JP3277502B2 - Method for producing inorganic filler and dental restoration material - Google Patents

Method for producing inorganic filler and dental restoration material

Info

Publication number
JP3277502B2
JP3277502B2 JP31022892A JP31022892A JP3277502B2 JP 3277502 B2 JP3277502 B2 JP 3277502B2 JP 31022892 A JP31022892 A JP 31022892A JP 31022892 A JP31022892 A JP 31022892A JP 3277502 B2 JP3277502 B2 JP 3277502B2
Authority
JP
Japan
Prior art keywords
silica
weight
inorganic filler
average particle
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31022892A
Other languages
Japanese (ja)
Other versions
JPH06157230A (en
Inventor
將之 相澤
俊夫 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKUYMA DENTAL CORPORATION
Tokuyama Corp
Original Assignee
TOKUYMA DENTAL CORPORATION
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKUYMA DENTAL CORPORATION, Tokuyama Corp filed Critical TOKUYMA DENTAL CORPORATION
Priority to JP31022892A priority Critical patent/JP3277502B2/en
Publication of JPH06157230A publication Critical patent/JPH06157230A/en
Application granted granted Critical
Publication of JP3277502B2 publication Critical patent/JP3277502B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、無機充填材、その製造
方法、及び該充填材を充填してなる高強度、高審美性を
特徴とした歯科用充填材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inorganic filler and its production.
The present invention relates to a method and a dental filling material characterized by high strength and high aesthetics obtained by filling the filling material.

【0002】[0002]

【従来の技術】齲蝕や破折等による歯牙の欠損部あるい
は歯冠全体の修復や動揺歯の固定等幅広く用いられる歯
科用充填修復材料は、一般に重合性単量体と無機充填材
から構成される。かかる歯科用充填修復材料に求められ
る性質は、そしゃく時の高い咬合圧に耐え得る機械的強
度、歯質と同程度の熱膨張率、重合硬化時に歯質からの
剥離を防ぐための低重合収縮率等の理工学物性、さらに
自然感溢れる修復を可能とするために自然歯と同様な色
調、及び光沢、また舌接触時の平滑感等が挙げられる。
2. Description of the Related Art A dental filling and restoration material widely used for repairing a defective portion of a tooth or an entire crown due to dental caries or fracture, and fixing an unstable tooth is generally composed of a polymerizable monomer and an inorganic filler. You. The properties required of such a dental filling and restorative material include mechanical strength capable of withstanding high occlusal pressure during mastication, a thermal expansion coefficient comparable to that of the tooth material, and low polymerization shrinkage to prevent peeling from the tooth material during polymerization hardening. In order to enable restoration that is full of a natural feeling, the same color tone and luster as those of natural teeth, and smoothness upon contact with the tongue, etc. are included.

【0003】従来、かかる修復材料の充填材には、石英
やシリカを主成分とするガラスを機械的に粒径数μmか
ら150μm程度に粉砕されたもの、あるいは熱分解法
や水溶液の沈澱生成による沈降法、また気相反応法によ
り合成された一次粒径が0.05μm未満のシリカが用
いられていた。しかし前者は、充填材を80wt%程度
に充填可能であるため圧縮強度や熱膨張率を高めること
ができるものの充填粒径大きいため仕上げ研磨後の表面
滑沢性、光沢性に劣り、後者はかかる性質に優れるもの
の、充填剤の比表面積が大きくなることから充填率はせ
いぜい60wt%程度と低くなるため、理工学物性が低
い等の問題があった。
Heretofore, as a filler material for such a restoration material, glass mainly composed of quartz or silica has been mechanically pulverized to a particle size of about several μm to about 150 μm, or has been prepared by a thermal decomposition method or precipitation of an aqueous solution. Silica having a primary particle size of less than 0.05 μm synthesized by a precipitation method or a gas phase reaction method has been used. However, the former can be filled with the filler to about 80 wt%, so that the compressive strength and the coefficient of thermal expansion can be increased. However, since the filling particle size is large, the surface lubricity and gloss after the finish polishing are inferior. Although the properties are excellent, the filling factor is reduced to about 60 wt% at most because the specific surface area of the filler is large, and thus there are problems such as low physical properties of science and engineering.

【0004】そこで、理工学物性と審美性を両立させる
目的で粒子を微細化し、且つ高密度に充填することが試
みられてきた。例えば特開昭57−82303に見られ
る技術では、粒径範囲0.1〜100μm平均粒径0.
2〜20μmの無機粉体と粒径範囲10〜100μm、
平均粒径10〜50μmの無機粉体を組み合わせること
により、すなわち粒径の異なる数種類のフィラーを組み
合わせることによりフィラーの細密充填化を行い、機械
的強度の改良がこころみられている。また、特開昭61
−134307では、0.05μmのフュームドシリカ
と平均粒径5μmのシリカの組み合わせが開示されてい
る。
Therefore, attempts have been made to reduce the size of the particles and to fill them at a high density for the purpose of achieving both physical and engineering properties and aesthetics. For example, in the technique disclosed in Japanese Patent Application Laid-Open No. 57-82303, the average particle size is 0.1 to 100 μm.
2-20 μm inorganic powder and particle size range 10-100 μm,
By combining inorganic powders having an average particle diameter of 10 to 50 μm, that is, by combining several kinds of fillers having different particle diameters, finer packing of fillers is performed, and improvement of mechanical strength has been attempted. Also, Japanese Unexamined Patent Publication No.
-134307 discloses a combination of fumed silica of 0.05 μm and silica with an average particle size of 5 μm.

【0005】近時では、さらに充填材の微細化が検討さ
れ、特開平3−258707では、シリコンアルコキシ
ドから合成された平均粒径0.01〜5μmの範囲にあ
る球状シリカが開示されている。
[0005] Recently, further miniaturization of the filler has been studied. Japanese Patent Application Laid-Open No. 3-258707 discloses spherical silica synthesized from silicon alkoxide and having an average particle size in the range of 0.01 to 5 µm.

【0006】しかし、かかる粒径を有する充填剤は、充
填率を80wt%以上にすることは可能であるが、尚、
粒径が大きいため表面滑沢性は満足されるものでない。
However, a filler having such a particle size can have a filling rate of 80% by weight or more.
Due to the large particle size, surface lubricity is not satisfactory.

【0007】本発明者らの検討結果では、自然歯と同様
の光沢を得るためには、充填材の粒径は1μm以下であ
る必要がある。一方、理工学物性を満足させるために
は、充填率は80wt%より高いことが望ましい。
According to the results of the study by the present inventors, the particle size of the filler needs to be 1 μm or less in order to obtain gloss similar to that of natural teeth. On the other hand, in order to satisfy the physical properties of science and engineering, it is desirable that the filling rate is higher than 80 wt%.

【0008】そこで、粒径が1μm以下であり樹脂への
充填時に80wt%を越える充填率が得られる充填材が
望まれるが、前記機械的粉砕方法で粒径が1μm以下の
粒子を得ることは困難であり分級等の操作を必要とし、
また高度な粒径分布の制御が困難であるため、80wt
%を越える充填率を得ることはできない。
Therefore, a filler having a particle size of 1 μm or less and a filling rate of more than 80 wt% when filled into a resin is desired. However, it is difficult to obtain particles having a particle size of 1 μm or less by the mechanical pulverization method. It is difficult and requires operations such as classification,
In addition, since it is difficult to control the particle size distribution at a high level, 80 wt.
% Cannot be obtained.

【0009】サブミクロンからミクロン領域において粒
径を高度にコントロールする方法として、金属有機化合
物を出発原料として溶液中から金属酸化物の粒子を沈降
して得る方法が報告されている(特公平1−2797
6、特公平1−38044、特公平−38043)。
As a method for controlling the particle size in a submicron to micron range, a method has been reported in which a metal organic compound is used as a starting material to precipitate metal oxide particles from a solution (Japanese Patent Publication No. Hei 1-118). 2797
6, JP-B1-38044, JP-B-38043).

【0010】特開平3−258707では、テトラエチ
ルシリケートの加水分解法によりサブミクロンと、数ミ
クロンの粒径を有するシリカ粒子を合成し、その混合物
を充填材とした歯科用充填修復材料が開示されている。
しかし、その混合方法は、得られた粒子をそれぞれ、1
000℃以上の温度で焼成した後、ボールミルを用いた
混合を行っている。しかし、この方法では1000℃の
ような高い温度で焼成したシリカ粒子は強固に結合した
凝集体を生成しやすく、特に0.1μm前後の粒径で
は、焼成時に生成した凝集体をボールミルのような機械
的方法で単分散な状態まで解砕することはできない。そ
のため充填率の低下、ひいては理工学物性の低下を招
く。また、かかる方法では混合に80時間という長時間
を必要としている上、長時間機械的に混合した場合に容
器及び粉砕ボールから不純物質が混入する恐れがある等
の問題もあった。
Japanese Patent Application Laid-Open No. 3-258707 discloses a dental filling and restorative material in which silica particles having a particle size of submicron and several microns are synthesized by a hydrolysis method of tetraethylsilicate, and a mixture thereof is used as a filler. I have.
However, the mixing method is such that the resulting particles are each 1
After firing at a temperature of 000 ° C. or more, mixing using a ball mill is performed. However, in this method, silica particles calcined at a high temperature such as 1000 ° C. tend to form strongly bonded aggregates. It cannot be crushed to a monodispersed state by a mechanical method. For this reason, the packing ratio is reduced, and the physical properties of science and engineering are reduced. In addition, such a method requires a long time of 80 hours for mixing, and also has a problem that when mechanically mixing for a long time, impurities may be mixed in from a container and a crushed ball.

【0011】上述の如く、いまだ81wt%以上の充填
率と表面滑沢性を満足する無機充填材は得られてていな
かった。
As described above, an inorganic filler satisfying a filling rate of 81 wt% or more and a surface lubricating property has not yet been obtained.

【0012】[0012]

【発明が解決しようする課題】無機充填材を81%以上
充填した高強度でしかも人歯と同等の光沢性を有する歯
科用充填修復材料を開発することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to develop a dental filling / restoring material having a high strength and a gloss equivalent to that of a human tooth, filled with an inorganic filler of 81% or more.

【0013】[0013]

【課題を解決するための手段】本発明は、上記問題の解
決に鑑み鋭意研究した結果、少なくとも2種類の異なる
平均粒径を有し、両者の平均粒径の比が4〜20倍の範
囲である未焼成シリカ系複合酸化物を混合し、次いで焼
結未満の温度で焼成することにより作製した混合粒子
は、各粒子が均一に分散混合され、充填材として用いた
場合に高密度に充填可能であることを見いだし、さら
に、上記製造方法を用いて作製した平均粒径0.1μm
未満のシリカ系無機酸化物10〜50重量%と粒径0.
5〜1μmのシリカ系無機酸化物50〜90重量%を混
合した充填材は、0.1μm以下粒子が均一に分散して
いるため、重合性単量体に充填した場合に、これまで困
難であった81wt%以上の高い充填率が得られ、表面
滑沢性及び光沢性に優れるばかりでなく、優れた理工学
的物性を有する歯科用充填修復材料を開発するに至っ
た。すなわち、本発明は、平均粒径0.1μm未満のシ
リカ系複合酸化物10〜50重量%と平均粒径0.5〜
1μmのシリカ系複合酸化物50〜90重量%とからな
る無機充填材であって、両者のシリカ系複合酸化物の平
均粒径の比は4〜20倍の範囲であり、これらのシリカ
系複合酸化物はそれぞれ未焼成の状態で混合された後、
焼結温度未満の温度で焼成されてなることを特徴とする
無機充填材である。 また、本発明は、異なる平均粒径を
有し且つ両者の平均粒径の比が4〜20倍の範囲である
少なくとも二種類の未焼成シリカ系複合酸化物を混合
し、次いで焼結温度未満の温度で焼成することを特徴と
する無機充填材の製造方法も提供する。 また、本発明
は、上記無機充填材、重合性単量体、及び重合開始材と
を混合することを特徴とする歯科用充填修復材料の製造
方法も提供する。 さらに本発明は、上記無機充填材を8
1〜90重量部、重合性単量体10〜19重量部、およ
び重合性単量体100重量部に対し0.1〜10重量部
の重合開始剤(ただし無機充填材と重合性単量体の合計
は100重量部とする)を含有してなることを特徴とす
る歯科用充填修復材料も提供する。
Means for Solving the Problems The present invention has been intensively studied in view of solving the above problems, and as a result, it has at least two kinds of different average particle diameters, and the ratio of the average particle diameters of the two particles is in the range of 4 to 20 times. The mixed particles produced by mixing the unsintered silica-based composite oxide and then sintering at a temperature lower than sintering, each particle is uniformly dispersed and mixed, and when used as a filler, it is densely packed. Was found to be possible, and further, an average particle diameter of 0.1 μm produced using the above-described production method.
The silica-based inorganic oxide having a particle size of less than 10 to 50% by weight and a particle size of less than 0.1%.
A filler containing 50 to 90% by weight of a silica-based inorganic oxide of 5 to 1 μm has a particle size of 0.1 μm or less dispersed uniformly, so that it has been difficult to fill a polymerizable monomer. A high filling rate of 81% by weight or more was obtained, which led to the development of a dental filling and restorative material having not only excellent surface lubricity and gloss, but also excellent physical properties. That is, the present invention provides a screen having an average particle size of less than 0.1 μm.
10-50% by weight of Lica-based composite oxide and average particle size of 0.5-
1-μm silica-based composite oxide at 50-90% by weight.
Inorganic filler, which is the average of both silica-based composite oxides.
The ratio of the average particle size is in the range of 4 to 20 times, and these silica
After each of the mixed oxides are mixed in an unfired state,
Characterized by being fired at a temperature lower than the sintering temperature
It is an inorganic filler. The present invention also provides different average particle sizes.
And the ratio of the average particle size of both is in the range of 4 to 20 times
Mix at least two types of unfired silica-based composite oxide
And then firing at a temperature lower than the sintering temperature
The present invention also provides a method for producing an inorganic filler. In addition, the present invention
Is the inorganic filler, polymerizable monomer, and polymerization initiator
Of dental filling and restorative material characterized by mixing
A method is also provided. Further, the present invention provides the above-mentioned inorganic filler as 8
1 to 90 parts by weight, 10 to 19 parts by weight of a polymerizable monomer, and
0.1 to 10 parts by weight based on 100 parts by weight of the polymerizable monomer
Polymerization initiator (however, the sum of inorganic filler and polymerizable monomer)
Is 100 parts by weight).
And dental filling and restoration materials.

【0014】本発明に用いられる未焼成シリカ系複合酸
化物は、特に限定されないが、一般に金属アルコキシド
の加水分解法から合成されたシリカ、またはシリカを主
成分とした他の金属との複合酸化物であり、形状は球状
あるいは球形に近い不定形状物である。
The unfired silica-based composite oxide used in the present invention is not particularly limited, but is generally silica synthesized by a hydrolysis method of a metal alkoxide, or a composite oxide with another metal containing silica as a main component. And the shape is an irregularly shaped object having a spherical or nearly spherical shape.

【0015】未焼成シリカ系複合酸化物を具体的に例示
するとシリカ、シリカ−チタニア、シリカ−ジルコニ
ア、シリカ−バリウムオキサイド、シリカ−アルミナ、
シリカ−カルシア、シリカ−ストロンチウムオキサイ
ド、シリカ−マグネシア、シリカ−チタニア−ナトリウ
ムオキサイド、シリカ−チタニア−カリウムオキサイ
ド、シリカ−ジルコニア−ナトリウムオキサイド、シリ
カ−ジルコニア−カリウムオキサイド、シリカ−アルミ
ナ−ナトリウムオキサイド、またはシリカ−アルミナ−
カリウムオキサイド等が挙げられる。
Specific examples of the unfired silica-based composite oxide include silica, silica-titania, silica-zirconia, silica-barium oxide, silica-alumina,
Silica-calcia, silica-strontium oxide, silica-magnesia, silica-titania-sodium oxide, silica-titania-potassium oxide, silica-zirconia-sodium oxide, silica-zirconia-potassium oxide, silica-alumina-sodium oxide, or silica -Alumina-
Potassium oxide and the like.

【0016】該未焼成シリカ系複合酸化物は無機充填材
として用いる場合に、充填率を高める目的で、少なくと
も二種類の平均粒径を有するものが組み合わされる。そ
の平均粒径の比は4〜20の範囲であればよいが、さら
には5〜15の範囲がより好ましい。具体的に示すと、
0.1μm未満と0.5〜1μm、0.01μm〜0.
1μmと0.1μm〜2μm、0.1〜0.5μmと
0.5μm〜10μm、または0.5μm〜10μmと
10μm〜100μmの範囲の組み合わせから上記平均
粒径比の条件を満たすものが好ましく選ばれる。
When the unsintered silica-based composite oxide is used as an inorganic filler, one having at least two kinds of average particle diameters is combined for the purpose of increasing the filling rate. The ratio of the average particle size may be in the range of 4 to 20, but is more preferably in the range of 5 to 15. Specifically,
Less than 0.1 μm, 0.5-1 μm, 0.01 μm-0.
Those that satisfy the conditions of the above average particle size ratio are preferably selected from combinations of 1 μm and 0.1 μm to 2 μm, 0.1 to 0.5 μm and 0.5 μm to 10 μm, or 0.5 μm to 10 μm and 10 μm to 100 μm. It is.

【0017】上記少なくとも二種類の未焼成シリカ系複
合酸化物の混合方法は、公知の方法が何等制限なく用い
られるが、粒径0.1μm以下の粒子の凝集体を解砕
し、単分散性を高める目的から、機械的な圧力によるボ
ールミル、振動ボールミル、アトライタ等のボール媒体
ミル、またペースト状物の混練に用いられるライカイ機
等の混練機が好適に用いられる。さらに近年粉体のメカ
ノケミカル的な表面改質方法として注目されているハイ
ブリダイザーを利用することも可能であり、奈良機械制
作所ハイブリダイザー等の高速気流中衝撃方法やホソカ
ワミクロン社製ハイブリダイザー等の衝撃粉砕式が好適
に用いられる。
As a method for mixing the at least two types of unsintered silica-based composite oxides, any known method can be used without any limitation, but an agglomerate of particles having a particle size of 0.1 μm or less is disintegrated and monodispersed. In order to increase the viscosity, a ball medium mill such as a ball mill using mechanical pressure, a vibrating ball mill, an attritor, or a kneading machine such as a raikai machine used for kneading a paste-like material is preferably used. In addition, it is also possible to use a hybridizer that has been attracting attention as a mechanochemical surface modification method for powders in recent years, such as a high-speed airflow impact method such as Nara Machinery's Hybridizer and a hybridizer manufactured by Hosokawa Micron Corporation. An impact crushing type is preferably used.

【0018】また混合時に、適当な分散媒を用いるのも
解砕分散効率を高めるために好ましく、分散媒は特に限
定されるものでないが、未焼成シリカ系複合酸化物表面
との濡れ性から極性溶媒が好ましく、メタノール、エタ
ノール、イソプロパノール等のアルコール類、1、2−
プロパンジオール、1,4−ブタンジオル等のジオール
類、エチレングリコール、プロピレングリコール、ジエ
チレングリコール等のグリコール類、グリセリン、ホル
ムアミド、ジメチルホルムアミド、ジメチルスルホキシ
ド、テトラヒドロフラン、アセトニトリル、水等が好適
に用いられ、またこれらの溶媒は2種以上を組み合わせ
て用いても良く、さらにこれらの分散媒に界面活性剤を
小量添加することも分散性を向上させる方法として好適
に採用される。
It is also preferable to use an appropriate dispersing medium at the time of mixing in order to increase the disintegration and dispersion efficiency. The dispersing medium is not particularly limited. Solvents are preferred, and alcohols such as methanol, ethanol and isopropanol, and 1,2-
Propanediol, diols such as 1,4-butanediol, glycols such as ethylene glycol, propylene glycol and diethylene glycol, glycerin, formamide, dimethylformamide, dimethylsulfoxide, tetrahydrofuran, acetonitrile, water and the like are preferably used. Two or more solvents may be used in combination, and addition of a small amount of a surfactant to these dispersion media is also suitably employed as a method for improving dispersibility.

【0019】歯科用充填修復材料に十分な表面光沢性を
付与するためには、無機充填材の粒径は1μm以下であ
ればよいが、平均粒径が0.1μm未満の粉体と平均粒
径が0.5〜1μmの範囲にある粉体から選ばれた少な
くとも2種類の異なる粒度分布を有する粉体が好まし
い。更に、高充填効率を得るためには、両者の平均粒径
の比は4〜20の範囲で組み合わされるが、特に5〜1
5の範囲であればより好ましい。粒径の比が4より小さ
いと、また20より大きいと充填効率は大きく低下す
る。また、両者の配合比は、平均粒径が0.1μm未満
の粉体対平均粒径が0.5〜1μmの範囲にある粉体が
それぞれ10〜50重量%対50〜90重量%の範囲が
高充填率をえるために好ましく、さらには20〜40重
量%対80〜60重量%の範囲にあればより高い充填率
が得られる。
In order to impart sufficient surface gloss to the dental filling and restorative material, the particle size of the inorganic filler may be 1 μm or less. Powders having at least two different particle size distributions selected from powders having a diameter in the range of 0.5 to 1 μm are preferred. Further, in order to obtain a high filling efficiency, the ratio of the average particle diameters of the two is combined in the range of 4 to 20.
A range of 5 is more preferable. If the particle size ratio is smaller than 4 or larger than 20, the filling efficiency is greatly reduced. The mixing ratio of the two is such that the powder having an average particle diameter of less than 0.1 μm and the powder having an average particle diameter of 0.5 to 1 μm are each in a range of 10 to 50% by weight to 50 to 90% by weight. Is preferable for obtaining a high filling rate, and a higher filling rate can be obtained if it is in the range of 20 to 40% by weight to 80 to 60% by weight.

【0020】本発明の無機充填材は、上記複数の平均粒
径を有する予め混合された未焼成シリカ系複合酸化物
を、強度、化学的安定性を向上させる目的で特定温度で
焼成することにより得られる。異なる粒径の未焼成シリ
カ系複合酸化物を先に個別に焼成した後混合して無機充
填材としても、該無機充填材は後述する重合性単量体と
混合して歯科充填修復材料とした場合81wt%以上の
高充填率を達成できない。
The inorganic filler of the present invention is obtained by firing a premixed unfired silica-based composite oxide having a plurality of average particle diameters at a specific temperature for the purpose of improving strength and chemical stability. can get. Even if unsintered silica-based composite oxides of different particle diameters are individually calcined and then mixed beforehand to form an inorganic filler, the inorganic filler is mixed with a polymerizable monomer described later to form a dental filling restoration material. In this case, a high filling rate of 81 wt% or more cannot be achieved.

【0021】焼成温度はシリカ系複合酸化物の組成及び
粒径によりそれぞれ異なるが、シリカ系複合酸化物が焼
結する温度以下の温度で焼成されることが必須である。
具体的には焼結温度から下200℃以内、好ましくは1
00℃以内の範囲であることが強度、化学的安定性から
望ましい。焼成温度が焼結温度から200℃を越えた低
い温度では、粒子表面は多孔質な状態となる可能性があ
り十分な強度及び化学的安定性がえられない。また焼結
温度以上で焼成すると焼成後単分散状態に解砕すること
はできない。具体的に焼成温度を例示すると粒径1μm
の球状シリカ粒子であれば1050℃で焼結がはじまる
ことから焼成温度は800〜1000℃の範囲で焼成す
ることが好ましく、さらには900℃で焼成することが
望ましい。係留時間は30分〜2時間程度で良いが好ま
しくは1時間焼成するのがよい。
The firing temperature varies depending on the composition and particle size of the silica-based composite oxide, but it is essential that the firing be performed at a temperature lower than the temperature at which the silica-based composite oxide is sintered.
Specifically, within 200 ° C. below the sintering temperature, preferably 1
It is desirable that the temperature be within the range of 00 ° C. from the viewpoint of strength and chemical stability. If the firing temperature is lower than 200 ° C. from the sintering temperature, the particle surface may be in a porous state, and sufficient strength and chemical stability cannot be obtained. In addition, if firing is performed at a temperature higher than the sintering temperature, it cannot be broken into a monodispersed state after firing. When the firing temperature is specifically exemplified, the particle size is 1 μm.
Since the sintering starts at 1050 ° C. for the spherical silica particles of the above, firing is preferably performed at a firing temperature in the range of 800 to 1000 ° C., and more preferably 900 ° C. The mooring time may be about 30 minutes to 2 hours, and preferably firing for 1 hour.

【0022】本発明の歯科用充填修復材料は上記製法で
得られた無機充填材と、重合開始剤を含有する重量性単
量体とを混合して得られる。該無機充填材と重合性単量
体の配合比は、無機充填材81〜90重量部、重合性単
量体10〜19重量部(ただし無機充填材と重合性単量
体の合計は100重量部とする)の範囲から選べば、機
械的強度に優れ、歯質に近い熱膨張率を有する歯科用充
填修復材料が得られる。さらには、無機充填材は83〜
88重量部の範囲が機械的強度と歯牙の窩洞への充填お
よび形態付与における容易な操作性を両立するためによ
り好ましい。無機充填材が81重量部より少ないと機械
的強度は大幅に低下し、90重量部より多くなるとペー
ストとしての性状が失われ、操作性が低下するといった
問題が生じる。
The dental restoration material of the present invention is obtained by mixing the inorganic filler obtained by the above-mentioned production method and a weight monomer containing a polymerization initiator. The mixing ratio of the inorganic filler and the polymerizable monomer is 81 to 90 parts by weight of the inorganic filler and 10 to 19 parts by weight of the polymerizable monomer (however, the total of the inorganic filler and the polymerizable monomer is 100 parts by weight. ), A dental restoration material having excellent mechanical strength and a thermal expansion coefficient close to that of the tooth material can be obtained. Furthermore, the inorganic filler is 83 ~
The range of 88 parts by weight is more preferable in order to achieve both mechanical strength and easy operability in filling and morphing a tooth cavity. If the amount of the inorganic filler is less than 81 parts by weight, the mechanical strength is significantly reduced, and if the amount is more than 90 parts by weight, the properties as a paste are lost, and a problem such as deterioration in operability occurs.

【0023】無機充填剤を歯科用充填修復材料の充填材
として用いる場合、一般に強度及び耐久性を向上させる
目的によりシランカップリング剤に代表される表面処理
剤で処理することが行われる。表面処理方法は、公知の
方法で行えばよく、シランカップリング剤は、γ−メタ
クリロキシプロピルトリメトキシシラン、ε−メタクリ
ロキシオクチルトリメトキシシラン、κ−メタクリロキ
シデシルトリメトキシシラン、ビニルトリメトキシシラ
ン等が好適に用いられる。
When an inorganic filler is used as a filler for a dental restoration material, it is generally treated with a surface treatment agent represented by a silane coupling agent for the purpose of improving strength and durability. The surface treatment may be performed by a known method, and the silane coupling agent may be γ-methacryloxypropyltrimethoxysilane, ε-methacryloxyoctyltrimethoxysilane, κ-methacryloxydecyltrimethoxysilane, vinyltrimethoxysilane. Etc. are preferably used.

【0024】また、無機充填材に組み合わされる重合性
単量体は特に限定されるものでなく、一般に歯科用とし
て使用されるメタクリル基アクリル基を有するモノマー
が広く用いられる。具体的に上記アクリル基及び/また
はメタクリル基を有するモノマーについて例示すると、
ビスフェノールAジグリシジル(メタ)アクリレート
(以下メタクリレート化合物をbis−GMAと呼
ぶ)、トリエチレングリコールジ(メタ)アクリレート
(以下メタクリレート化合物を3Gと呼ぶ)、ペンタエ
リスリトールトリ(メタ)アクリレート、下記の構造を
有する
Further, the polymerizable monomer to be combined with the inorganic filler is not particularly limited, and a monomer having a methacryl group and an acrylic group generally used for dental use is widely used. Specific examples of the monomer having an acrylic group and / or a methacryl group include:
Bisphenol A diglycidyl (meth) acrylate (hereinafter, methacrylate compound is referred to as bis-GMA), triethylene glycol di (meth) acrylate (hereinafter, methacrylate compound is referred to as 3G), pentaerythritol tri (meth) acrylate, having the following structure

【0025】[0025]

【化1】 Embedded image

【0026】( ただし、上記式中R1、R2、R3及
びR4は同種又は異種のH又はCH3で、Aは
(Where R1, R2, R3 and R4 are the same or different H or CH3, and A is

【0027】[0027]

【化2】 Embedded image

【0028】のいずれかの基を示す)ウレタン系4官能
化合物等が用いられる。
A urethane-based tetrafunctional compound or the like is used.

【0029】さらに、こらの重合性単量体は粘度、屈折
率を調整する目的で、複数組み合わせることも適宜行わ
れる。
Further, for the purpose of adjusting the viscosity and the refractive index, a plurality of these polymerizable monomers may be appropriately combined.

【0030】また、重合の開始に用いられる開始剤は公
知のものが制限なく使用されるが、加熱によりラジカル
を発生するもの、また室温中で過酸化物と三級アミンの
反応によりラジカルを発生するもの、さらに可視光線や
紫外線等の光線の露爆によりラジカルを発生するものが
適宜用途に応じて選ばれるれる。
As the initiator used for the initiation of the polymerization, known initiators can be used without any limitation. Those which generate radicals by heating, and those which generate radicals by the reaction of peroxide and tertiary amine at room temperature. Those that generate radicals by exposure to light such as visible light and ultraviolet light are appropriately selected according to the intended use.

【0031】各々の代表的化合物を例示すると、加熱に
よりラジカルを発生する重合開始剤としては、2,2−
アゾビスイソブチロニトリル、4,4’−アゾビス(シ
アノ吉草酸)等のアゾ化合物、過酸化ベンゾイル等が好
適であり、光線によりラジカルを発生する開始剤として
は、カンファーキノン、α−ナフチル、ベンジル等のα
−ジケトンが好適に用いら中でもカンファーキノンを用
いるのが好ましい。さらにこれらの光開始材には還元剤
としてN,N−ジメチル−P−トルイジン、N,N−ジ
エタノール−P−トルイジン、ジメチルアミノ安息香酸
及びそのエチルエステル、N,N−ジメチルアミノエチ
ルメタクリレート等の三級アミンが組み合わされる。こ
れらの重合開始剤の添加量は、適宜決定すればよいが、
重合性単量体100重量部に対し0.1〜10、好まし
くは0.3〜3重量部用いられる。
As a typical example of each compound, as a polymerization initiator which generates a radical by heating, 2,2-
Azo compounds such as azobisisobutyronitrile and 4,4′-azobis (cyanovaleric acid), benzoyl peroxide and the like are preferable. Examples of initiators that generate radicals by light include camphorquinone, α-naphthyl, and the like. Α such as benzyl
-Among them, diketones are preferably used, and among them, camphorquinone is preferably used. Furthermore, these photoinitiators include N, N-dimethyl-P-toluidine, N, N-diethanol-P-toluidine, dimethylaminobenzoic acid and its ethyl ester, N, N-dimethylaminoethyl methacrylate as reducing agents. Tertiary amines are combined. The addition amount of these polymerization initiators may be appropriately determined,
It is used in an amount of 0.1 to 10, preferably 0.3 to 3 parts by weight based on 100 parts by weight of the polymerizable monomer.

【0032】さらに上記必須成分以外に紫外線吸収材、
ラジカル重合禁止材、色調を合わせるための顔料等が添
加材として適宜添加される。
Further, in addition to the above essential components, an ultraviolet absorber,
A radical polymerization inhibitor, a pigment for adjusting the color tone, and the like are appropriately added as additives.

【0033】これら無機充填材、重合性単量体、重合開
始剤、および必要に応じて用いられる添加材の混合方法
は特に限定されず、公知の方法が採用される。通常、混
合機内に置かれた特定量の無機充填材に、重合開始剤及
び任意の添加材を含有する重合性単量体を徐々に添加、
混合しペースト状態を示さなくなるまで加える。
The method of mixing the inorganic filler, the polymerizable monomer, the polymerization initiator, and the additives used as required is not particularly limited, and a known method is employed. Usually, to a specific amount of inorganic filler placed in the mixer, gradually add a polymerizable monomer containing a polymerization initiator and optional additives,
Mix and add until no more paste is shown.

【0034】[0034]

【実施例】本発明を具体的に説明するために以下実施例
を挙げて説明するが本発明はこれらの実施例に限定され
るものでない。本発明における各種物性の測定は以下の
通りに行った。
EXAMPLES The present invention will now be described in more detail with reference to examples, but the present invention is not limited to these examples. Various physical properties in the present invention were measured as follows.

【0035】〔径測定〕レーザー散乱式粒度分布測定装
置(FOTAL3300 大塚電子社(株)製)により
測定した。
[Diameter Measurement] The diameter was measured with a laser scattering particle size distribution analyzer (FOTAL3300, manufactured by Otsuka Electronics Co., Ltd.).

【0036】〔機械的強度〕 <圧縮強度>4mmΦ×3mmの孔を有するステンレス
製モールドにペーストを充填し、ポリプロピレン製シー
トで圧接した後、タカラベルモント社製光照射器ホワイ
トライトによりシートの上から30秒間照射した。硬化
体をモールドからとりだし、さらに100℃20分間加
熱したものを37℃水中に24時間浸漬後、島津製作所
製試験機オートグラフを用いて、クロスヘッドスピード
10mm/minで測定した。
[Mechanical strength] <Compressive strength> After filling the paste in a stainless steel mold having a hole of 4 mmΦ × 3 mm, pressing it with a polypropylene sheet and pressing it from above with a light illuminator white light manufactured by Takara Labelmont Co., Ltd. Irradiated for 30 seconds. The cured product was taken out of the mold, heated at 100 ° C. for 20 minutes, immersed in water at 37 ° C. for 24 hours, and measured at a crosshead speed of 10 mm / min using a Shimadzu testing machine autograph.

【0037】<引張強度>6mmΦ×4mmの孔を有す
るステンレス製モールドにペーストを充填し、ポリプロ
ピレン製シートで圧接した後、タカラベルモント社製光
照射器ホワイトライトによりシートの上から30秒間照
射した。硬化体をモールドからとりだし、さらに100
℃20分間加熱したものを37℃水中に24時間浸漬
後、島津製作所製試験機オートグラフを用いて、クロス
ヘッドスピード10mm/minで測定した。
<Tensile Strength> A paste was filled into a stainless steel mold having a hole of 6 mmΦ × 4 mm, pressed with a polypropylene sheet, and then irradiated with light from the top of the sheet for 30 seconds using a white light light source manufactured by Takara Labelmont. Remove the cured product from the mold and add 100
The sample heated at 20 ° C. for 20 minutes was immersed in water at 37 ° C. for 24 hours, and then measured at a crosshead speed of 10 mm / min by using a tester Autograph manufactured by Shimadzu Corporation.

【0038】<曲げ強度>25mm×2×2の孔を有す
るステンレス性割型にペーストを充填し、ポリプロピレ
ン性シートで圧接した後、タカラベルモント社製光照射
機ホワイトライトにより、ポリプロピレン製シートの上
から1面につき3箇所各30秒間光照射した。硬化体を
割型から取り出しさらに100℃20分間加熱したもの
を37℃水中に24時間浸漬した後、島津製作所製試験
機オートグラフを用いて、クロスヘッドスピード0.5
mm/minで測定した。
<Bending strength> A stainless steel split mold having a hole of 25 mm × 2 × 2 was filled with the paste, pressed with a polypropylene sheet, and then pressed on a polypropylene sheet with a light irradiator White Light manufactured by Takara Labelmont. Irradiated with light for 30 seconds each at three locations per side. The cured product was taken out of the mold, heated at 100 ° C. for 20 minutes, immersed in water at 37 ° C. for 24 hours, and then subjected to a crosshead speed of 0.5 using an autograph manufactured by Shimadzu Corporation.
It was measured at mm / min.

【0039】〔表面滑沢性〕20mm×10mm×4m
mのテフロン製モールドにペーストを充填し、技巧用照
射機アルファライトを用いて3分間光照射して硬化体を
作製した。次に硬化体表面を注水下、#800、#10
00、#1500のエメリーペーパーで研磨した後さら
にバフ研磨を行った。研磨面の表面粗さRa値を東京精
密社製サーフコムにて測定した。
[Surface lubricity] 20 mm x 10 mm x 4 m
m of Teflon mold was filled with the paste, and irradiated with light for 3 minutes using a technical irradiator Alphalight to prepare a cured product. Next, the surface of the cured product is poured with water, and # 800, # 10
After polishing with 00 and # 1500 emery paper, buffing was further performed. The surface roughness Ra value of the polished surface was measured by Surfcom manufactured by Tokyo Seimitsu Co., Ltd.

【0040】〔表面光沢度〕上記表面粗さの測定方法で
作製した試験片を東京電色社性光沢度計(モデルTC−
108D)を用いて反射角45゜で測定した。
[Surface Gloss] A test piece prepared by the above method for measuring surface roughness was used as a gloss meter (Model TC-
108D) at a reflection angle of 45 °.

【0041】製造例1 平均粒径0.7μm球状シリカ
粒子の合成 攪拌装置機付き内容積3lガラス製容器にメチルアルコ
ール400g、25%アンモニア水100g導入したア
ンモニア性アルコール溶液中に攪拌しながらテトラエチ
ルシリケート、日本コルコート化学社製、商品名「エチ
ルシリケート28」を10g添加し30分間攪拌した後
さらにテトラエチルシリケート2000gと25%アン
モニア水640gを4時間かけて同時滴下した。尚反応
中の反応溶液の温度は35℃に保った。反応終了後さら
に30分間攪拌した後溶媒を留去し、さらに100℃で
風乾して白色粉体(A−1)を得た。得られた粉体は、
粒径範囲0.68〜0.76μm、平均粒径0.72μ
mであり、その形状は走査型電子顕微鏡(以下SEMと
呼ぶ)による観察から真球状であった。
Production Example 1 Synthesis of spherical silica particles having an average particle diameter of 0.7 μm Tetraethyl silicate was stirred in an ammoniacal alcohol solution in which 400 g of methyl alcohol and 100 g of 25% aqueous ammonia were introduced into a 3 liter glass container equipped with a stirrer. 10 g of "Ethylsilicate 28" (trade name, manufactured by Nippon Colcoat Chemical Co., Ltd.) was added, and the mixture was stirred for 30 minutes. Then, 2000 g of tetraethylsilicate and 640 g of 25% aqueous ammonia were simultaneously added dropwise over 4 hours. The temperature of the reaction solution during the reaction was kept at 35 ° C. After stirring for further 30 minutes after the completion of the reaction, the solvent was distilled off and further air-dried at 100 ° C. to obtain a white powder (A-1). The resulting powder is
Particle size range 0.68-0.76 μm, average particle size 0.72 μm
m, and the shape was a true sphere from observation with a scanning electron microscope (hereinafter referred to as SEM).

【0042】製造例2 平均粒径1μm球状シリカ粒子
の合成 攪拌装置機付き内容積3lガラス製容器にメチルアルコ
ール375g、25%アンモニア水125g導入したア
ンモニア性アルコール溶液中に攪拌しながらテトラエチ
ルシリケート、日本コルコート化学社製、商品名「エチ
ルシリケート28」を10g添加し30分間攪拌した後
さらにテトラエチルシリケート2000gと25%アン
モニア水640gを4時間かけて同時滴下した。尚反応
中の反応溶液の温度は40℃に保った。反応終了後さら
に30分間攪拌した後溶媒を留去し、さらに100℃で
風乾して白色粉体(A−2)を得た。得られた粉体は、
粒径範囲0.96〜1.06μm、平均粒径1.02μ
mであり、その形状はSEM観察から真球状であった。
Production Example 2 Synthesis of spherical silica particles having an average particle size of 1 μm Tetraethyl silicate, Japan, with stirring in an ammoniacal alcohol solution in which 375 g of methyl alcohol and 125 g of 25% aqueous ammonia were introduced into a 3 liter glass container equipped with a stirrer. After adding 10 g of “Ethylsilicate 28” (trade name, manufactured by Colcoat Chemical Co., Ltd.) and stirring for 30 minutes, 2,000 g of tetraethylsilicate and 640 g of 25% aqueous ammonia were simultaneously added dropwise over 4 hours. The temperature of the reaction solution during the reaction was kept at 40 ° C. After stirring for further 30 minutes after the completion of the reaction, the solvent was distilled off and further air-dried at 100 ° C. to obtain a white powder (A-2). The resulting powder is
Particle size range 0.96 to 1.06 μm, average particle size 1.02 μm
m, and the shape was a true sphere from SEM observation.

【0043】製造例3 平均粒径2μm球状シリカ粒子
の合成 攪拌装置機付き内容積3lガラス製容器にエチルアルコ
ール400g、25%アンモニア水100g導入したア
ンモニア性アルコール溶液中に攪拌しながらテトラエチ
ルシリケート、日本コルコート化学社製、商品名「エチ
ルシリケート28」を10g添加し30分間攪拌した後
さらにテトラエチルシリケート2000gと25%アン
モニア水640gを4時間かけて同時滴下した。尚反応
中の反応溶液の温度は40℃に保った。反応終了後さら
に30分間攪拌した後溶媒を留去し、さらに100℃で
風乾して白色粉体(A−3)を得た。得られた粉体は、
粒径範囲1.89〜1.96μm、平均粒径1.94μ
mであり、その形状はSEM観察から真球状であった。
Production Example 3 Synthesis of spherical silica particles having an average particle size of 2 μm Tetraethyl silicate, Japan, with stirring in an ammoniacal alcohol solution in which 400 g of ethyl alcohol and 100 g of 25% aqueous ammonia were introduced into a 3 liter glass container equipped with a stirrer. After adding 10 g of “Ethylsilicate 28” (trade name, manufactured by Colcoat Chemical Co., Ltd.) and stirring for 30 minutes, 2,000 g of tetraethylsilicate and 640 g of 25% aqueous ammonia were simultaneously added dropwise over 4 hours. The temperature of the reaction solution during the reaction was kept at 40 ° C. After stirring for further 30 minutes after the completion of the reaction, the solvent was distilled off and further air-dried at 100 ° C. to obtain a white powder (A-3). The resulting powder is
Particle size range 1.89-1.96 μm, average particle size 1.94 μ
m, and the shape was a true sphere from SEM observation.

【0044】製造例4 平均粒径0.08μmシリカ−
チタニア粒子の合成 テトラエチルシリケート、日本コルコート化学社製、商
品名「エチルシリケート28」176.6gをメタノー
ル400gと混合し、0.04%塩酸水溶液を5g加え
て温度30℃約1時間攪拌しながら加水分解した。その
後、この溶液にテトラブチルチタネート(日本曹達社
製)21.4gとナトリウムメチラーとメタノール溶液
(濃度28重量%)をイソプロピルアルコール210g
に溶かした溶液を攪拌しながら混合して、テトラエチル
シリケートとテトラブチルチタネートの混合溶液を調整
した。次に攪拌装置付き内容積3lのガラス製容器にメ
タノール1050g導入し、これに25重量%アンモニ
ア水溶液250gを加えてアンモニア性アルコール溶液
を調整した。これにシリカ種粒子をつくるためのテトラ
エチルシリケート0.8gをメタノール15gに溶かし
た溶液を添加し、添加終了後反応液が乳白色を帯びてき
たところで、さらに上記混合物を約5時間かけて滴下し
た。尚反応中は反応曹の温度を40℃に保った。滴か終
了後さらに30分間攪拌した後、溶媒を留去して乳白色
粒子を回収した。回収した粒子をさらに100℃で乾燥
してシリカ−チタニア系白色粉体(B−1)を得た。得
られた粉体は、粒径範囲0.080〜0.095μm、
平均粒径は0.084μmであり、形状はSEM観察か
ら球状であった。
Production Example 4 Silica having an average particle size of 0.08 μm
Synthesis of titania particles Tetraethyl silicate, manufactured by Nippon Colcoat Chemical Co., Ltd., 176.6 g of trade name "ethyl silicate 28" was mixed with 400 g of methanol, and 5 g of a 0.04% hydrochloric acid aqueous solution was added. Decomposed. Thereafter, 21.4 g of tetrabutyl titanate (manufactured by Nippon Soda Co., Ltd.), a sodium methyler and methanol solution (concentration: 28% by weight) were added to this solution and 210 g of isopropyl alcohol
The solution dissolved in was mixed with stirring to prepare a mixed solution of tetraethylsilicate and tetrabutyltitanate. Next, 1050 g of methanol was introduced into a glass container having an inner volume of 3 liters equipped with a stirrer, and 250 g of a 25% by weight aqueous ammonia solution was added thereto to prepare an ammoniacal alcohol solution. A solution prepared by dissolving 0.8 g of tetraethyl silicate for forming silica seed particles in 15 g of methanol was added. When the reaction liquid became milky after the addition was completed, the above mixture was further added dropwise over about 5 hours. During the reaction, the temperature of the reaction soda was kept at 40 ° C. After the addition, the mixture was further stirred for 30 minutes, and the solvent was distilled off to collect milky white particles. The collected particles were further dried at 100 ° C. to obtain a silica-titania white powder (B-1). The obtained powder has a particle size range of 0.080 to 0.095 μm,
The average particle size was 0.084 μm, and the shape was spherical from SEM observation.

【0045】製造例5 平均粒径0.2μmシリカ−チ
タニア球状粒子の合成 テトラエチルシリケート、日本コルコート化学社製、商
品名「エチルシリケート28」176.6gをメタノー
ル400gと混合し、0.04%塩酸水溶液を5g加え
て温度30℃約1時間攪拌しながら加水分解した。その
後、この溶液にテトラブチルチタネート(日本曹達社
製)37.7gとナトリウムメチラートとメタノール溶
液(濃度28重量%)をイソプロピルアルコール210
gに溶かした溶液を攪拌しながら混合して、テトラエチ
ルシリケートとテトラブチルチタネートの混合溶液を調
整した。次に攪拌装置付きの内容積3lのガラス製容器
にメタノール400glとイソブチルアルコール700
gを導入し、これに25重量%アンモニア水溶液250
gを加えてアンモニア性アルコール溶液を調整した。こ
れにシリカ種粒子をつくるためのテトラエチルシリケー
ト1.8gをメタノール15gに溶かした溶液を添加
し、添加終了後反応液が乳白色を帯びてきたところで、
さらに上記混合物を約5時間かけて滴下した。尚反応中
は反応曹の温度を40℃に保った。滴か終了後さらに3
0分間攪拌した後、溶媒を留去して乳白色粒子を回収し
た。回収した粒子をさらに100℃で乾燥してシリカ−
チタニア系白色粉体(B−2)を得た。得られた粉体
は、粒径範囲0.17〜0.22μm、平均粒径0.1
9μmであり、その形状はSEM観察から球状であっ
た。
Production Example 5 Synthesis of spherical particles of silica-titania having an average particle size of 0.2 μm Tetraethyl silicate, 176.6 g of trade name “ethyl silicate 28” manufactured by Nippon Colcoat Chemical Company, was mixed with 400 g of methanol, and 0.04% hydrochloric acid was added. 5 g of an aqueous solution was added, and the mixture was hydrolyzed while stirring at a temperature of 30 ° C. for about 1 hour. Thereafter, 37.7 g of tetrabutyl titanate (manufactured by Nippon Soda Co., Ltd.), sodium methylate and a methanol solution (concentration: 28% by weight) were added to this solution with isopropyl alcohol 210
The solution dissolved in g was mixed with stirring to prepare a mixed solution of tetraethyl silicate and tetrabutyl titanate. Next, 400 gl of methanol and 700 g of isobutyl alcohol were placed in a glass container having an inner volume of 3 l with a stirrer.
g of 25 g of a 25% by weight aqueous ammonia solution.
g was added to prepare an ammoniacal alcohol solution. A solution prepared by dissolving 1.8 g of tetraethyl silicate for forming silica seed particles in 15 g of methanol was added thereto. After the addition was completed, the reaction solution became milky white.
Further, the mixture was dropped over about 5 hours. During the reaction, the temperature of the reaction soda was kept at 40 ° C. 3 more after dropping
After stirring for 0 minutes, the solvent was distilled off to recover milky white particles. The recovered particles are further dried at 100 ° C.
A titania white powder (B-2) was obtained. The obtained powder had a particle size range of 0.17 to 0.22 μm and an average particle size of 0.1.
9 μm, and the shape was spherical from SEM observation.

【0046】実施例1 平均粒径0.7μmシリカ粒子70gにエチレングリコ
ール4gを添加してライカイ機を用いて30分間混練し
た。次に平均粒径0.08μmシリカ−チタニア粒子3
0gを加えて、さらに7時間混練したものを温度900
℃で1時間焼成し、ボールミルにより30分間解砕した
ものを、γ−メタクリロキシプロピルトリメトキシシラ
ン1.5重量%で処理した。
Example 1 4 g of ethylene glycol was added to 70 g of silica particles having an average particle size of 0.7 μm and kneaded for 30 minutes using a raikai machine. Next, silica-titania particles 3 having an average particle size of 0.08 μm
0 g and kneaded for another 7 hours at a temperature of 900
C. for 1 hour and crushed by a ball mill for 30 minutes, and treated with 1.5% by weight of .gamma.-methacryloxypropyltrimethoxysilane.

【0047】得られた表面処理物に乳鉢中で、予め重合
開始剤、還元剤としてカンファーキノン、ジメチルアミ
ノ安息香酸エチルステルを重量比0.5%溶解してある
重合性単量体BisGMA/3G(重量比60/40)
をペースト状態を示す限界まで徐々に添加、混合した。
この時の無機充填剤の含有重量%をもって無機充填率と
する。
In a mortar, a polymerizable monomer BisGMA / 3G (in which a polymerization initiator and a reducing agent camphorquinone and dimethylaminobenzoate ethylster were dissolved by 0.5% by weight in advance in a mortar) was obtained. (Weight ratio 60/40)
Was gradually added and mixed to the limit indicating the paste state.
The inorganic filler content is defined as the content percentage by weight of the inorganic filler at this time.

【0048】実施例2 平均粒径0.7μm球状未焼成シリカ80gにエチレン
グリコール3gを添加してライカイ機を用いて30分間
混合した。次に平均粒径0.08μmシリカ−チタニア
粒子20gを加えて、さらに7時間混合したものを温度
900℃で1時間焼成し、ボールミルにより30分間解
砕したものを、γ−メタクリロキシプロピルトリメトキ
シシランを1.2重量%処理した。次いで実施例1と同
様にして重合性単量体と混合してペースト状物を得た。
Example 2 Ethylene glycol (3 g) was added to 80 g of spherical unfired silica having an average particle size of 0.7 μm and mixed for 30 minutes using a raikai machine. Next, 20 g of silica-titania particles having an average particle size of 0.08 μm was added, and the mixture was further mixed for 7 hours, baked at a temperature of 900 ° C. for 1 hour, and crushed by a ball mill for 30 minutes to obtain γ-methacryloxypropyltrimethoxy. The silane was treated at 1.2% by weight. Next, a paste was obtained by mixing with a polymerizable monomer in the same manner as in Example 1.

【0049】実施例3 実施例2において0.7μm球状未焼成シリカに代わ
り、1.0μm球状未焼成シリカ粒子を用いた以外同様
な方法にて混合、焼成を行った。
Example 3 Mixing and firing were performed in the same manner as in Example 2 except that spherical unfired silica particles of 1.0 μm were used instead of unfired silica particles of 0.7 μm.

【0050】さらに、焼成物をγ−メタクリロキシプロ
ピルトリメトキシシラン1重量%で処理しものを実施例
1と同様に重合性単量体に充填してペースト状物を得
た。
Further, the baked product was treated with 1% by weight of γ-methacryloxypropyltrimethoxysilane, and the baked product was filled into a polymerizable monomer in the same manner as in Example 1 to obtain a paste.

【0051】比較例1 実施例1において0.7μm球状未焼成シリカに代わり
2.0μm球状未焼成シリカを用いた以外は同様に行っ
た。
Comparative Example 1 The same procedure was carried out as in Example 1 except that a 2.0 μm spherical unsintered silica was used instead of the 0.7 μm spherical unsintered silica.

【0052】比較例2 実施例1において0.08μm球状未焼成シリカ−チタ
ニアに代わり0.2μm球状未焼成シリカ−チタニアを
用いた以外同様な方法で行った。
Comparative Example 2 The same procedure was performed as in Example 1, except that the unsintered 0.08 μm spherical silica-titania was replaced by a 0.2 μm spherical unsintered silica-titania.

【0053】比較例3 平均粒径0.7μmの球状未焼成シリカと粒径0.08
μmの球状未焼成シリカ−チタニアをそれぞれ温度90
0℃で1時間焼成したものを以下実施例1と同様にして
混合、表面処理し、次いで重合性単量体に充填してペー
スト状物を得た。
Comparative Example 3 Spherical green silica having an average particle size of 0.7 μm and a particle size of 0.08
μm spherical unfired silica-titania at a temperature of 90
The mixture baked at 0 ° C. for 1 hour was mixed and surface-treated in the same manner as in Example 1 and then filled with a polymerizable monomer to obtain a paste.

【0054】比較例4 比較例3において粒径0.7μmのシリカ粒子にかわり
粒径1.0μmのシリカ粒子を用いた以外は同様に行っ
た。
Comparative Example 4 The same procedure was performed as in Comparative Example 3, except that silica particles having a particle size of 1.0 μm were used instead of silica particles having a particle size of 0.7 μm.

【0055】比較例5 実施例1において0.7μm球状未焼成シリカと0.0
8μm球状未焼成シリカ−チタニアをそれぞれ30g、
70gに代えた以外は同様におこなった。
Comparative Example 5 In Example 1, 0.7 μm spherical unsintered silica and 0.0
30 g each of 8 μm spherical unfired silica-titania
The same operation was performed except that the amount was changed to 70 g.

【0056】比較例6 実施例1において焼成条件を1100℃1時間に変更し
た。その結果無機充填材は焼結し、解砕することはでき
なかった。
Comparative Example 6 The firing conditions in Example 1 were changed to 1100 ° C. for 1 hour. As a result, the inorganic filler was sintered and could not be crushed.

【0057】実施例1〜3、比較例1〜5で得られた歯
科用充填修復材料の最大無機充填率、表面滑沢性、表面
光沢度、及び機械的強度を測定し併せて表1に示す。
The maximum inorganic filling ratio, surface lubricity, surface glossiness, and mechanical strength of the dental filling and restoring materials obtained in Examples 1 to 3 and Comparative Examples 1 to 5 were measured and the results are shown in Table 1. Show.

【0058】[0058]

【表1】 [Table 1]

【0059】[0059]

【発明の効果】本発明の製造方法により得られる少なく
とも二種類の平均粒径を有するシリカ系金属酸化物から
なる無機充填材は重合性単量体と混合したとき、二種以
上の粒径の異なる粒子が単分散状態で均一に混合するこ
とが可能であり特に、サブミクロン領域の粒子の分散混
合が容易になる。この結果、0.1μm以下のシリカ系
球状無機酸化物を10〜50重量%、0.5μm〜1μ
mのシリカ系球状無機酸化物を50〜90重量%の範囲
で混合して得た充填材と重合性単量体を混合した歯科用
充填修復材料は81%以上の無機充填率となり、その結
果高強度を有ししかも人歯と同等の表面光沢性、表面滑
沢性を有する。
The inorganic filler comprising a silica-based metal oxide having at least two kinds of average particle diameters obtained by the production method of the present invention has a particle diameter of at least two kinds when mixed with a polymerizable monomer. Different particles can be uniformly mixed in a monodispersed state, and in particular, dispersion and mixing of particles in a submicron region are facilitated. As a result, 10 to 50% by weight of the silica-based spherical inorganic oxide of 0.1 μm or less, 0.5 μm to 1 μm
m, a filler material obtained by mixing a silica-based spherical inorganic oxide in the range of 50 to 90% by weight and a dental filling / restoring material obtained by mixing a polymerizable monomer have an inorganic filling ratio of 81% or more. It has high strength and surface gloss and surface lubricity equivalent to human teeth.

フロントページの続き (56)参考文献 特開 平3−258707(JP,A) 特開 昭61−171404(JP,A) 特開 昭61−148109(JP,A) 特表 平3−504874(JP,A) 特表 昭57−500150(JP,A) 特表 昭61−501090(JP,A) (58)調査した分野(Int.Cl.7,DB名) A61K 6/08 A61K 25/00 Continuation of the front page (56) References JP-A-3-258707 (JP, A) JP-A-61-171404 (JP, A) JP-A-61-148109 (JP, A) JP-A-3-504874 (JP, A) , A) Tokuyo Sho 57-500150 (JP, A) Tokuyo Sho 61-501090 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) A61K 6/08 A61K 25/00

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 平均粒径0.1μm未満のシリカ系複合
酸化物10〜50重量%と平均粒径0.5〜1μmのシ
リカ系複合酸化物50〜90重量%とからなる無機充填
材であって、両者のシリカ系複合酸化物の平均粒径の比
は4〜20倍の範囲であり、これらのシリカ系複合酸化
物はそれぞれ未焼成の状態で混合された後、焼結温度未
満の温度で焼成されてなることを特徴とする無機充填
材。
1. A silica-based composite having an average particle size of less than 0.1 μm.
10 to 50% by weight of oxide and 0.5 to 1 μm average particle size
Inorganic filling consisting of 50 to 90% by weight of a liquefied compound oxide
Ratio of the average particle size of both silica-based composite oxides
Is in the range of 4 to 20 times.
After the materials are mixed in the unfired state,
Inorganic filling characterized by firing at full temperature
Wood.
【請求項2】 異なる平均粒径を有し且つ両者の平均粒
径の比が4〜20倍の範囲である少なくとも二種類の未
焼成シリカ系複合酸化物を混合し、次いで焼結温度未満
の温度で焼成することを特徴とする無機充填材の製造方
法。
2. Mixing at least two types of unsintered silica-based composite oxides having different average particle diameters and the ratio of the average particle diameters of the two is in the range of 4 to 20 times, A method for producing an inorganic filler, characterized by firing at a temperature.
【請求項3】 未焼成シリカ系複合酸化物が、シリカ、
または周期律表第1族、第2族、第3族、及び第4族か
らなる群から選ばれた少なくとも一種の金属とシリカと
の複合酸化物であることを特徴とする請求項記載の無
機充填材の製造方法。
3. The unfired silica-based composite oxide is silica,
Or the first periodic table, Group 2, Group 3, and according to claim 2, characterized in that the composite oxide of at least one metal and silica selected from the group consisting of Group 4 A method for producing an inorganic filler.
【請求項4】 異なる平均粒径が0.01μm〜100
μmの範囲にあることを特徴とする請求項2または請求
項3記載の無機充填材の製造方法。
4. The method according to claim 1, wherein the different average particle sizes are from 0.01 μm to 100 μm.
3. The method according to claim 2, wherein the distance is in the range of μm.
Item 4. The method for producing an inorganic filler according to Item 3 .
【請求項5】 請求項2〜4の何れかに記載の製造方法
で得られた無機充填材、重合性単量体、及び重合開始剤
とを混合することを特徴とする歯科用充填修復材料の製
造方法。
5. A dental filling and restorative material comprising a mixture of an inorganic filler, a polymerizable monomer, and a polymerization initiator obtained by the production method according to claim 2. Description: Manufacturing method.
【請求項6】 請求項1記載の無機充填材81〜90重
量部、重合性単量体10〜19重量部、および重合性単
量体100重量部に対し0.1〜10重量部の重合開始
剤(ただし無機充填材と重合性単量体の合計は100重
量部とする)を含有してなることを特徴とする歯科用充
填修復材料。
6. Polymerization of 0.1 to 10 parts by weight based on 81 to 90 parts by weight of the inorganic filler according to claim 1 , 10 to 19 parts by weight of a polymerizable monomer, and 100 parts by weight of a polymerizable monomer. A dental filling / restoring material comprising an initiator (provided that the total of the inorganic filler and the polymerizable monomer is 100 parts by weight).
JP31022892A 1992-11-19 1992-11-19 Method for producing inorganic filler and dental restoration material Expired - Fee Related JP3277502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31022892A JP3277502B2 (en) 1992-11-19 1992-11-19 Method for producing inorganic filler and dental restoration material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31022892A JP3277502B2 (en) 1992-11-19 1992-11-19 Method for producing inorganic filler and dental restoration material

Publications (2)

Publication Number Publication Date
JPH06157230A JPH06157230A (en) 1994-06-03
JP3277502B2 true JP3277502B2 (en) 2002-04-22

Family

ID=18002735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31022892A Expired - Fee Related JP3277502B2 (en) 1992-11-19 1992-11-19 Method for producing inorganic filler and dental restoration material

Country Status (1)

Country Link
JP (1) JP3277502B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022224807A1 (en) 2021-04-19 2022-10-27 株式会社トクヤマデンタル Dental adhesive composition

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997027148A1 (en) * 1996-01-29 1997-07-31 Usbiomaterials Corporation Bioactive glass compositions and methods of treatment using bioactive glass
WO2007139207A1 (en) 2006-05-26 2007-12-06 Tokuyama Dental Corporation One-part dental adhesive composition
JP5943672B2 (en) * 2012-03-28 2016-07-05 クラレノリタケデンタル株式会社 Dental composite inorganic filler
JP6093213B2 (en) * 2013-03-15 2017-03-08 株式会社トクヤマデンタル Inorganic agglomerated particles, organic-inorganic composite filler, and production method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022224807A1 (en) 2021-04-19 2022-10-27 株式会社トクヤマデンタル Dental adhesive composition

Also Published As

Publication number Publication date
JPH06157230A (en) 1994-06-03

Similar Documents

Publication Publication Date Title
JP4741781B2 (en) Photocurable dental restorative material and method for producing the same
JP3487395B2 (en) Curable composition
JP3214982B2 (en) Inorganic composition
JP2732968B2 (en) Dental filling composition
JP3683861B2 (en) Filler based on particle composite
EP1226807B1 (en) Dental curable composition
JP2002518309A (en) Hybrid composites with optimal particle size
JP3495171B2 (en) Dental filling composition
JP5094188B2 (en) Dental curable composition
JPH0651735B2 (en) Curable composition
JP2007314484A (en) Organic and inorganic composite filler for dental use, dental repairing material composition by using the filler and method for producing them
JP3277502B2 (en) Method for producing inorganic filler and dental restoration material
JP4798680B2 (en) Dental curable composition
JP4148334B2 (en) Light-curing dental restoration material
JP2523993B2 (en) Method for manufacturing dental composite material
JPH0312044B2 (en)
JP2000026226A (en) Photocurable restorative material for dental use
JP3023065B2 (en) Amorphous inorganic oxide aggregated particles, method for producing the same and dental filling composition
JPS6011505A (en) Polymerizable composite composition
JP3520694B2 (en) Curable composition
JP3421072B2 (en) Dental filling composition
JP3466343B2 (en) Dental filling composition
WO2023085201A1 (en) Dental curable composition
JPH0310603B2 (en)
JP2008024637A (en) Dental repairing material composition

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees