JP3274993B2 - Cathode materials for lithium secondary batteries - Google Patents

Cathode materials for lithium secondary batteries

Info

Publication number
JP3274993B2
JP3274993B2 JP22698398A JP22698398A JP3274993B2 JP 3274993 B2 JP3274993 B2 JP 3274993B2 JP 22698398 A JP22698398 A JP 22698398A JP 22698398 A JP22698398 A JP 22698398A JP 3274993 B2 JP3274993 B2 JP 3274993B2
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
electrode material
lithium secondary
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22698398A
Other languages
Japanese (ja)
Other versions
JP2000058055A (en
Inventor
幸一 沼田
新太郎 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP22698398A priority Critical patent/JP3274993B2/en
Publication of JP2000058055A publication Critical patent/JP2000058055A/en
Application granted granted Critical
Publication of JP3274993B2 publication Critical patent/JP3274993B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチウム二次電池用
正極材料に関し、詳しくは電解液との反応性を抑制し、
マンガンの溶出量を抑制し、高温保存性、高温サイクル
特性等の電池の高温特性を向上させたリチウム二次電池
用正極材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive electrode material for a lithium secondary battery, and more particularly, to a method for suppressing the reactivity with an electrolytic solution.
The present invention relates to a positive electrode material for a lithium secondary battery in which the amount of manganese eluted is suppressed and the high-temperature characteristics of the battery such as high-temperature storage properties and high-temperature cycle characteristics are improved.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年の
パソコンや電話等のポータブル化、コードレス化の急速
な進歩によりそれらの駆動用電源としての二次電池の需
要が高まっている。その中でもリチウム二次電池は最も
小型かつ高エネルギー密度を持つため特に期待されてい
る。上記の要望を満たすリチウム二次電池の正極材料と
してはコバルト酸リチウム(LiCoO2 )、ニッケル
酸リチウム(LiNiO2 )、マンガン酸リチウム(L
iMn2 4 )等がある。これらの複合酸化物はリチウ
ムに対し4V以上の電位を有していることから、高エネ
ルギー密度を有する電池となり得る。
2. Description of the Related Art With the rapid progress of portable and cordless personal computers and telephones in recent years, the demand for secondary batteries as power sources for driving them has been increasing. Among them, lithium secondary batteries are particularly expected because they have the smallest size and high energy density. As the positive electrode material of the lithium secondary battery satisfying the above demands, lithium cobalt oxide (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (L
iMn 2 O 4 ). Since these composite oxides have a potential of 4 V or more with respect to lithium, they can be batteries having a high energy density.

【0003】上記の複合酸化物のうちLiCoO2 、L
iNiO2 は、理論容量が280mAh/g程度である
のに対し、LiMn2 4 は148mAh/gと小さい
が、原料となるマンガン酸化物が豊富で安価であること
や、LiNiO2 のような充電時の熱的不安定性が無い
ことから、EV用途等に適していると考えられている。
[0003] Among the above composite oxides, LiCoO 2 , L
INiO 2, compared to a theoretical capacity of about 280 mAh / g, but LiMn 2 O 4 is as small as 148 mAh / g, and that manganese oxide as a raw material is abundant and inexpensive, charging such as LiNiO 2 Since there is no thermal instability at the time, it is considered to be suitable for EV use and the like.

【0004】しかしながら、このマンガン酸リチウム
(LiMn2 4 )は、高温においてマンガンが溶出す
るため、高温保存性、高温サイクル特性等の高温での電
池特性に劣るという問題がある。このことが、マンガン
酸リチウムをリチウム二次電池の正極材料として実用化
するための大きな問題となっている。
However, since lithium manganate (LiMn 2 O 4 ) elutes manganese at a high temperature, there is a problem that the battery characteristics at a high temperature such as a high temperature storage property and a high temperature cycle characteristic are inferior. This is a major problem for putting lithium manganate into practical use as a positive electrode material of a lithium secondary battery.

【0005】このことは、高温でマンガンが有機電解液
中に溶出し、溶出したマンガンが負極やセパレーターに
析出して電池反応を阻害するためといわれている。その
ために、マンガン酸リチウムからのマンガンの溶出を抑
制することが、高温保存性、高温サイクル特性を向上す
るために必要であった。
It is said that this is because manganese elutes into the organic electrolyte at a high temperature, and the eluted manganese deposits on the negative electrode and the separator to inhibit the battery reaction. Therefore, it is necessary to suppress the elution of manganese from lithium manganate in order to improve high-temperature storage stability and high-temperature cycle characteristics.

【0006】このために、無機化合物によってマンガン
酸リチウムの表面を被覆することが報告されている。こ
れは、水溶液反応によりマンガン酸リチウム上にニッケ
ル又はコバルトの水酸化物又は酸化物を析出してマンガ
ン酸リチウムを被覆する方法である。しかし、この方法
では製造工程が複雑になるばかりでなく、水溶液中で処
理することによるマンガン酸リチウムのダメージが懸念
される。
[0006] For this purpose, it has been reported that the surface of lithium manganate is coated with an inorganic compound. This is a method of coating a lithium manganate by depositing a nickel or cobalt hydroxide or oxide on the lithium manganate by an aqueous solution reaction. However, this method not only complicates the manufacturing process, but also may cause damage to lithium manganate due to treatment in an aqueous solution.

【0007】従って、本発明の目的は、充電時のマンガ
ン溶出量を抑制し、高温保存性、高温サイクル特性等の
高温での電池特性を向上させたリチウム二次電池用正極
材料を提供することにある。
Accordingly, an object of the present invention is to provide a positive electrode material for a lithium secondary battery in which the amount of manganese eluted during charging is suppressed and battery characteristics at high temperatures such as high-temperature storage properties and high-temperature cycle characteristics are improved. It is in.

【0008】[0008]

【課題を解決するための手段】[Means for Solving the Problems]

【0009】本発明者らは、マンガン酸リチウムの表面
に、特定の有機化合物を化学的又は物理的に被覆するこ
とにより、上記目的を達成し得ることを知見した。
The present inventors have found that the above object can be achieved by chemically or physically coating a specific organic compound on the surface of lithium manganate.

【0010】本発明は、上記知見に基づきなされたもの
で、カルボキシル基を有する有機化合物でマンガン酸リ
チウムの表面を化学的又は物理的に被覆したことを特徴
とするリチウム二次電池用正極材料を提供するものであ
る。
[0010] The present invention has been made based on the above findings, and provides a positive electrode material for a lithium secondary battery, wherein the surface of lithium manganate is chemically or physically coated with an organic compound having a carboxyl group. To provide.

【0011】[0011]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明のリチウム二次電池用正極材料は、カルボキシル
基を有する有機化合物でマンガン酸リチウム(LiMn
2 4)の表面を化学的又は物理的に被覆するものであ
る。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The positive electrode material for lithium secondary battery of the present invention, the carboxyl
Lithium manganate organic compound having a group (LiMn
2 O 4 ) is chemically or physically coated.

【0012】このマンガン酸リチウムの製造に用いられ
るリチウム原料としては、炭酸リチウム(Li2
3 )、硝酸リチウム(LiNO3 )、水酸化リチウム
(LiOH)等が挙げられる。また、マンガン原料とし
ては、二酸化マンガン(MnO2)、三酸化二マンガン
(Mn2 3 )、オキシ水酸化マンガン(MnOOH)
等が使用できる。マンガン原料としてはMnO2 が特に
好適に使用できる。その理由としては、MnO2 はリチ
ウムの一次電池用正極材料として利用されており、リチ
ウムを構造内に取り込みやすいことや、特に電解MnO
2 ではタップ密度を大きくしやすいことが挙げられる。
なお、マンガン原料として二酸化マンガンを用いた場合
に、リチウム原料として水酸化リチウムを用いると、ロ
ータリーキルン焼成の場合には、炉心管への付着が激し
く実用上問題があり、また、こうして得られたマンガン
酸リチウムをリチウム二次電池の正極材料に使用する
と、電池性能が低下するので好ましくない。これらのリ
チウム及びマンガン原料の中で、二酸化マンガンと炭酸
リチウムの組み合わせが最も好ましい。
As a lithium raw material used for producing this lithium manganate, lithium carbonate (Li 2 C
O 3 ), lithium nitrate (LiNO 3 ), lithium hydroxide (LiOH) and the like. Manganese raw materials include manganese dioxide (MnO 2 ), dimanganese trioxide (Mn 2 O 3 ), manganese oxyhydroxide (MnOOH)
Etc. can be used. MnO 2 can be particularly preferably used as a manganese raw material. The reason is that MnO 2 is used as a positive electrode material for a lithium primary battery, and it is easy to incorporate lithium into the structure.
In 2 , the tap density can be easily increased.
When manganese dioxide is used as the manganese raw material and lithium hydroxide is used as the lithium raw material, in the case of rotary kiln firing, there is a serious problem in practical use due to severe adhesion to the furnace core tube. It is not preferable to use lithium oxide as a positive electrode material of a lithium secondary battery because battery performance is reduced. Among these lithium and manganese raw materials, a combination of manganese dioxide and lithium carbonate is most preferred.

【0013】これらリチウム及びマンガン原料は、より
大きな反応断面積を得るために、原料混合前あるいは後
に粉砕することも好ましい。秤量、混合された原料はそ
のままでもあるいは造粒して使用してもよい。造粒方法
は、湿式でも乾式でも良く、押し出し造粒、転動造粒、
流動造粒、混合造粒、噴霧乾燥造粒、加圧成形造粒ある
いはロール等を用いたフレーク造粒でも良い。
These lithium and manganese raw materials are preferably ground before or after mixing the raw materials in order to obtain a larger reaction cross section. The weighed and mixed raw materials may be used as they are or may be granulated. Granulation method may be wet or dry, extruding granulation, rolling granulation,
Fluid granulation, mixed granulation, spray drying granulation, pressure molding granulation, or flake granulation using a roll or the like may be used.

【0014】このようにして得られた原料は、焼成炉内
に投入され、600〜1000℃で焼成することによっ
て、マンガン酸リチウムが得られる。単一相のマンガン
酸リチウムを得るには600℃程度の焼成温度でも十分
であるが、焼成温度が低いと粒成長が進まないので75
0℃以上の焼成温度、好ましくは850℃以上の焼成温
度が必要となる。ここで用いられる焼成炉としては、ロ
ータリーキルンあるいは静置炉等が例示される。焼成時
間は1時間以上、好ましくは5〜20時間である。この
マンガン酸リチウムの中でもスピネル型マンガン酸リチ
ウムが4V級の電位を有することから特に好ましく用い
られる。
The raw material thus obtained is put into a firing furnace and fired at 600 to 1000 ° C. to obtain lithium manganate. A sintering temperature of about 600 ° C. is sufficient to obtain a single-phase lithium manganate, but if the sintering temperature is low, the grain growth does not proceed.
A firing temperature of 0 ° C. or higher, preferably a firing temperature of 850 ° C. or higher is required. Examples of the firing furnace used here include a rotary kiln and a stationary furnace. The firing time is 1 hour or more, preferably 5 to 20 hours. Among these lithium manganates, spinel type lithium manganate is particularly preferably used because it has a potential of 4V class.

【0015】また、カルボキシル基を有する有機化合物
としては、具体的にはマロン酸、こはく酸、グルタル
酸、アジピン酸等の有機酸が挙げられる。これらの中で
もとりわけマロン酸が好ましく用いられる。
[0015] As the organic compound having a carboxyl group, the concrete malonic acid, succinic acid, glutaric acid, and organic acids such as adipic acid. Among these
Based Riwake malonate is preferably used.

【0016】このカルボキシル基を有する有機化合物の
被覆量は、上記マンガン酸リチウムに対して、好ましく
は0.01〜1.0重量%、さらに好ましくは0.05
〜0.5重量%である。有機化合物の被覆量が0.01
重量%未満では高温保存性が低下し、また2.0重量%
を超えると初期容量が低下する。
The coating amount of the organic compound having a carboxyl group is preferably 0.01 to 1.0% by weight, more preferably 0.05 to 1.0% by weight based on the above-mentioned lithium manganate.
~ 0.5% by weight. Organic compound coverage of 0.01
If the content is less than 20% by weight, the high-temperature preservability is reduced, and 2.0% by weight.
If it exceeds, the initial capacity decreases.

【0017】次に、本発明のリチウム二次電池用正極材
料の製造方法について説明する。本発明では、このマン
ガン酸リチウムとカルボキシル基を有する有機化合物を
混合し、例えば室温〜400℃、好ましくは80〜20
0℃で熱処理してリチウム二次電池用正極材料とする。
熱処理温度が400℃超では高温保存性に劣る。また、
熱処理時間は30分〜24時間が適当である。
Next, a method for producing the positive electrode material for a lithium secondary battery of the present invention will be described. In the present invention, this lithium manganate and an organic compound having a carboxyl group are mixed, and for example, room temperature to 400 ° C., preferably 80 to 20 ° C.
Heat treated at 0 ° C. to obtain a positive electrode material for a lithium secondary battery.
When the heat treatment temperature is higher than 400 ° C., the high-temperature preservability is poor. Also,
The heat treatment time is suitably from 30 minutes to 24 hours.

【0018】本発明のリチウム二次電池は、上記正極材
料とアセチレンブラック等の導電材とテフロンバインダ
ー等の結着剤とを混合して正極合剤とし、また、負極に
はリチウム又はカーボン等のリチウムを吸蔵、脱蔵でき
る材料が用いられ、非水系電解質としては、六フッ化リ
ンリチウム(LiPF6 )等のリチウム塩をエチレンカ
ーボネート−ジメチルカーボネート等の混合溶媒に溶解
したものが用いられるが、特に限定されるものではな
い。
The lithium secondary battery of the present invention comprises a mixture of the above-mentioned positive electrode material, a conductive material such as acetylene black and a binder such as a Teflon binder to form a positive electrode mixture. A material capable of absorbing and desorbing lithium is used. As the non-aqueous electrolyte, a material obtained by dissolving a lithium salt such as lithium hexafluorophosphate (LiPF 6 ) in a mixed solvent such as ethylene carbonate-dimethyl carbonate is used. There is no particular limitation.

【0019】本発明のリチウム二次電池は、充電状態で
のマンガンの溶出を抑制することができるので、高温保
存性、高温サイクル特性等の高温での電池特性を向上さ
せることができる。
The lithium secondary battery of the present invention can suppress the elution of manganese in the charged state, so that the battery characteristics at high temperatures such as high-temperature storage characteristics and high-temperature cycle characteristics can be improved.

【0020】[0020]

【実施例】以下、実施例等に基づき本発明を具体的に説
明する。
EXAMPLES Hereinafter, the present invention will be specifically described based on examples and the like.

【0021】〔実施例1〕二酸化マンガン1kgに炭酸
リチウム230gを加えて混合し、箱型炉中800℃で
20時間焼成してマンガン酸リチウムを得た。このよう
にして得られたマンガン酸リチウム100gとエタノー
ルを溶解させたマロン酸0.5gを混合し、120℃で
10時間加熱して正極材料を得た。得られた正極材料9
0重量部、導電剤としてアセチレンブラック3重量部及
び結着剤としてテフロン7重量部を混合して正極合剤を
作製した。
Example 1 1 kg of manganese dioxide was added with 230 g of lithium carbonate, mixed, and fired in a box furnace at 800 ° C. for 20 hours to obtain lithium manganate. 100 g of the lithium manganate thus obtained and 0.5 g of malonic acid in which ethanol was dissolved were mixed and heated at 120 ° C. for 10 hours to obtain a positive electrode material. The obtained cathode material 9
0 parts by weight, 3 parts by weight of acetylene black as a conductive agent, and 7 parts by weight of Teflon as a binder were mixed to prepare a positive electrode mixture.

【0022】このようにして得られた正極合剤を用いて
2016型コイン電池を作製した。負極には金属リチウ
ムを、電解液には1モルLiPF6 /エチレンカーボネ
ート−ジメチルカーボネート(1:1)混合溶媒を用い
た。
A 2016 type coin battery was manufactured using the positive electrode mixture thus obtained. Metal lithium was used for the negative electrode, and a 1 mol LiPF 6 / ethylene carbonate-dimethyl carbonate (1: 1) mixed solvent was used for the electrolytic solution.

【0023】このようにして得られた電池について、2
5℃で電流密度0.5mA/cm2として、電圧4.3
Vから3.0Vの範囲で5サイクル充放電試験を行なっ
た。その後、この電池を50℃の環境下で同条件で50
サイクル充放電し、1サイクル目の放電容量を100と
した時の、50サイクル目の放電容量を容量維持率とし
て確認した。50℃での初期放電容量と50サイクル後
の容量維持率の測定結果を表1に示す。
With respect to the battery thus obtained, 2
At a current density of 0.5 mA / cm 2 at 5 ° C., a voltage of 4.3
A 5-cycle charge / discharge test was performed in the range of V to 3.0 V. Then, the battery was stored under the same conditions at 50 ° C. for 50 hours.
When the charge / discharge cycle was performed and the discharge capacity at the first cycle was set to 100, the discharge capacity at the 50th cycle was confirmed as the capacity retention ratio. Table 1 shows the measurement results of the initial discharge capacity at 50 ° C. and the capacity retention after 50 cycles.

【0024】〔実施例2〕マンガン酸リチウムと混合す
る有機化合物をこはく酸0.5gとし、加熱温度を15
0℃とした以外は、実施例1と同様に正極材料の合成、
電池の作製を行い評価した。50℃での初期放電容量と
50サイクル後の容量維持率の測定結果を表1に示す。
Example 2 The organic compound mixed with lithium manganate was 0.5 g of succinic acid, and the heating temperature was 15
Except for 0 ° C., the synthesis of the positive electrode material was performed in the same manner as in Example 1,
A battery was prepared and evaluated. Table 1 shows the measurement results of the initial discharge capacity at 50 ° C. and the capacity retention after 50 cycles.

【0025】〔実施例3〕マンガン酸リチウムと混合す
る有機化合物をグルタル酸0.5gとし、加熱温度を1
00℃とした以外は、実施例1と同様に正極材料の合
成、電池の作製を行い評価した。50℃での初期放電容
量と50サイクル後の容量維持率の測定結果を表1に示
す。
Example 3 The organic compound to be mixed with lithium manganate was 0.5 g of glutaric acid, and the heating temperature was 1
A positive electrode material was synthesized and a battery was fabricated and evaluated in the same manner as in Example 1 except that the temperature was changed to 00 ° C. Table 1 shows the measurement results of the initial discharge capacity at 50 ° C. and the capacity retention after 50 cycles.

【0026】〔実施例4〕マンガン酸リチウムと混合す
る有機化合物をアジピン酸0.5gとし、加熱温度を1
50℃とした以外は、実施例1と同様に正極材料の合
成、電池の作製を行い評価した。50℃での初期放電容
量と50サイクル後の容量維持率の測定結果を表1に示
す。
Example 4 The organic compound to be mixed with lithium manganate was 0.5 g of adipic acid, and the heating temperature was 1
Except that the temperature was changed to 50 ° C., the synthesis of a positive electrode material and the production of a battery were performed and evaluated in the same manner as in Example 1. Table 1 shows the measurement results of the initial discharge capacity at 50 ° C. and the capacity retention after 50 cycles.

【0027】〔実施例5〕マンガン酸リチウムと混合す
る有機化合物をマロン酸0.01gとした以外は、実施
例1と同様に正極材料の合成、電池の作製を行い評価し
た。50℃での初期放電容量と50サイクル後の容量維
持率の測定結果を表1に示す。
Example 5 A positive electrode material was synthesized and a battery was prepared and evaluated in the same manner as in Example 1, except that the organic compound mixed with lithium manganate was changed to 0.01 g of malonic acid. Table 1 shows the measurement results of the initial discharge capacity at 50 ° C. and the capacity retention after 50 cycles.

【0028】〔実施例6〕マンガン酸リチウムと混合す
る有機化合物をマロン酸1.0gとした以外は、実施例
1と同様に正極材料の合成、電池の作製を行い評価し
た。50℃での初期放電容量と50サイクル後の容量維
持率の測定結果を表1に示す。
Example 6 A positive electrode material was synthesized and a battery was prepared and evaluated in the same manner as in Example 1 except that the organic compound mixed with lithium manganate was changed to 1.0 g of malonic acid. Table 1 shows the measurement results of the initial discharge capacity at 50 ° C. and the capacity retention after 50 cycles.

【0029】〔実施例7〕マンガン酸リチウムと混合す
る有機物をマロン酸0.001gとした以外は、実施例
1と同様に正極材料の合成、電池の作製を行い評価し
た。50℃での初期放電容量と50サイクル後の容量維
持率の測定結果を表1に示す。
Example 7 A positive electrode material was synthesized and a battery was prepared and evaluated in the same manner as in Example 1 except that the amount of the organic substance mixed with lithium manganate was changed to 0.001 g of malonic acid. Table 1 shows the measurement results of the initial discharge capacity at 50 ° C. and the capacity retention after 50 cycles.

【0030】〔実施例8〕マンガン酸リチウムと混合す
る有機化合物をマロン酸2.0gとした以外は、実施例
1と同様に正極材料の合成、電池の作製を行い評価し
た。50℃での初期放電容量と50サイクル後の容量維
持率の測定結果を表1に示す。
Example 8 A positive electrode material was synthesized and a battery was prepared and evaluated in the same manner as in Example 1, except that the organic compound mixed with lithium manganate was changed to 2.0 g of malonic acid. Table 1 shows the measurement results of the initial discharge capacity at 50 ° C. and the capacity retention after 50 cycles.

【0031】〔比較例1〕マンガン酸リチウムに有機化
合物を混合しなかった以外は、実施例1と同様に正極材
料の合成、電池の作製を行い評価した。50℃での初期
放電容量と50サイクル後の容量維持率の測定結果を表
1に示す。
Comparative Example 1 A positive electrode material was synthesized and a battery was prepared and evaluated in the same manner as in Example 1 except that no organic compound was mixed with lithium manganate. Table 1 shows the measurement results of the initial discharge capacity at 50 ° C. and the capacity retention after 50 cycles.

【0032】[0032]

【表1】 [Table 1]

【0033】表1に示されるように、実施例1〜8は、
初期放電容量及び高温保存後容量維持率に優れている。
特に、各有機化合物を一定範囲で被覆した実施例1〜6
は、比較例1に比較して、初期放電容量を同等に維持し
つつ、高温保存後容量維持率を大幅に向上させることが
できる。
As shown in Table 1, Examples 1 to 8
Excellent initial discharge capacity and capacity retention after high temperature storage.
In particular, Examples 1 to 6 in which each organic compound was coated in a certain range.
Can significantly improve the capacity retention rate after high-temperature storage, while maintaining the initial discharge capacity equal to that of Comparative Example 1.

【0034】図1にマロン酸のTG−DTA曲線、図2
に実施例1のTG−DTA曲線をそれぞれ示す。マロン
酸には500℃までに発熱ピークは見られないが(図
1)、実施例1は300℃付近に重量減少を伴う発熱ピ
ークが見られる(図2)。これは、マロン酸のカルボキ
シル基がマンガン酸リチウム中のマンガンと何らかの結
合をしていることを示しており、昇温によりこの結合が
切れ、被覆した有機化合物が燃焼するときに発熱が起こ
る。従って、本実施例では被覆した有機化合物とマンガ
ン酸リチウムが化学結合しているが、単なる物理的な被
覆だけでもマンガンの溶出は抑制できる。
FIG. 1 shows a TG-DTA curve of malonic acid, and FIG.
2 shows TG-DTA curves of Example 1. Malonic acid has no exothermic peak up to 500 ° C. (FIG. 1), but in Example 1, an exothermic peak accompanied by weight loss is observed at around 300 ° C. (FIG. 2). This indicates that the carboxyl group of malonic acid has some kind of bond with manganese in lithium manganate, and this bond is broken by raising the temperature, and heat is generated when the coated organic compound burns. Therefore, in the present embodiment, the coated organic compound and lithium manganate are chemically bonded, but leaching of manganese can be suppressed by merely physical coating.

【0035】[0035]

【発明の効果】以上説明したように、本発明のリチウム
二次電池用正極材料は、充電時のマンガン溶出量を抑制
し、高温保存性、高温サイクル特性等の高温での電池特
性を向上させることができる。
As described above, the positive electrode material for a lithium secondary battery of the present invention suppresses the amount of manganese eluted during charging and improves battery characteristics at high temperatures such as high-temperature preservability and high-temperature cycle characteristics. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、マロン酸のTG−DTA曲線を示すグ
ラフ。
FIG. 1 is a graph showing a TG-DTA curve of malonic acid.

【図2】図2は、実施例1のTG−DTA曲線を示すグ
ラフ。
FIG. 2 is a graph showing a TG-DTA curve of Example 1.

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 4/58 H01M 4/02 H01M 10/40 Continuation of the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01M 4/58 H01M 4/02 H01M 10/40

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 カルボキシル基を有する有機化合物でマ
ンガン酸リチウムの表面を被覆したことを特徴とするリ
チウム二次電池用正極材料。
1. A positive electrode material for a lithium secondary battery, wherein the surface of lithium manganate is coated with an organic compound having a carboxyl group .
【請求項2】 上記有機化合物の被覆量がマンガン酸リ
チウムに対して0.01〜1.0重量%であることを特
徴とする請求項1に記載のリチウム二次電池用正極材
料。
2. The positive electrode material for a lithium secondary battery according to claim 1, wherein the coating amount of the organic compound is 0.01 to 1.0% by weight based on lithium manganate.
【請求項3】 上記請求項1又に記載の正極材料を
用いたリチウム二次電池。
Wherein the first aspect or a lithium secondary battery using the cathode material according to 2.
JP22698398A 1998-08-11 1998-08-11 Cathode materials for lithium secondary batteries Expired - Fee Related JP3274993B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22698398A JP3274993B2 (en) 1998-08-11 1998-08-11 Cathode materials for lithium secondary batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22698398A JP3274993B2 (en) 1998-08-11 1998-08-11 Cathode materials for lithium secondary batteries

Publications (2)

Publication Number Publication Date
JP2000058055A JP2000058055A (en) 2000-02-25
JP3274993B2 true JP3274993B2 (en) 2002-04-15

Family

ID=16853677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22698398A Expired - Fee Related JP3274993B2 (en) 1998-08-11 1998-08-11 Cathode materials for lithium secondary batteries

Country Status (1)

Country Link
JP (1) JP3274993B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002101869A1 (en) * 2001-06-07 2002-12-19 Mitsubishi Chemical Corporation Lithium secondary cell
CN1324731C (en) * 2003-07-15 2007-07-04 新乡无氧铜材总厂 Preparation technology of lithium manganese oxide positive electrode material for lithium ion battery
CA2749696C (en) 2009-01-20 2018-06-05 Toda Kogyo Corporation Positive electrode active material for secondary batteries and process for producing thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3994497B2 (en) * 1998-01-30 2007-10-17 株式会社ジーエス・ユアサコーポレーション Non-aqueous electrolyte battery
JPH11224664A (en) * 1998-02-06 1999-08-17 Nikki Chemcal Co Ltd Lithium-ion secondary battery having high moisture resistance and high safety

Also Published As

Publication number Publication date
JP2000058055A (en) 2000-02-25

Similar Documents

Publication Publication Date Title
US7235193B2 (en) Complex lithium metal oxides with enhanced cycle life and safety and a process for preparation thereof
US7309546B2 (en) Positive active material for rechargeable lithium battery
JP4096754B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JP3141858B2 (en) Lithium transition metal halide oxide, method for producing the same and use thereof
CN109755530B (en) Surface coating method for titanium barium bimetallic oxide of high-pressure lithium cobalt oxide positive electrode material
JP4274630B2 (en) Method for producing spinel type lithium manganate
JPH09265984A (en) Nonaqueous electrolyte secondary battery
JP3441652B2 (en) Method for producing positive electrode material for lithium secondary battery
JP3274993B2 (en) Cathode materials for lithium secondary batteries
JP2002308627A (en) Method of manufacturing spinel type lithium manganate
JP2000133272A (en) Positive electrode material for lithium secondary battery and its manufacture
JP4306868B2 (en) Method for producing spinel type lithium manganate
JP2004281255A (en) Cathode active material for nonaqueous electrolyte solution secondary battery
JP2002251995A (en) Spinel type positive electrode material for lithium secondary battery and manufacturing method
JPH11111286A (en) Manufacture of positive electrode material for lithium secondary battery
JP4473362B2 (en) Method for producing spinel type lithium manganate
JP3407880B2 (en) Spinel-type positive electrode material for lithium secondary battery and manufacturing method
JP2001196062A (en) Lithium manganate mixture and lithium secondary battery using the same
JP2002033101A (en) Lithium-manganese oxide and lithium secondary battery using it
JP2003187794A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, and manufacturing method therefor
JPH08227713A (en) Manufacture of positive active material for nonaqueous electrolytic battery
JPWO2018043302A1 (en) Lithium-nickel based composite oxide and method for producing the same
JP2002260654A (en) Spinel-type positive electrode material for lithium secondary battery, and its manufacturing method
JP4806755B2 (en) Method for producing spinel type lithium manganate
JP2001180939A (en) Method of manufacturing spinel type lithium manganate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees