JP3257225B2 - Planar type semiconductor device and method of manufacturing the same - Google Patents

Planar type semiconductor device and method of manufacturing the same

Info

Publication number
JP3257225B2
JP3257225B2 JP02006094A JP2006094A JP3257225B2 JP 3257225 B2 JP3257225 B2 JP 3257225B2 JP 02006094 A JP02006094 A JP 02006094A JP 2006094 A JP2006094 A JP 2006094A JP 3257225 B2 JP3257225 B2 JP 3257225B2
Authority
JP
Japan
Prior art keywords
region
conductivity type
impurity concentration
layer
guard ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02006094A
Other languages
Japanese (ja)
Other versions
JPH07231104A (en
Inventor
二郎 寺嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP02006094A priority Critical patent/JP3257225B2/en
Publication of JPH07231104A publication Critical patent/JPH07231104A/en
Application granted granted Critical
Publication of JP3257225B2 publication Critical patent/JP3257225B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Bipolar Transistors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ガードリング構造を設
けて高耐圧化を図ったプレーナ型半導体素子およびその
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a planar semiconductor device having a high breakdown voltage by providing a guard ring structure and a method of manufacturing the same.

【0002】[0002]

【従来の技術】プレーナ型半導体素子の表面に露出する
空乏層を半導体基体縁部に向かって広げて電界を緩和
し、耐圧を向上するためにガードリング構造あるいはフ
ィールドプレート構造が用いられることはよく知られて
いる。図2はガードリング構造を有する高耐圧ダイオー
ドの縁部構造を示し、n形シリコン基板1には表面から
の不純物拡散によりp形アノード領域2を形成すると同
時に、同じ深さのp形ガードリング領域3が形成されて
いる。ガードリング領域3が浅いと、可動イオンがガー
ドリング領域上の酸化膜4の表面に蓄積するなど、外界
の影響を受けて耐圧が不安定になるため、その影響を受
けにくくするためアノード領域2と同様に不純物濃度を
高くし、深さを深くしていた。基板の縁部にはカソード
電極の電位と同一電位のn+ エッジ領域11が形成さ
れ、酸化膜4の開口部でpアノード領域2にはアノード
電極5が、エッジ領域11には空乏層の伸びを規制する
電位固定電極12が接触している。
2. Description of the Related Art A guard ring structure or a field plate structure is often used to widen a depletion layer exposed on the surface of a planar type semiconductor element toward an edge of a semiconductor substrate to reduce an electric field and improve a breakdown voltage. Are known. FIG. 2 shows an edge structure of a high-breakdown-voltage diode having a guard ring structure. A p-type anode region 2 is formed on an n-type silicon substrate 1 by impurity diffusion from the surface, and a p-type guard ring region having the same depth is formed. 3 are formed. If the guard ring region 3 is shallow, the breakdown voltage becomes unstable due to the influence of the external world such as movable ions accumulating on the surface of the oxide film 4 on the guard ring region. Similarly, the impurity concentration was increased and the depth was increased. An n + edge region 11 having the same potential as that of the cathode electrode is formed at the edge of the substrate, the anode electrode 5 is formed in the p anode region 2 at the opening of the oxide film 4, and the depletion layer is extended in the edge region 11. Are in contact with each other.

【0003】図3に示すダイオードでは、外界の影響を
少なくするためにガードリング構造にフィールドプレー
ト構造を併用しており、ガードリング領域3の表面にフ
ィールドプレート電極6を接触させ、ガードリング部分
の電界と外部の電界を結び付けている。
[0003] In the diode shown in FIG. 3, a field plate structure is used in combination with a guard ring structure in order to reduce the influence of the outside world. The electric field is connected to the external electric field.

【0004】[0004]

【発明が解決しようとする課題】半導体装置の進歩およ
び要求特性の進展の状況をみると、半導体装置はますま
す高速化が必要となってくる。高速化を達成するために
は、例えば図2、図3に示すダイオードにおいて、pア
ノード領域2の不純物濃度を低く、またその拡散深さを
浅くする必要がある。単純に不純物濃度を下げ、拡散深
さを浅くするとPN接合逆耐圧が低下する。同時にガー
ドリング領域3の不純物濃度が下がり、拡散深さが浅く
なるため、外界の影響を強く受け、表面層のキャリア濃
度が変化することなどにより、逆耐圧が不安定となる。
さらに、ガードリング領域3の不純物濃度が低くなる
と、フィールドプレート電極6との間の抵抗が大きくな
り、フィールドプレートによる電界安定の効果も不十分
となる。
In view of the progress of semiconductor devices and the progress of required characteristics, it is necessary to increase the speed of semiconductor devices. In order to achieve higher speed, for example, in the diodes shown in FIGS. 2 and 3, it is necessary to lower the impurity concentration of the p anode region 2 and to reduce the diffusion depth. Simply lowering the impurity concentration and decreasing the diffusion depth lowers the reverse breakdown voltage of the PN junction. At the same time, since the impurity concentration of the guard ring region 3 decreases and the diffusion depth decreases, the reverse breakdown voltage becomes unstable due to a strong influence of the external environment and a change in the carrier concentration of the surface layer.
Further, when the impurity concentration of the guard ring region 3 becomes low, the resistance between the guard ring region 3 and the field plate electrode 6 becomes large, and the effect of the field plate to stabilize the electric field becomes insufficient.

【0005】図3のダイオードにおいて、n基板1とp
領域2の間のPN接合に逆バイアスが加わったとき、空
乏層は図4に点線71で示すようにn基板1に、またp
ガードリング領域3に沿って延びるが、p領域2の不純
物濃度が低いときには、横方向拡散で形成されるその周
辺部は特に不純物濃度が低く、点線72に示すようにp
領域2の内部にもかなり広がり、アノード電極5に到達
するとパンチスルーが起きてしまう。このパンチスルー
が起きないようにするには、p領域2表面の周縁部を覆
う酸化膜4を10μm程度の幅まで広げ、空乏層端面7
2がアノード電極5の接触面に達しないようにする。し
かしこれによりアノード電極5の接触面積が狭くなるた
め、素子の寸法を大きくしてしまう。
[0005] In the diode of FIG.
When a reverse bias is applied to the PN junction between the regions 2, a depletion layer is formed on the n substrate 1 as shown by a dotted line 71 in FIG.
Although extending along the guard ring region 3, when the impurity concentration of the p region 2 is low, the peripheral portion formed by lateral diffusion has a particularly low impurity concentration.
It spreads considerably inside the region 2 and, when it reaches the anode electrode 5, punch-through occurs. To prevent this punch-through from occurring, the oxide film 4 covering the peripheral portion of the surface of the p region 2 is expanded to a width of about 10 μm, and the depletion layer end face 7 is formed.
2 does not reach the contact surface of the anode electrode 5. However, this causes the contact area of the anode electrode 5 to be narrowed, thus increasing the dimensions of the element.

【0006】本発明の目的は、上記の問題を解決し、第
一導電形の半導体層に形成される第二導電形領域を高速
化のために、不純物濃度を下げ、浅くしても耐圧を低下
させないことのできるプレーナ型半導体素子およびその
製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and reduce the impurity concentration in order to increase the speed of the second conductivity type region formed in the semiconductor layer of the first conductivity type. It is an object of the present invention to provide a planar semiconductor element which can be prevented from lowering and a method for manufacturing the same.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、第一導電形の半導体層の表面層に形成
された第二導電形領域に主電極の一つが接触するプレー
ナ型半導体素子において、第二導電形領域の周縁部に高
不純物濃度領域が設けられ、その高不純物濃度領域の内
側の部分の表面に主電極の周縁部が接触しているものと
する。第一導電形の半導体層の表面層に、第二導電形領
域と同時に形成され、その領域をとり囲む第二導電形の
ガードリング領域を有し、そのガードリング領域の表面
層にも高不純物濃度領域が設けられたことが有効であ
る。また、本発明のそのような半導体素子の製造方法
は、第一導電形の半導体層の表面層に第二導電形領域を
形成したのち、表面をドーピング元素を含む絶縁性ガラ
ス層で覆い、熱処理によりそのドーピング元素を拡散さ
せて高不純物濃度領域を形成するものとする。あるい
は、第一導電形の半導体層の表面層に第二導電形領域お
よびそれを囲む第二導電形のガードリング領域を同時に
形成し、次いで表面をドーピング元素を含む絶縁性ガラ
ス層で覆い、熱処理により各領域の表面層に第二導電形
の高不純物濃度領域を同時に形成することが良い。
SUMMARY OF THE INVENTION To achieve the above object, the present invention provides a planar electrode in which one of the main electrodes contacts a second conductivity type region formed in a surface layer of a semiconductor layer of a first conductivity type. In the type semiconductor device, it is assumed that a high impurity concentration region is provided at a peripheral portion of the second conductivity type region, and a peripheral portion of the main electrode is in contact with a surface of a portion inside the high impurity concentration region. On the surface layer of the semiconductor layer of the first conductivity type, a guard ring region of the second conductivity type is formed simultaneously with the second conductivity type region and surrounds the region, and the surface layer of the guard ring region also has a high impurity. It is effective that the density region is provided. In addition, the method of manufacturing such a semiconductor device of the present invention includes forming a second conductivity type region on a surface layer of a semiconductor layer of a first conductivity type, covering the surface with an insulating glass layer containing a doping element, and performing a heat treatment. To form a high impurity concentration region by diffusing the doping element. Alternatively, a second conductivity type region and a guard ring region of the second conductivity type surrounding the second conductivity type region are simultaneously formed on the surface layer of the semiconductor layer of the first conductivity type, and then the surface is covered with an insulating glass layer containing a doping element, followed by heat treatment. Therefore, it is preferable to simultaneously form the second conductivity type high impurity concentration regions on the surface layer of each region.

【0008】[0008]

【作用】第一導電形半導体層とPN接合を形成する第二
導電形領域の周縁部に高不純物濃度領域を設け、その内
側の部分の表面に主電極を接触させたことにより、第二
導電形領域の周縁部でPN接合から空乏層が広がって
も、高不純物濃度領域でその広がりが抑えられるため、
パンチスルーすることがない。ガードリング領域にもそ
れと同時に高不純物濃度を形成すれば、外界の影響を受
けにくくする。
A high impurity concentration region is provided on the periphery of the second conductivity type region forming a PN junction with the first conductivity type semiconductor layer, and the main electrode is brought into contact with the inner surface of the high impurity concentration region. Even if the depletion layer spreads from the PN junction at the periphery of the shaped region, the spread is suppressed in the high impurity concentration region.
No punch through. If a high impurity concentration is also formed in the guard ring region at the same time, the guard ring region is less affected by the external environment.

【0009】[0009]

【実施例】以下、図2、図3、図4と共通の部分に同一
の符号を付した図を引用して本発明の実施例について述
べる。図1は本発明の一実施例のプレーナ型ダイオード
を示し、n基板1の表面層に形成されたpアノード領域
2の周縁部およびガードリング領域3の中央部の表面層
にほう素がドープされたp+ 領域8が形成されている。
そして、その領域にアノード電極5およびフィールドプ
レート電極6が接触している。また、電位固定電極12
の接触する部分にもほう素ドープp+ 領域8が形成され
ている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings in which the same parts as those in FIGS. 2, 3 and 4 are denoted by the same reference numerals. FIG. 1 shows a planar type diode according to one embodiment of the present invention, in which boron is doped into a surface layer at a peripheral portion of a p anode region 2 and a central portion of a guard ring region 3 formed on a surface layer of an n substrate 1. P + region 8 is formed.
The anode electrode 5 and the field plate electrode 6 are in contact with the region. Further, the potential fixing electrode 12
A boron-doped p + region 8 is also formed at the portion where the contact is made.

【0010】このような素子は図5 (a) 〜 (f) の工
程で製造される。先ず、n形シリコン基板1に熱酸化に
より酸化膜4を形成〔同図 (a) 〕、フォトリソグラフ
ィで不純物拡散領域に窓を開け〔同図 (b) 〕、ほう素
などの不純物をイオン注入して低い不純物濃度で浅いp
アノード領域2およびpガードリング領域3を形成する
〔同図 (c) 〕。次に、表面にほう素ガラスBSG膜9
を1μmの厚さに堆積し〔同図 (d) 〕、1000℃以
上の拡散工程を行って、酸化膜4の窓を再び利用してほ
う素を表面部に拡散させ、p+ 領域8を形成する〔同図
(e) 〕。このあと、フォトリソグラフィにより絶縁性
のBSG膜9および酸化膜4に接触孔を明け、金属の蒸
着により電極層を形成したのち、フォトリソグラフィに
よりアノード電極5およびフィールドプレート電極6に
分割する〔同図 (f) 〕。図示しないが裏面側にn+
の形成、カソード電極の被着を行う。
Such an element is manufactured by the steps shown in FIGS. 5 (a) to 5 (f). First, an oxide film 4 is formed on the n-type silicon substrate 1 by thermal oxidation [FIG. 2A], a window is opened in an impurity diffusion region by photolithography [FIG. 2B], and impurities such as boron are ion-implanted. Low impurity concentration and shallow p
An anode region 2 and a p-guard ring region 3 are formed [FIG. Next, a boron glass BSG film 9 is formed on the surface.
Is deposited to a thickness of 1 μm (FIG. 4D), and a diffusion process at 1000 ° C. or higher is performed to diffuse the boron to the surface portion again using the window of the oxide film 4 to form the p + region 8. Form [same figure
(e)]. Thereafter, contact holes are formed in the insulating BSG film 9 and the oxide film 4 by photolithography, an electrode layer is formed by vapor deposition of metal, and then divided into an anode electrode 5 and a field plate electrode 6 by photolithography [FIG. (f)]. Although not shown, an n + layer is formed on the back surface side, and a cathode electrode is deposited.

【0011】この素子では、アノード領域2の周縁部表
面層にBSG膜9よりのほう素拡散によりp+ 領域8が
存在するため、n基板1との間のPN接合からp領域2
内に広がる空乏層がこのp+ 領域8に接触するアノード
電極5に達してパンチスルーを起こすことがない。従っ
て、アノード電極5をPN接合の表面露出部近くまで広
げることができるので、アノード領域2の有効面積が広
がる。
In this element, p + region 8 exists in the peripheral surface layer of anode region 2 due to boron diffusion from BSG film 9, so that p + region 8 is formed from PN junction with n substrate 1.
The depletion layer extending inside does not reach the anode electrode 5 in contact with the p + region 8 and does not cause punch-through. Therefore, the anode electrode 5 can be extended to near the surface exposed portion of the PN junction, so that the effective area of the anode region 2 is increased.

【0012】この実施例では、PN接合がn基板とその
表面層に形成されたp領域2により形成されているが、
p基板を用いその表面層にn領域を形成する場合にも実
施できることは明らかであり、その場合はBSG膜の代
わりにりんガラス (PSG)膜を用いる。
In this embodiment, the PN junction is formed by the n substrate and the p region 2 formed in the surface layer.
Obviously, the present invention can be applied to a case where an n region is formed in a surface layer using a p substrate. In this case, a phosphorus glass (PSG) film is used instead of the BSG film.

【0013】[0013]

【発明の効果】本発明によれば、第一導電形領域に形成
されるPN接合のための第二導電形領域の周辺部に、前
に第二導電形領域を形成するのに用いたマスクを再び用
いて形成できる高不純物濃度領域を設けることにより、
その第二導電形領域を不純物濃度を低く、深さを浅くし
ても、その領域への空乏層の広がりを抑制してパンチス
ルーが起こるのを防ぐことができる。また、ガードリン
グ領域の表面層に同時に形成できる高不純物濃度領域
も、その領域表面層に対する外界の影響を緩和できる。
これにより、信頼性の高い、高速、高耐圧のダイオード
が完成する。
According to the present invention, a mask used to previously form the second conductivity type region around the periphery of the second conductivity type region for the PN junction formed in the first conductivity type region. By providing a high impurity concentration region that can be formed again by using
Even if the impurity concentration of the second conductivity type region is low and the depth is shallow, the spread of the depletion layer to that region can be suppressed, and punch-through can be prevented. In addition, a high impurity concentration region that can be simultaneously formed in the surface layer of the guard ring region can also reduce the influence of the external environment on the region surface layer.
As a result, a highly reliable, high-speed, high-withstand-voltage diode is completed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例のプレーナ型ダイオードの要
部断面図
FIG. 1 is a sectional view of a main part of a planar diode according to an embodiment of the present invention.

【図2】従来のガードリング構造付きプレーナ型ダイオ
ードの要部断面図
FIG. 2 is a sectional view of a main part of a conventional planar diode having a guard ring structure.

【図3】従来のフィールドプレート構造付きプレーナ型
ダイオードの要部断面図
FIG. 3 is a sectional view of a main part of a conventional planar diode having a field plate structure.

【図4】従来のプレーナ型ダイオードでの空乏層を示す
断面図
FIG. 4 is a cross-sectional view showing a depletion layer in a conventional planar diode.

【図5】図1のダイオードの製造工程を (a) ないし
(f) の順に示す断面図
FIGS. 5A to 5D show the manufacturing process of the diode of FIG.
Sectional view shown in order of (f)

【符号の説明】[Explanation of symbols]

1 n形シリコン基板 2 pアノード領域 3 pガードリング領域 4 酸化膜 5 アノード電極 6 フィールドプレート電極 8 p+ ほう素ドープ領域 9 BSG膜Reference Signs List 1 n-type silicon substrate 2 p anode region 3 p guard ring region 4 oxide film 5 anode electrode 6 field plate electrode 8 p + boron-doped region 9 BSG film

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】第一導電形の半導体層の表面層に形成され
た第二導電形領域に主電極の一つが接触するものにおい
て、第二導電形領域の周縁部に高不純物濃度領域が設け
られ、その高不純物濃度領域の内側の部分の表面に前記
主電極の周縁部が接触することを特徴とするプレーナ型
半導体素子。
1. A semiconductor device of a first conductivity type, wherein one of the main electrodes contacts a second conductivity type region formed on a surface layer of a semiconductor layer of the first conductivity type, wherein a high impurity concentration region is provided at a peripheral portion of the second conductivity type region. And a peripheral portion of the main electrode is in contact with a surface of a portion inside the high impurity concentration region.
【請求項2】第一導電形の半導体層の表面層に、第二導
電形領域と同時に形成され、その領域をとり囲む第二導
電形のガードリング領域を有し、そのガードリング領域
の表面層にも高不純物濃度領域が設けられた請求項1記
載のプレーナ型半導体素子。
2. A guard ring region of a second conductivity type formed simultaneously with and surrounding a second conductivity type region in a surface layer of a semiconductor layer of a first conductivity type, and a surface of the guard ring region. 2. The planar semiconductor device according to claim 1, wherein a high impurity concentration region is also provided in the layer.
【請求項3】第一導電形の半導体層の表面層に第二導電
形領域を形成したのち、表面をドーピング元素を含む絶
縁性ガラス層で覆い、熱処理によりそのドーピング元素
を拡散させて第二導電形の高不純物濃度領域を形成する
ことを特徴とする請求項1あるいは2記載のプレーナ型
半導体素子の製造方法。
3. A second conductivity type region is formed on a surface layer of a semiconductor layer of a first conductivity type, and the surface is covered with an insulating glass layer containing a doping element. 3. The method according to claim 1, wherein a conductive type high impurity concentration region is formed.
【請求項4】第一導電形の半導体層の表面層に第二導電
形領域およびそれを囲む第二導電形のガードリング領域
を同時に形成し、次いで表面をドーピング元素を含む絶
縁性ガラス層で覆い、熱処理により各領域の表面層に第
二導電形の高不純物濃度領域を同時に形成する請求項2
記載のプレーナ型半導体素子の製造方法。
4. A second conductivity type region and a second conductivity type guard ring region surrounding the second conductivity type region are simultaneously formed on the surface layer of the semiconductor layer of the first conductivity type, and the surface is formed of an insulating glass layer containing a doping element. 3. A high impurity concentration region of the second conductivity type is simultaneously formed on the surface layer of each region by covering and heat treatment.
A manufacturing method of the planar type semiconductor device according to the above.
JP02006094A 1994-02-17 1994-02-17 Planar type semiconductor device and method of manufacturing the same Expired - Fee Related JP3257225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02006094A JP3257225B2 (en) 1994-02-17 1994-02-17 Planar type semiconductor device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02006094A JP3257225B2 (en) 1994-02-17 1994-02-17 Planar type semiconductor device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH07231104A JPH07231104A (en) 1995-08-29
JP3257225B2 true JP3257225B2 (en) 2002-02-18

Family

ID=12016542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02006094A Expired - Fee Related JP3257225B2 (en) 1994-02-17 1994-02-17 Planar type semiconductor device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3257225B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10238797B4 (en) * 2002-08-23 2007-09-20 Infineon Technologies Ag Commutated diode and method for its production

Also Published As

Publication number Publication date
JPH07231104A (en) 1995-08-29

Similar Documents

Publication Publication Date Title
US4101922A (en) Field effect transistor with a short channel length
US5583348A (en) Method for making a schottky diode that is compatible with high performance transistor structures
JPH0734479B2 (en) Semiconductor device
US4375717A (en) Process for producing a field-effect transistor
US20200168714A1 (en) Semiconductor device and method for manufacturing the same
US20210151590A1 (en) Semiconductor device and method of manufacturing same
JP6726505B2 (en) Method of manufacturing semiconductor device
US4707720A (en) Semiconductor memory device
EP0233202A1 (en) Fabricating a semiconductor device with buried oxide.
WO2018207712A1 (en) Semiconductor device
JP2005135972A (en) Manufacturing method of semiconductor device
JP3257225B2 (en) Planar type semiconductor device and method of manufacturing the same
US6451645B1 (en) Method for manufacturing semiconductor device with power semiconductor element and diode
JP2808871B2 (en) Method for manufacturing MOS type semiconductor device
JP3180672B2 (en) Semiconductor device
US8237239B2 (en) Schottky diode device and method for fabricating the same
KR100192966B1 (en) Mos control diode and manufacturing method thereof
JPS6115369A (en) Semiconductor device and manufacture thereof
JP2817247B2 (en) Semiconductor device
KR100289742B1 (en) Power semiconductor device using Semi-Insulating PO1ycrysta IIine Silicon(SIPOS) film
JP2008227113A (en) Semiconductor device and its manufacturing method
JP6301561B1 (en) Semiconductor device and manufacturing method thereof
JP2020170859A (en) Semiconductor device
JPS6241427B2 (en)
JPS621261B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees