JP3263476B2 - Solid-state imaging device - Google Patents

Solid-state imaging device

Info

Publication number
JP3263476B2
JP3263476B2 JP10104493A JP10104493A JP3263476B2 JP 3263476 B2 JP3263476 B2 JP 3263476B2 JP 10104493 A JP10104493 A JP 10104493A JP 10104493 A JP10104493 A JP 10104493A JP 3263476 B2 JP3263476 B2 JP 3263476B2
Authority
JP
Japan
Prior art keywords
transfer
region
semiconductor layer
semiconductor substrate
transfer electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10104493A
Other languages
Japanese (ja)
Other versions
JPH06310703A (en
Inventor
修一 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP10104493A priority Critical patent/JP3263476B2/en
Publication of JPH06310703A publication Critical patent/JPH06310703A/en
Application granted granted Critical
Publication of JP3263476B2 publication Critical patent/JP3263476B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、撮像部に発生する情報
電荷を撮像部に隣接する蓄積部に一旦転送して蓄積する
固体撮像素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state image pickup device for temporarily transferring information charges generated in an image pickup section to a storage section adjacent to the image pickup section for storage.

【0002】[0002]

【従来の技術】フレームトランスファ型の固体撮像素子
において、被写体からの光を受ける撮像部は、照射され
た光に応答して発生する情報電荷を蓄積すると同時に、
所定の期間蓄積した情報電荷を蓄積部へ転送出力する構
成となっている。このため、撮像部にも蓄積部と同様に
情報電荷を転送駆動するための転送電極が設けられる。
2. Description of the Related Art In a frame transfer type solid-state image pickup device, an image pickup section which receives light from a subject accumulates information charges generated in response to irradiated light,
The information charges accumulated for a predetermined period are transferred and output to an accumulation unit. For this reason, a transfer electrode for transferring and driving information charges is provided in the image pickup unit as in the storage unit.

【0003】図4は、フレームトランスファ型の固体撮
像素子の概略を示す平面図である。撮像部1は、垂直方
向に連続する複数のCCDシフトレジスタからなり、入
射する光の量に応じて発生する情報電荷を受光期間に各
受光画素に蓄積し、その情報電荷を転送期間に垂直転送
クロックφVに従って転送出力する。蓄積部2は、撮像
部1のシフトレジスタに連続するCCDシフトレジスタ
からなり、蓄積転送クロックφSを受けて転送期間に撮
像部1から出力される情報電荷を取り込んで蓄積する。
水平転送部3は、水平方向に連続する1列のCCDシフ
トレジスタ(場合によっては2列以上となる)で構成さ
れ、各ビットに蓄積部2のシフトレジスタの出力を受
け、水平転送クロックφHに従って情報電荷を水平ライ
ン単位で出力する。出力部4は、電荷量を電圧値に変換
するフローティングディフュージョン(電気的に独立し
た拡散領域)及びそのフローティングディフュージョン
の電位変動を取り出すアンプを備え、水平転送部4から
1ビット単位で出力される情報電荷を逐次電圧値に変換
し、映像信号として出力する。
FIG. 4 is a plan view schematically showing a frame transfer type solid-state imaging device. The imaging section 1 is composed of a plurality of CCD shift registers that are continuous in the vertical direction, accumulates information charges generated according to the amount of incident light in each light receiving pixel during a light receiving period, and vertically transfers the information charges during a transfer period. Transfer and output according to clock φV. The accumulation unit 2 is composed of a CCD shift register that is continuous with the shift register of the imaging unit 1, receives the accumulation transfer clock φS, takes in information charges output from the imaging unit 1 during a transfer period, and accumulates the information charges.
The horizontal transfer unit 3 is composed of one row of CCD shift registers (in some cases, two or more rows) that are continuous in the horizontal direction, receives the output of the shift register of the storage unit 2 for each bit, and according to the horizontal transfer clock φH. Information charges are output in units of horizontal lines. The output unit 4 includes a floating diffusion (electrically independent diffusion region) for converting a charge amount into a voltage value and an amplifier for extracting a potential variation of the floating diffusion, and information output from the horizontal transfer unit 4 in 1-bit units. The charges are sequentially converted to voltage values and output as video signals.

【0004】図5は、固体撮像素子の撮像部1と蓄積部
2との接続部分の構造を示す平面図で、図6は、そのX
−X線の断面図である。この図面では、過剰な電荷を基
板側に吸収させる縦型オーバーフロードレイン構造のも
のを示している。N型のシリコン基板10の一面には、
撮像部1では過剰な情報電荷をシリコン基板10に吸収
させると共に、蓄積部2ではシリコン基板10への情報
電荷の流出を防止するように、蓄積部2で撮像部1より
も高濃度となるP型の拡散層11が形成される。この拡
散層11内には、高濃度のP型領域や厚い酸化膜(LO
COS)等からなる複数の分離領域12を隔てて複数の
チャネル領域13が互いに平行となるように形成され
る。これらのチャネル領域13には、基板表面部分にN
型の埋め込み層14が形成され、埋め込みチャネル構造
が構成される。そして、絶縁膜15を介して1層目の転
送電極16がチャネル領域13と交差するようにして互
いに平行に配列され、さらに2層目の転送電極17が1
層目の転送電極16の間隙を覆うようにして配列され
る。これらの転送電極16、17には、撮像部1で垂直
転送クロックφV1〜φV4、蓄積部で蓄積転送クロックφ
S1〜φS4がそれぞれ印加され、シリコン基板10内の情
報電荷がチャネル領域13に沿って撮像部1から蓄積部
2側へ転送される。垂直転送クロックφV1〜φV4と蓄積
転送クロックφS1〜φS4とは、情報電荷の転送期間に同
一クロックとなり、撮像部1から転送出力される情報電
荷を順次蓄積部2へ取り込むようにしている。
FIG. 5 is a plan view showing a structure of a connection portion between an image pickup section 1 and a storage section 2 of the solid-state image pickup device. FIG.
It is sectional drawing of the -X line. This drawing shows a vertical overflow drain structure in which excess charge is absorbed by the substrate. On one surface of the N-type silicon substrate 10,
In the imaging unit 1, the excess concentration of the information charges is absorbed by the silicon substrate 10, and the accumulation unit 2 has a P concentration higher than that of the imaging unit 1 in the accumulation unit 2 so as to prevent the outflow of the information charges to the silicon substrate 10. A mold diffusion layer 11 is formed. In the diffusion layer 11, a high-concentration P-type region or a thick oxide film (LO
A plurality of channel regions 13 are formed so as to be parallel to each other with a plurality of separation regions 12 made of COS) or the like interposed therebetween. These channel regions 13 have N
A buried layer 14 is formed to form a buried channel structure. The transfer electrodes 16 of the first layer are arranged in parallel with each other so as to intersect with the channel region 13 with the insulating film 15 interposed therebetween.
They are arranged so as to cover the gap between the transfer electrodes 16 of the layer. The transfer electrodes 16 and 17 have vertical transfer clocks φ V1 to φ V4 in the imaging unit 1 and a storage transfer clock φ in the storage unit.
S1 to [phi] S4 are applied respectively, information charges in the silicon substrate 10 is transferred from the imaging section 1 along the channel region 13 to the storage section 2 side. The vertical transfer clocks φ V1 to φ V4 and the storage transfer clocks φ S1 to φ S4 become the same clock during the transfer period of the information charges, and the information charges transferred from the imaging unit 1 are sequentially taken into the storage unit 2. I have.

【0005】[0005]

【発明が解決しようとする課題】ところで、チャネル領
域13のポテンシャルは、P型の拡散層11の不純物濃
度が高くなるほど深く形成されにくくなるため、蓄積部
2では、図7に示すように、撮像部1と比較して浅く形
成されることになる。この場合、撮像部1と蓄積部2と
の境界部分で撮像部1側のポテンシャルが、蓄積部2側
のポテンシャルの影響で浅くなり、撮像部1の出力端部
で転送能力が低下することになる。このため、撮像部1
と蓄積部2とで転送電極16、17に異なる電位を印加
する、具体的には、蓄積転送クロックφS1〜φS4の電位
を垂直転送クロックφV1〜φV4の電位より高く設定して
それぞれの転送能力を同等にする等の対策が必要とな
る。この場合には、各転送電極16、17に与えられる
転送クロックが複雑になり、駆動回路の回路構成の増大
によるコストアップが問題となる。
Since the potential of the channel region 13 is less likely to be formed deeper as the impurity concentration of the P-type diffusion layer 11 becomes higher, the potential of the channel region 13 is reduced as shown in FIG. It is formed shallower than the part 1. In this case, the potential of the imaging unit 1 at the boundary between the imaging unit 1 and the storage unit 2 becomes shallow due to the influence of the potential of the storage unit 2, and the transfer capability at the output end of the imaging unit 1 decreases. Become. For this reason, the imaging unit 1
A different potential is applied to the transfer electrodes 16 and 17 in the storage unit 2 and, more specifically, the potentials of the storage transfer clocks φS1 to φS4 are set higher than the potentials of the vertical transfer clocks φV1 to φV4 to increase their transfer capabilities. It is necessary to take measures such as making them equal. In this case, the transfer clock applied to each of the transfer electrodes 16 and 17 becomes complicated, and there is a problem of an increase in cost due to an increase in the circuit configuration of the drive circuit.

【0006】また、微細化によって転送電極16、17
が細くなると、拡散層11と転送電極16、17との間
で僅かな位置ずれが生じても、撮像部1から蓄積部2へ
の情報電荷の受け渡しに大きな影響を及ぼすことにな
り、不純物濃度の差による影響と併せて、転送効率の劣
化の原因となっている。そこで本発明は、濃度の異なる
拡散層に連続して設けられるチャネル領域内を円滑に情
報電荷を転送できるようにすることを目的とする。
Further, the transfer electrodes 16 and 17 are reduced by miniaturization.
When the thickness becomes smaller, even if a slight displacement occurs between the diffusion layer 11 and the transfer electrodes 16 and 17, the transfer of information charges from the imaging unit 1 to the storage unit 2 is greatly affected, and the impurity concentration is reduced. In addition to the effect of the difference, the transfer efficiency is degraded. Therefore, an object of the present invention is to enable information charges to be smoothly transferred in a channel region provided continuously to diffusion layers having different concentrations.

【0007】[0007]

【課題を解決するための手段】本発明は、上述の課題を
解決するために成されたもので、一導電型の半導体基板
と、この半導体基板の表面領域に設けられる逆導電型の
第1の半導体層と、上記半導体基板の表面領域で上記第
1の半導体層に接して設けられ、上記第1の半導体層と
は不純物濃度の異なる逆導電型の第2の半導体層と、上
記第1の半導体層から上記第2の半導体層まで連続し、
分離領域を隔てて互いに平行に配列される複数のチャネ
ル領域と、このチャネル領域と交差して上記第1及び第
2の半導体層上に互いに平行に配列される複数の転送電
極と、を備えた固体撮像素子であって、複数の上記転送
電極のうち、少なくとも、上記第1の半導体層と上記第
2の半導体層との境界領域に隣接する2本が、他の転送
電極と比較して上記チャネル領域の延在する方向に広く
形成されることを特徴とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and comprises a semiconductor substrate of one conductivity type and a first conductivity type semiconductor substrate provided in a surface region of the semiconductor substrate. A second semiconductor layer provided in contact with the first semiconductor layer in a surface region of the semiconductor substrate and having an impurity concentration different from that of the first semiconductor layer; From the semiconductor layer of the above to the second semiconductor layer,
A plurality of channel regions arranged in parallel with each other across the separation region; and a plurality of transfer electrodes arranged in parallel with each other on the first and second semiconductor layers so as to intersect with the channel region. A solid-state imaging device, wherein at least two of the plurality of transfer electrodes adjacent to a boundary region between the first semiconductor layer and the second semiconductor layer are compared with other transfer electrodes; It is characterized by being formed widely in the direction in which the channel region extends.

【0008】[0008]

【作用】本発明によれば、濃度の異なる半導体層の境界
部分で転送電極の幅を広く形成することにより、境界部
分の転送電極の下で情報電荷を蓄積する領域が広がり、
半導体層の濃度の影響でポテンシャルが浅くなった場合
でも、境界部分以外の領域に比べて十分な量の情報電荷
を蓄積できる。従って、濃度の異なる半導体層の境界部
分で転送能力が低下することがなくなる。
According to the present invention, by forming the transfer electrode wider at the boundary between the semiconductor layers having different concentrations, a region for storing information charges under the transfer electrode at the boundary is expanded.
Even when the potential becomes shallow due to the effect of the concentration of the semiconductor layer, a sufficient amount of information charges can be stored as compared with the region other than the boundary portion. Therefore, the transfer capability does not decrease at the boundary between the semiconductor layers having different concentrations.

【0009】[0009]

【実施例】図1は、本発明の固体撮像素子の撮像部の構
造を示す平面図で、第2図は、そのX−X線断面図であ
る。N型のシリコン基板20の一面には、P型の拡散層
21が形成される。この拡散層21は、図6の拡散層1
1と同様に、撮像部で過剰な情報電荷をシリコン基板2
0に吸収させ、蓄積部でシリコン基板20への情報電荷
の流出を防止するように、蓄積部の濃度が撮像部の濃度
より高く形成される。拡散層21内には、分離領域22
を隔てて複数のチャネル領域23が互いに平行に、撮像
部から蓄積部まで連続するように設けられる。これらの
チャネル領域23は、基板表面部分にN型の埋め込み層
24が設けられ、埋め込みチャネル構造を成している。
このような分離領域22及びチャネル領域23が形成さ
れたシリコン基板20上には、絶縁膜25を介して多結
晶シリコンからなる複数の転送電極26、27が、チャ
ネル領域23と交差する方向に配置される。また、撮像
部と蓄積部との境界部分に最も近い位置に配置される2
本の転送電極27については、その他の転送電極26と
比較して、電極の幅及び電極どうしの間隔が広く形成さ
れる。これらの転送電極26、27上には、同じく多結
晶シリコンからなる2層目の転送電極28、29が、1
層目の転送電極26、27の間隙を覆うように配置され
る。この2層目の転送電極28、29についても、撮像
部と蓄積部との境界部分に最も近い位置に配置される2
本の転送電極29が、その他の転送電極28と比較し
て、幅が広く形成される。
FIG. 1 is a plan view showing the structure of an image pickup section of a solid-state image pickup device according to the present invention, and FIG. 2 is a sectional view taken along line XX of FIG. On one surface of the N-type silicon substrate 20, a P-type diffusion layer 21 is formed. This diffusion layer 21 corresponds to the diffusion layer 1 shown in FIG.
As in the case of 1, the excess information charges are transferred to the silicon substrate 2 by the imaging unit.
The density of the storage section is formed higher than the density of the imaging section so that the density of the storage section is absorbed to prevent the information charges from flowing out to the silicon substrate 20 in the storage section. In the diffusion layer 21, an isolation region 22 is provided.
A plurality of channel regions 23 are provided in parallel with each other and continuously from the imaging unit to the storage unit. These channel regions 23 are provided with an N-type buried layer 24 on the surface of the substrate to form a buried channel structure.
A plurality of transfer electrodes 26 and 27 made of polycrystalline silicon are arranged on a silicon substrate 20 on which such an isolation region 22 and a channel region 23 are formed in a direction intersecting the channel region 23 via an insulating film 25. Is done. In addition, 2 which is arranged at the position closest to the boundary between the imaging unit and the storage unit.
Regarding the transfer electrodes 27, the width of the electrodes and the interval between the electrodes are formed wider than those of the other transfer electrodes 26. On these transfer electrodes 26 and 27, transfer electrodes 28 and 29 of the second layer also made of polycrystalline silicon
It is arranged so as to cover the gap between the transfer electrodes 26 and 27 of the layer. The transfer electrodes 28 and 29 of the second layer are also arranged at the position closest to the boundary between the imaging unit and the storage unit.
The transfer electrodes 29 are formed wider than the other transfer electrodes 28.

【0010】これらの転送電極26〜29には、撮像部
及び蓄積部でそれぞれ4相の垂直転送クロックφV1〜φ
V4及び蓄積転送クロックφS1〜φS4が印加される。これ
らの垂直転送クロックφV1〜φV4及び蓄積転送クロック
φS1〜φS4については、図6と同一で、情報電荷の転送
期間に両転送クロックが同期して撮像部から転送出力さ
れる情報電荷を蓄積部に取り込むようにしている。この
とき、幅が広く形成される転送電極27、29の下のチ
ャネル領域23では、図3に示すように、1つの転送電
極27(あるいは29)により形成されるポテンシャル
がチャネル領域23の転送方向に広がっているため、ポ
テンシャルが浅くなったとしても、十分な転送能力が確
保されている。従って、撮像部と蓄積部とで同一レベル
の転送クロックを用いたとしても、撮像部から蓄積部へ
円滑に情報電荷を転送することができる。
The transfer electrodes 26 to 29 have four-phase vertical transfer clocks φ V1 to φ V at the imaging unit and the storage unit, respectively.
V4 and the accumulation transfer clocks φ S1 to φ S4 are applied. The vertical transfer clocks φ V1 to φ V4 and the accumulation transfer clocks φ S1 to φ S4 are the same as those in FIG. 6, and the information charges transferred and output from the imaging unit in synchronization with both transfer clocks during the transfer period of the information charges. Is stored in the storage unit. At this time, in the channel region 23 below the transfer electrodes 27 and 29 having a wide width, the potential formed by one transfer electrode 27 (or 29) changes the transfer direction of the channel region 23 as shown in FIG. Therefore, even if the potential becomes shallow, sufficient transfer capacity is secured. Therefore, even if the same transfer clock is used for the imaging unit and the storage unit, information charges can be smoothly transferred from the imaging unit to the storage unit.

【0011】ところで、蓄積部のチャネル領域23につ
いては、情報電荷を蓄積する部分(ポテンシャル井戸)
が浅くなると同時に、画素を分離する部分(ポテンシャ
ル障壁)が高くなるため、撮像部から離れて幅の狭い転
送電極28が配置される部分でも、情報電荷の転送能力
自体は所望レベルを維持する。このため、撮像部から蓄
積部に受け渡された情報電荷が、幅の広い転送電極2
7、29の下のチャネル領域23から幅の狭い転送電極
26、28の下のチャネル領域23に移っても、その情
報電荷を確実に転送することができる。
By the way, with respect to the channel region 23 of the storage section, a portion (potential well) for storing information charges.
And the portion (potential barrier) for separating the pixels becomes higher at the same time as the depth becomes shallower. Therefore, even in the portion where the transfer electrode 28 having a small width is arranged away from the imaging section, the transfer capability of the information charge itself is maintained at a desired level. For this reason, the information charges transferred from the imaging unit to the storage unit are transferred to the wide transfer electrode 2.
Even when the transfer from the channel region 23 below the gate electrodes 7 and 29 to the channel region 23 below the narrow transfer electrodes 26 and 28, the information charges can be surely transferred.

【0012】また、撮像部と蓄積部との境界部分の転送
電極27、29の幅を広く形成することにより、拡散層
21に対する転送電極27、29の位置合わせ精度が緩
和されるため、製造工程が容易になる。なお、以上の実
施例においては、フレームトランスファ型の固体撮像素
子について例示したが、受光素子の情報電荷を一旦垂直
転送部に読み出し、この垂直転送部から蓄積部へ転送す
る所謂フレームインタライントランスファ方式の固体撮
像素子の垂直転送部と蓄積部との接続部分の構造にも採
用可能である。
In addition, since the width of the transfer electrodes 27 and 29 at the boundary between the image pickup section and the storage section is widened, the alignment accuracy of the transfer electrodes 27 and 29 with respect to the diffusion layer 21 is eased. Becomes easier. In the above embodiments, the frame transfer type solid-state imaging device has been described as an example. However, a so-called frame interline transfer method in which information charges of a light receiving element are temporarily read out to a vertical transfer unit and transferred from the vertical transfer unit to a storage unit. It is also applicable to the structure of the connection portion between the vertical transfer section and the storage section of the solid-state imaging device.

【0013】[0013]

【発明の効果】本発明によれば、撮像部から蓄積部(垂
直転送部から蓄積部)へ情報電荷を円滑に転送させるこ
とができ、転送効率の劣化を防止することができる。ま
た、位置合わせ精度の緩和による製造工程の容易化によ
って、製造歩留まりの向上が望めるため、転送効率が良
好で且つ低コストの固体撮像素子を提供することができ
る。
According to the present invention, information charges can be smoothly transferred from the imaging section to the storage section (from the vertical transfer section to the storage section), and deterioration of transfer efficiency can be prevented. In addition, since the manufacturing process is expected to be improved by facilitating the manufacturing process by relaxing the alignment accuracy, a solid-state imaging device with good transfer efficiency and low cost can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の固体撮像素子の撮像部と蓄積部との接
続部分を示す平面図である。
FIG. 1 is a plan view showing a connection portion between an imaging unit and a storage unit of a solid-state imaging device according to the present invention.

【図2】図1のX−X線の断面図である。FIG. 2 is a sectional view taken along line XX of FIG.

【図3】本発明の固体撮像素子のポテンシャルの状態を
示す図である。
FIG. 3 is a diagram showing a potential state of the solid-state imaging device of the present invention.

【図4】フレームトランスファ型の固体撮像素子の模式
的平面図である。
FIG. 4 is a schematic plan view of a frame transfer type solid-state imaging device.

【図5】従来の固体撮像素子の撮像部と蓄積部との接続
部分を示す平面図である。
FIG. 5 is a plan view illustrating a connection portion between an imaging unit and a storage unit of a conventional solid-state imaging device.

【図6】図5のX−X線の断面図である。FIG. 6 is a sectional view taken along line XX of FIG. 5;

【図7】従来の固体撮像素子のポテンシャルの状態を示
す図である。
FIG. 7 is a diagram illustrating a potential state of a conventional solid-state imaging device.

【符号の説明】[Explanation of symbols]

1 撮像部 2 蓄積部 3 水平転送部 4 出力部 10、20 シリコン基板 11、21 拡散層 12、22 分離領域 13、23 チャネル領域 14、24 埋め込み層 15、25 絶縁膜 16、17、26、27、28、29 転送電極 DESCRIPTION OF SYMBOLS 1 Image pick-up part 2 Storage part 3 Horizontal transfer part 4 Output part 10, 20 Silicon substrate 11, 21 Diffusion layer 12, 22 Separation area 13, 23 Channel area 14, 24 Embedded layer 15, 25 Insulating film 16, 17, 26, 27 , 28,29 Transfer electrode

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 複数の受光画素を含む撮像部と、上記撮
像部に発生する情報電荷を取り込んで蓄積する蓄積部
と、を有する固体撮像素子において、一導電型の半導体
基板と、この半導体基板の上記撮像部領域内に設けら
、上記半導体基板とは逆導電型の第1の半導体層と、
上記半導体基板の上記蓄積部領域内で上記第1の半導体
層に上記半導体基板の表面に対して水平方向に接して設
けられ、上記第1の半導体層とは不純物濃度が異なり、
且つ、上記半導体基板とは逆導電型の第2の半導体層
と、上記撮像部領域から上記蓄積部領域まで連続し、分
離領域を隔てて互いに平行に配列される複数のチャネル
領域と、このチャネル領域と交差して上記チャネル領域
及び上記分離領域上に互いに平行に配列される複数の転
送電極と、を備え、複数の上記転送電極のうち、少なく
とも、上記第1の半導体層と上記第2の半導体層との境
界領域に隣接する2本が、他の転送電極と比較して上記
チャネル領域の延在する方向に広く形成されることを特
徴とする固体撮像素子。
An imaging unit including a plurality of light receiving pixels;
Storage section that captures and stores information charges generated in the image section
A solid-state imaging device having: a semiconductor substrate of one conductivity type; a first semiconductor layer provided in the imaging unit region of the semiconductor substrate and having a conductivity type opposite to that of the semiconductor substrate ;
The first semiconductor layer is provided in the accumulation portion region of the semiconductor substrate in contact with the surface of the semiconductor substrate in a horizontal direction, and has an impurity concentration different from that of the first semiconductor layer ;
A second semiconductor layer having a conductivity type opposite to that of the semiconductor substrate; a plurality of channel regions continuous from the imaging unit region to the storage unit region and arranged in parallel with each other with a separation region therebetween; The channel region intersecting with the region
And a plurality of transfer electrodes arranged in parallel with each other on the separation region , wherein at least one of the plurality of transfer electrodes is adjacent to a boundary region between the first semiconductor layer and the second semiconductor layer. The solid-state imaging device is characterized in that two of the transfer electrodes are formed wider in the direction in which the channel region extends than other transfer electrodes.
JP10104493A 1993-04-27 1993-04-27 Solid-state imaging device Expired - Fee Related JP3263476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10104493A JP3263476B2 (en) 1993-04-27 1993-04-27 Solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10104493A JP3263476B2 (en) 1993-04-27 1993-04-27 Solid-state imaging device

Publications (2)

Publication Number Publication Date
JPH06310703A JPH06310703A (en) 1994-11-04
JP3263476B2 true JP3263476B2 (en) 2002-03-04

Family

ID=14290144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10104493A Expired - Fee Related JP3263476B2 (en) 1993-04-27 1993-04-27 Solid-state imaging device

Country Status (1)

Country Link
JP (1) JP3263476B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4596872B2 (en) * 2004-09-28 2010-12-15 三洋電機株式会社 Solid-state image sensor
JP2006222237A (en) * 2005-02-09 2006-08-24 Sanyo Electric Co Ltd Solid-state imaging device

Also Published As

Publication number Publication date
JPH06310703A (en) 1994-11-04

Similar Documents

Publication Publication Date Title
JPS6262553A (en) Solid state image pick-up device
JPH05505920A (en) image sensor
JPH08181300A (en) Image pickup device
JP2597600B2 (en) Solid-state imaging device
US6215521B1 (en) Solid state image sensor having an unnecessary electric charge exhausting section formed adjacent to a horizontal electric charge transfer section, and a method for manufacturing the same
JP3263476B2 (en) Solid-state imaging device
JP3252804B2 (en) Driving method of solid-state imaging device
US5060038A (en) Charge sweep solid-state image sensor
KR20040042841A (en) Solid state imaging device and method of manufacturing the same
EP0499275B1 (en) Solid state imager
JP4049248B2 (en) Solid-state imaging device
JP3042042B2 (en) Solid-state imaging device
JP2919697B2 (en) Method for manufacturing solid-state imaging device
US7564494B2 (en) Solid-state imaging device and its driving method for preventing damage in dynamic range
KR100279961B1 (en) Solid-state imaging device, manufacturing method thereof, and driving method thereof
JPH0425714B2 (en)
JP2855291B2 (en) Solid-state imaging device
JP3800515B2 (en) Solid-state imaging device
JPH06339081A (en) Driving method for solid-state image pickup element
JP4797302B2 (en) Solid-state imaging device and manufacturing method thereof
JPH02159063A (en) Solid-state image-sensing device
JP3631000B2 (en) Driving method of solid-state imaging device
JP3185939B2 (en) Solid-state imaging device
US6686963B1 (en) Method for driving solid-state image device
JPH0424872B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees