったが吸着工程終了後、前記窒素ガス
置換を行なった後回収工程にある第三吸着塔からの溶剤
回収後の未凝縮ガスが供給されている。窒素ガス置換条
件は実施例2と同様に、窒素ガスを30リットル/分の
流量で吸着工程時とは逆方向に3分間パージし流路A側
を窒素ガス置換した。そのパージガスは原ガスに還流さ
せた。第二吸着塔における吸着体の流路層Bにも、冷却
流体循環手段(図示せず)より常温の窒素ガスを循環さ
せている。第二吸着塔で溶剤を除去された未凝縮ガスは
第三吸着塔へ還流され再生用ガスとして使用される。
The second adsorption tower was in the adsorption step before the first adsorption tower entered the adsorption step. After the adsorption step was completed, the nitrogen gas was replaced and the solvent was recovered from the third adsorption tower in the recovery step. Later uncondensed gas is supplied. The nitrogen gas replacement conditions were the same as in Example 2, and nitrogen gas was purged at a flow rate of 30 liters / minute in the opposite direction to that during the adsorption step for 3 minutes to replace the flow path A with nitrogen gas. The purge gas was recirculated to the raw gas. A normal temperature nitrogen gas is circulated also from a cooling fluid circulating means (not shown) to the flow path layer B of the adsorbent in the second adsorption tower. The uncondensed gas from which the solvent has been removed in the second adsorption tower is returned to the third adsorption tower and used as a regeneration gas.

【0039】第三吸着塔では吸着体の流路層Bに加熱流
体循環手段より130℃に加熱された窒素ガスを循環さ
せるとともに、窒素ガスおよび第二吸着塔での未凝縮ガ
ス処理工程の排出ガス10リットル/分を流路A側を吸
着工程時とは逆方向に通流パージさせた。このパージガ
スは凝縮器6に導き冷却し凝縮した溶剤を回収した。凝
縮器での未凝縮ガスは前記第二吸着塔に還流した。次に
第二段階では吸着工程は第三吸着塔に、回収工程は第二
吸着塔に、そして未凝縮ガス処理工程は窒素ガス置換後
の第一吸着塔に移り同様な操作を続ける。第三段階では
さらに各工程を一つずつずらせ、以後吸着塔を順次切り
替え連続運転を行なった。
In the third adsorption tower, the nitrogen gas heated to 130 ° C. by the heating fluid circulation means is circulated through the flow path layer B of the adsorber, and the nitrogen gas and the uncondensed gas in the second adsorption tower are discharged. A flow of 10 liters / min of gas was purged through the flow path A in a direction opposite to that in the adsorption step. This purge gas was led to the condenser 6 to cool and collect the condensed solvent. The uncondensed gas in the condenser was returned to the second adsorption tower. Next, in the second stage, the adsorption step is moved to the third adsorption tower, the recovery step is moved to the second adsorption tower, and the uncondensed gas treatment step is moved to the first adsorption tower after the replacement with nitrogen gas, and the same operation is continued. In the third stage, each step was further shifted one by one, and thereafter the adsorption towers were sequentially switched to perform a continuous operation.

【0040】連続運転における平均値はつぎのようであ
った。 清浄ガス濃度 24 ppm 溶剤除去率 98.8 % 回収溶剤量 435 g/h 溶剤回収率 98.0 % 本実施例では回収工程のパージ用窒素ガスが実施例2に
くらべて約250リットル/h節約できることがわかっ
た。
The average value in the continuous operation was as follows. Clean gas concentration 24 ppm Solvent removal rate 98.8% Recovered solvent amount 435 g / h Solvent recovery rate 98.0% In this embodiment, nitrogen gas for purging in the recovery step is reduced by about 250 liters / h compared to the second embodiment. I knew I could do it.

【0041】[0041]

【発明の効果】本発明の方法によれば、再生ガス量とは
関係なく吸着した溶剤等の脱離に必要な熱量を独立して
与えることができるため、再生ガス量を少なくすること
により容易に高い濃縮率が得られ溶剤等を凝縮して回収
することができる。しかも水蒸気による脱離のように多
量の凝縮水が回収溶剤に混合することもない。また吸着
体内の不活性ガス置換が容易なことから可燃製溶剤等の
回収も可能であり、さらにその際再生ガスを循環使用で
きるので不活性ガスとして窒素ガスを使用する場合でも
その消費量が少なくてすむ。
According to the method of the present invention, the amount of heat required for desorption of the adsorbed solvent or the like can be given independently irrespective of the amount of the regeneration gas. A high concentration ratio can be obtained, and the solvent and the like can be condensed and recovered. Moreover, a large amount of condensed water does not mix with the recovered solvent unlike the desorption by steam. In addition, since the replacement of inert gas in the adsorbent is easy, it is also possible to recover flammable solvents and the like, and at that time, even if nitrogen gas is used as an inert gas, the amount of consumption can be reduced because regenerated gas can be recycled. Help me.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の溶剤回収システムのフロー図。FIG. 1 is a flowchart of a solvent recovery system of the present invention.

【図2】原ガス及びパージガスが通流する流路層Aと再
生時の加熱ガスが通流する流路Bが交互に積層されてい
る吸着体の一例。
FIG. 2 is an example of an adsorbent in which flow path layers A through which a raw gas and a purge gas flow and flow paths B through which a heating gas flows during regeneration flow are alternately stacked.

【図3】吸着体と各流体を分離するためのダクト等から
なる分配室で構成される吸着塔の概要図。
FIG. 3 is a schematic diagram of an adsorption tower including a distribution chamber including a duct for separating each fluid from an adsorbent.

【図4〜6】流路層A、流路層Bが複数積層された吸着
体の一例。
4 to 6 are examples of an adsorbent in which a plurality of flow path layers A and B are stacked.

【図7】3基の吸着塔を用いた場合の運転系統図。FIG. 7 is an operation system diagram when three adsorption towers are used.

【図8】3基の吸着塔を用いた場合の各吸着塔の工程
図。
FIG. 8 is a process diagram of each adsorption tower when three adsorption towers are used.

【符号の説明】[Explanation of symbols]

1 第一吸着塔 2 第二吸着塔 3 清浄ガス 4 送風機 5 酸素濃度計 6 凝縮器 7 回収容器 8 加熱流体循環手段 9 冷却流体循環手段 10 原ガスライン 11〜14 導管 15、16 パージガス(窒素)用導管 17〜24 導管 30 吸着体 31 流路層A 32 流路層B 33〜35 分配室 36 シール枠 41、42 吸着性シート 43 隔壁 44 スペーサー 45 第三吸着塔 46 窒素ガス 47 原ガス 48 回収溶剤 DESCRIPTION OF SYMBOLS 1 First adsorption tower 2 Second adsorption tower 3 Clean gas 4 Blower 5 Oxygen meter 6 Condenser 7 Recovery container 8 Heating fluid circulation means 9 Cooling fluid circulation means 10 Raw gas line 11 to 14 Conduit 15, 16 Purge gas (nitrogen) Conduits 17 to 24 conduits 30 adsorbents 31 flow path layers A 32 flow path layers B 33 to 35 distribution chambers 36 seal frames 41, 42 adsorptive sheets 43 partition walls 44 spacers 45 third adsorption tower 46 nitrogen gas 47 raw gas 48 recovery solvent

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B01D 53/04 B01D 53/44 B01D 53/81 Continuation of the front page (58) Field surveyed (Int.Cl. 7 , DB name) B01D 53/04 B01D 53/44 B01D 53/81

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 吸着ガスおよび再生ガスの通流する吸着
剤を含む流路層Aとこれとは別の流体流路である流路層
Bとが交互に積層され、かつ流路層Aが波形のシート状
物により独立した多数の小流路に分割された構造の吸着
体を用いた吸着塔において、流路層Aに溶剤等を含む原
ガスを通流させて溶剤等を吸着させる吸着工程、および
流路層Bに高温の流体を通流させながら流路層Aに少量
のパージガスを通流させて吸着した溶剤等を脱離させ、
その脱離した溶剤等を冷却、凝縮、分離する回収工程と
を交互に実施する方法であり、かつ複数の前記吸着塔に
より前記吸着工程および回収工程を順次切り替えて実施
し連続的に原ガスを処理するとともに、かつ未凝縮ガス
を再度吸着塔に通流し、不活性ガスをパージガスとして
用いて可燃性有機溶剤の吸着、回収を行うことを特徴と
する溶剤等の回収方法。
1. A flow path layer A containing an adsorbent through which an adsorbed gas and a regeneration gas flow and a flow path layer B which is another fluid flow path are alternately laminated, and the flow path layer A is In an adsorption tower using an adsorber having a structure divided into a number of independent small flow paths by a corrugated sheet-like material, adsorption in which a raw gas containing a solvent or the like is passed through a flow path layer A to adsorb the solvent or the like. The process, and passing a small amount of purge gas through the flow channel layer A while allowing the high-temperature fluid to flow through the flow channel layer B to desorb the adsorbed solvent and the like,
It is a method of alternately performing a recovery step of cooling, condensing, and separating the desorbed solvent and the like, and continuously switching the adsorption step and the recovery step by a plurality of the adsorption towers, and continuously performing the raw gas. Treated and uncondensed gas
Again through the adsorption tower, using inert gas as purge gas.
A method for recovering a solvent or the like, characterized by performing adsorption and recovery of a flammable organic solvent using the solvent.
【請求項2】 請求項1の吸着塔を少なくとも3基用い
る方法において、前記吸着工程、回収工程を順次連続的
に行うに際し、前記回収工程からの未凝縮ガスを、吸着
工程を終了しかつ回収工程を開始する前の段階にある吸
着塔に通流させ、未凝縮ガス中の溶剤等をその吸着塔内
の吸着体に吸着せしめ、その後再び回収工程の不活性ガ
スと混合してパージガスとして用いる溶剤等の回収方
法。
2. The method according to claim 1, wherein the adsorption step and the recovery step are sequentially and continuously performed, and the uncondensed gas from the recovery step is terminated and recovered. It flowed through the adsorption tower which is in the stage before starting the process, adsorbed solvent or the like in the uncondensed gas to the adsorbent of the adsorption tower, the inert gas in again in the recovery step
A method for recovering a solvent or the like used as a purge gas by mixing with a solvent.
JP07603992A 1992-02-26 1992-02-26 Recovery method for solvents, etc. Expired - Fee Related JP3282676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07603992A JP3282676B2 (en) 1992-02-26 1992-02-26 Recovery method for solvents, etc.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07603992A JP3282676B2 (en) 1992-02-26 1992-02-26 Recovery method for solvents, etc.

Publications (2)

Publication Number Publication Date
JPH05237333A JPH05237333A (en) 1993-09-17
JP3282676B2 true JP3282676B2 (en) 2002-05-20

Family

ID=13593669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07603992A Expired - Fee Related JP3282676B2 (en) 1992-02-26 1992-02-26 Recovery method for solvents, etc.

Country Status (1)

Country Link
JP (1) JP3282676B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003071235A (en) * 2001-08-30 2003-03-11 Sumitomo Chem Co Ltd Method for separating combustible organic solvent in gas to be treated
JP4530944B2 (en) * 2005-08-19 2010-08-25 日本エア・リキード株式会社 Recovery process for volatile organic compounds
JP4530945B2 (en) * 2005-08-19 2010-08-25 日本エア・リキード株式会社 Recovery process for volatile organic compounds
AU2008254512B2 (en) * 2007-05-18 2012-03-01 Exxonmobil Upstream Research Company Process for removing a target gas from a mixture of gases by thermal swing adsorption
JP4947594B2 (en) * 2007-09-06 2012-06-06 Jx日鉱日石エネルギー株式会社 Pier equipment and hydrocarbon recovery system
CN103180028B (en) * 2010-08-27 2016-07-06 英温提斯热力技术有限公司 The method using thermal conductive contact device structure adsorption seperation of gas
CN114225644B (en) * 2021-11-23 2024-05-03 安徽金禾实业股份有限公司 Trichloroethane tail gas treatment device and method in sucralose production
JP7367900B1 (en) * 2022-03-30 2023-10-24 東洋紡エムシー株式会社 Gas treatment equipment and gas treatment method

Also Published As

Publication number Publication date
JPH05237333A (en) 1993-09-17

Similar Documents

Publication Publication Date Title
US5110328A (en) Solvent adsorber and solvent recovery system
US3594983A (en) Gas-treating process and system
US5059405A (en) Process and apparatus for purification of landfill gases
KR19990071889A (en) Method of treating or recovering gaseous hydrocarbons contained in waste gas
JP3282676B2 (en) Recovery method for solvents, etc.
JP7055556B2 (en) Activated carbon performance recovery possibility judgment method, activated carbon regeneration method, and activated carbon reuse system
KR102382274B1 (en) Hydrogen or helium purification method and hydrogen or helium purification apparatus
CN211537130U (en) Adsorption and desorption device and system with dry gas backflow module
US3905783A (en) Method of purifying an air or gas flow of vaporous or gaseous impurities adsorbable in filters
CN109045926B (en) VOCs-containing waste gas treatment device and method
JP2009066530A (en) Voc recovery apparatus
CN111603886B (en) NOx recovery method and device in three-tower switching mode
CN211537120U (en) Organic waste gas purification device and system adopting thermal nitrogen desorption
JP3994157B2 (en) Method and apparatus for purifying gases containing organic contaminants
JP4548891B2 (en) Organic solvent recovery method
JP2000300955A (en) Facility for treatment of lean gaseous hydrocarbon contained in waste gas
TW565468B (en) Method and device for recovering hydrocarbon vapor
JPH1157372A (en) Method of recovering hydrocarbon vapor using cooling condensation
JP3922449B2 (en) Organic solvent recovery system
JP3069578B2 (en) Solvent recovery method and apparatus
CN115006963A (en) System and process for recycling cryogenic solvent from waste gas in pharmaceutical industry
JPS61167430A (en) Method for recovering solvent from gas containing low-concentration solvent
CN211302563U (en) Oil gas treatment system
JP2011092871A (en) Organic solvent recovery system
JPS58128124A (en) Desorption of organic gas in carrier gas adsorbed by adsorbent

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080301

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090301

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090301

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100301

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100301

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110301

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees