JP3254761B2 - Cermet cutting tools and surface coated cermet cutting tools - Google Patents

Cermet cutting tools and surface coated cermet cutting tools

Info

Publication number
JP3254761B2
JP3254761B2 JP28958592A JP28958592A JP3254761B2 JP 3254761 B2 JP3254761 B2 JP 3254761B2 JP 28958592 A JP28958592 A JP 28958592A JP 28958592 A JP28958592 A JP 28958592A JP 3254761 B2 JP3254761 B2 JP 3254761B2
Authority
JP
Japan
Prior art keywords
cutting
cermet
cutting tool
lattice constant
crystal lattice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28958592A
Other languages
Japanese (ja)
Other versions
JPH06114609A (en
Inventor
清一郎 中村
久史 辻崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17745142&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3254761(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP28958592A priority Critical patent/JP3254761B2/en
Publication of JPH06114609A publication Critical patent/JPH06114609A/en
Application granted granted Critical
Publication of JP3254761B2 publication Critical patent/JP3254761B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、特に苛酷な条件下で
鋼などの断続切削や、高送りおよび高切込みの連続乾式
切削あるいは連続湿式切削に用いた場合に、優れた耐欠
損性を示し、かつ耐熱クラック性にも優れているサーメ
ット製切削工具および表面被覆サーメット製切削工具に
関するものである。
BACKGROUND OF THE INVENTION The present invention shows excellent fracture resistance when used in intermittent cutting of steel or the like, particularly in severe conditions, and in continuous dry cutting or continuous wet cutting with high feed and high depth of cut. The present invention also relates to a cermet cutting tool and a surface-coated cermet cutting tool which are excellent in heat crack resistance.

【0002】[0002]

【従来の技術】近年、、切削加工の高能率化および省人
化の流れにともない、切削速度の高速化による切削時間
の短縮あるいは粗切削と仕上げ切削といった複数段階切
削から一段階切削へといった工程の短縮および定数交換
を前提とした自動工具交換などあらゆる面で切削加工の
合理化が進められつつある。
2. Description of the Related Art In recent years, along with the trend toward higher efficiency and labor saving in cutting, the cutting time has been shortened by increasing the cutting speed, or the process has been changed from multi-step cutting such as rough cutting and finish cutting to one-step cutting. The rationalization of cutting work is being promoted in all aspects, such as shortening of cutting time and automatic tool change on the premise of constant change.

【0003】これに対して、工具材料にも前記切削速度
の高速化にともなって発生する高温に耐えうる工具材
料、一段階切削などの比較的負荷の高い切削に耐え得る
刃先強度を備えている荒加工および仕上げ加工兼用の工
具材料、工具の定数交換に必ず耐え得る刃先の安定性を
もつ工具材料が求められてきた。
[0003] On the other hand, the tool material also has a tool material that can withstand the high temperature generated as the cutting speed is increased and a cutting edge strength that can withstand relatively high-load cutting such as one-step cutting. There has been a demand for a tool material that can be used for both roughing and finishing, and a tool material having a stable edge that can withstand constant tool exchange.

【0004】サーメットは、従来の超硬合金に比べて、
切削速度の高速化による高能率加工には優れた性能を発
揮し、また超硬合金に比べて被削材を高精度に仕上げる
ことができる反面、超硬合金や超硬合金に比べて、欠損
が生じやすい問題点が残されている。
[0004] Cermet, compared to conventional cemented carbide,
Excellent performance for high-efficiency machining by increasing the cutting speed.Also, it is possible to finish the work material with higher precision than cemented carbide, but on the other hand, it has chipping compared to cemented carbide and cemented carbide. However, there still remains a problem that is likely to occur.

【0005】これに対して、「日立金属技報」Vol.
5、65〜70ページには、サーメットの欠損原因の一
つとして、高速切削化にともない、高速切削時に刃先が
1000℃以上の高温になるため、刃先に局部的な塑性
変形が発生することを上げ、これを改善する手段とし
て、結合金属相の格子定数をより大きくする、すなわ
ち、結合金属相中にサーメット全体に含有される成分の
うち、4a、5a、6aの金属(主に、W、Mo、Ti
など)を多量に固溶させ、結合金属相の強化を計り、塑
性変形性を改良する内容が記載されている。
On the other hand, Hitachi Metals Technical Report Vol.
On pages 5, 65 to 70, one of the causes of cermet loss is that, due to high-speed cutting, the cutting edge becomes hot at 1000 ° C or higher during high-speed cutting, so that local plastic deformation occurs at the cutting edge. As a means for improving this, the lattice constant of the binding metal phase is made larger, that is, among the components contained in the entire cermet in the binding metal phase, metals 4a, 5a, and 6a (mainly, W, Mo, Ti
And the like are disclosed in which a large amount of solid solution is dissolved to strengthen the bonded metal phase and improve plastic deformability.

【0006】これは、NaCl型の結晶構造を持つ主に
Co金属からなる結合金属相に、W、Mo、Tiなどの
巨大金属原子を固溶させて結合金属相の結晶格子内に取
り込むことにより、切削時に刃先が高温になったときに
発生する結合金属相内の結晶格子の滑りを防ぎ、塑性変
形を防止することを目的としており、結果として開示さ
れているサーメット工具は、一般に市販されているサー
メット工具に比較してその結合金属相の結晶格子定数が
大きな値となっている。
[0006] This is because a giant metal atom such as W, Mo, Ti or the like is dissolved in a binding metal phase mainly composed of Co metal having a NaCl type crystal structure and incorporated into the crystal lattice of the binding metal phase. The purpose of the present invention is to prevent slippage of the crystal lattice in the bonded metal phase that occurs when the cutting edge is heated during cutting and to prevent plastic deformation, and as a result, the disclosed cermet tools are generally commercially available. The crystal lattice constant of the binding metal phase is larger than that of the cermet tool.

【0007】[0007]

【発明が解決しようとする課題】ところでサーメットの
切削時の欠損が起こりやすい原因として塑性変形による
もののほか、断続的な切削中などに発生しやすい熱サイ
クルの温度差の増加に起因する熱クラックの発生が良く
知られている。
However, in addition to plastic deformation as a cause of the occurrence of chipping of the cermet during cutting, thermal cracks caused by an increase in the temperature difference of a heat cycle which is likely to occur during intermittent cutting and the like. The occurrence is well known.

【0008】これはサーメットが超硬合金に比べて相対
的に熱伝導率が低く、切削時に刃先近傍に生じた熱の放
熱速度が遅く、熱膨張と収縮との繰り返しの中で結合金
属相の疲労が進行し、熱クラックが進展することが原因
である。
[0008] This is because cermets have a relatively low thermal conductivity as compared with cemented carbides, have a slower rate of radiating heat generated in the vicinity of the cutting edge during cutting, and undergo a repetition of thermal expansion and contraction to form a bonding metal phase. This is because fatigue progresses and thermal cracks progress.

【0009】前述した結合金属相の固溶強化により、耐
塑性変形性を向上させたサーメットは、高温での結合金
属相内の結晶格子の滑りを防ぐ効果は有るものの、より
純度の高い結合金属相に比べて熱伝導率が極端に低く、
刃先に熱がこもりやすいため、刃先付近に熱クラック生
じやすく、断続切削を含む切削や湿式切削など切削の一
部に熱サイクルを伴うような切削条件下では欠損を生じ
る場合がしばしばあり、使用できない欠点があった。
The cermet improved in plastic deformation resistance by solid solution strengthening of the binder metal phase described above has the effect of preventing the crystal lattice in the binder metal phase from slipping at a high temperature, but has a higher purity of the binder metal. Thermal conductivity is extremely low compared to the phase,
Since heat is easily trapped in the cutting edge, thermal cracks are likely to occur near the cutting edge, and cutting may often occur under cutting conditions that involve a thermal cycle in a part of cutting, such as cutting including interrupted cutting and wet cutting, and can not be used There were drawbacks.

【0010】[0010]

【課題を解決するための手段】そこで、本発明者らは、
従来よりも耐塑性変形性を向上させて耐欠損性の向上を
はかると同時に耐熱クラック性をも付与せしめていかな
る切削に対しても優れた特性を示すサーメット製切削工
具および表面被覆サーメット製切削工具を得るべく研究
を行った結果、(a) 熱クラックの発生は、切削時に
サーメット製切削工具表面の刃先部分に熱がこもりやす
いことが原因となっており、サーメット工具全体のうち
サーメット工具表面層だけの結合金属相の固相強化の程
度を下げる、すなわちサーメット基体内部に比較して表
層部分だけ結合金属相の結晶格子定数を小さくすること
により工具表層部の熱伝導率を大きくし、刃先近傍に発
生する多量の熱をすみやかに放出することが可能とな
り、大きな熱サイクルを伴うような切削条件下でも熱ク
ラックの発生が防ぐことができる、(b) 同時に、サ
ーメット工具内部は、従来どうりにW、Mo、Tiなど
の巨大金属原子を固溶させて結合金属相の結晶格子定数
を大きい状態に保持してあるために、耐塑性変形性が保
持され、それによって優れた耐欠損性を発揮するように
なる、(c) かかるサーメット基体内部よりも表層部
分の結合金属相の格子定数の小さいサーメット製切削工
具に、平均層厚:0.5〜5μmの炭化チタン、窒化チ
タン、炭窒化チタンの内の1種の単層または2種以上の
複数層からなる硬質層を被覆すると、耐摩耗性が向上す
る、という知見を得たのである。
Means for Solving the Problems Accordingly, the present inventors have:
A cermet cutting tool and a surface-coated cermet cutting tool that have improved plastic deformation resistance and fracture resistance as well as impart heat cracking resistance and are excellent in any cutting. As a result of conducting research to obtain the following, (a) the occurrence of thermal cracks is caused by the fact that heat tends to accumulate at the cutting edge portion of the cermet cutting tool surface during cutting, and the cermet tool surface layer of the entire cermet tool The thermal conductivity of the tool surface layer is increased by lowering the degree of solid-phase strengthening of the bonded metal phase only, that is, by reducing the crystal lattice constant of the bonded metal phase only in the surface layer compared to the inside of the cermet substrate, and increasing the vicinity of the cutting edge. Can quickly release a large amount of heat generated during machining, preventing the occurrence of thermal cracks even under cutting conditions that involve a large heat cycle. (B) At the same time, the inside of the cermet tool is kept in a state where the crystal lattice constant of the binding metal phase is large by dissolving giant metal atoms such as W, Mo, Ti, etc. (C) a cermet cutting tool having a smaller lattice constant of a bonding metal phase in a surface layer portion than the inside of the cermet substrate, thereby maintaining excellent plastic deformation resistance and thereby exhibiting excellent fracture resistance. Layer thickness: knowledge that abrasion resistance is improved by coating a single hard layer of titanium carbide, titanium nitride and titanium carbonitride having a thickness of 0.5 to 5 μm or a hard layer composed of two or more different layers. I got it.

【0011】この発明は、かかる知見に基づいてなされ
たものであって、 (1) 鉄族金属のうち1種または2種以上からなる結
合相形成成分:1〜30重量%と、残りが組成式:Ti
C、TiN、TiCN、または(Ti、M)(CN)
(ただし、Mは、Ta、Nb、V、Zr、W、Mo、C
rのうちの1種または2種以上)で表される炭化物、窒
化物、炭窒化物および複合炭窒化物のうちの1種または
2種以上からなる硬質分散相形成成分(以下、単に硬質
分散相形成成分という)からなる組成を有するサーメッ
ト製切削工具において、前記サーメット製切削工具の表
面を構成する結合相の結晶格子定数の値は、サーメット
製切削工具内部の結合相の結晶格子定数の値よりも0.
01オングストローム以上小さいサーメット製切削工
具、および、 (2) 前記サーメット製切削工具を基体とし、その表
面に、平均層厚:0.5〜10μmの炭化チタン、窒化
チタンおよび炭窒化チタンの内の1種の単層または2種
以上の複数層からなる通常の硬質層を被覆してなる表面
被覆サーメット製切削工具、に特徴を有するものであ
る。
The present invention has been made on the basis of the above findings. (1) A bonding phase forming component comprising one or more of iron group metals: 1 to 30% by weight, and the balance being a composition Formula: Ti
C, TiN, TiCN, or (Ti, M) (CN)
(However, M is Ta, Nb, V, Zr, W, Mo, C
r, one or more of carbides, nitrides, carbonitrides, and composite carbonitrides represented by hard dispersed phase-forming components (hereinafter simply referred to as hard dispersions). Phase-forming component), the value of the crystal lattice constant of the binder phase constituting the surface of the cermet cutting tool is the value of the crystal lattice constant of the binder phase inside the cermet cutting tool. Than 0.
A cutting tool made of cermet smaller than 01 Å or more , and (2) the cutting tool made of cermet is used as a base, and on the surface thereof, one of titanium carbide, titanium nitride and titanium carbonitride having an average layer thickness of 0.5 to 10 μm is provided. The present invention is characterized by a surface-coated cermet cutting tool obtained by coating a single hard layer or a general hard layer comprising two or more layers.

【0012】この発明の鉄族金属のうち1種または2種
以上からなる結合相形成成分:1〜30重量%と、残り
が硬質分散相形成成分からなる組成を有するサーメット
製切削工具は、表面から深さ:0.1mm以内の表層部
を構成する結合相の結晶格子定数の値が、表面から深
さ:1mm以上の内部を構成する結合相の結晶格子定数
の値よりも小さいサーメット製切削工具であることが一
層好ましく、前記サーメット製切削工具の表面を含む表
面から深さ:0.1mm以内の表層部を構成する結合相
の結晶格子定数の値が、サーメット製切削工具表面から
深さ:1mm以上の内部の結合相の結晶格子定数の値よ
りも0.01オングストローム以上小さいことが好まし
い。その理由は、結晶格子定数の差が0.01オングス
トローム未満であると、表層部の熱伝導率の向上が少な
く、放熱効果が少なくて十分な耐熱クラック性が得られ
ないことによるものである。
The cermet cutting tool having a composition comprising 1 to 30% by weight of a binder phase-forming component comprising one or more of the iron group metals of the present invention and a balance of a hard dispersed phase-forming component, From the surface: the value of the crystal lattice constant of the binder phase constituting the surface layer portion within 0.1 mm is smaller than the value of the crystal lattice constant of the binder phase constituting the interior having a depth of 1 mm or more from the surface. It is more preferable that the value of the crystal lattice constant of the binder phase constituting the surface layer portion within a depth of 0.1 mm from the surface including the surface of the cermet cutting tool is less than the depth from the surface of the cermet cutting tool. : It is preferable that the thickness is smaller than the value of the crystal lattice constant of the internal binder phase by 1 mm or more by 0.01 Å or more. The reason is that if the difference in crystal lattice constant is less than 0.01 angstroms, the heat conductivity of the surface layer is little improved, the heat radiation effect is small, and sufficient heat crack resistance cannot be obtained.

【0013】この発明のサーメット製切削工具は、表面
から内部にわたって結合相の結晶格子定数の値が大きく
なるように変化する傾斜機能を有するが、ここで表層部
を表面から深さ:0.1mm以内と定義したのはこの部
分における結合相の熱伝導率の向上が工具全体の放冷効
果に大きく寄与する部分であるからであり、また内部を
表面から深さ:1mm以上と定義したのはこの部分がサ
ーメット製切削工具の耐塑性変形性の性能に大きく影響
するからである。
The cermet cutting tool of the present invention has a tilting function of changing the value of the crystal lattice constant of the binder phase from the surface to the inside so that the surface layer portion has a depth of 0.1 mm from the surface. The reason why it was defined to be within is that the improvement in the thermal conductivity of the binder phase in this portion greatly contributed to the cooling effect of the entire tool, and the inside was defined as a depth from the surface: 1 mm or more. This is because this portion greatly affects the plastic deformation resistance performance of the cermet cutting tool.

【0014】さらに、炭化チタン、窒化チタンおよび炭
窒化チタンの内の1種の単層または2種以上の複数層か
らなる通常の硬質層を平均層厚を0.5〜10μmに限
定した理由は、平均層厚が0.5μm未満では、高速切
削時に十分な耐摩耗性が得られず、一方、10μmより
も厚くすると、表面被覆層の内部を起点とする欠損が生
じやすくなり、刃先強度の安定化の観点から好ましくな
いからである。
Furthermore, the reason why the average thickness of the ordinary hard layer composed of one single layer or two or more layers of titanium carbide, titanium nitride and titanium carbonitride is limited to 0.5 to 10 μm is as follows. When the average layer thickness is less than 0.5 μm, sufficient wear resistance cannot be obtained during high-speed cutting. On the other hand, when the average layer thickness is more than 10 μm, defects starting from the inside of the surface coating layer are likely to occur, and the edge strength is reduced. This is because it is not preferable from the viewpoint of stabilization.

【0015】この発明のサーメット製切削工具を製造す
るには、平均粒径が2μmよりも小さい原料粉末を配合
し、混合し、プレス成形して所定の配合組成を有する圧
粉体とし、この圧粉体を焼結炉に挿入し、この焼結炉内
を真空あるいは不活性ガス雰囲気中、原料粉末のTiN
あるいはTiCNが分解し窒素ガスの発生を開始する温
度(以下、脱窒開始温度という)以上で液相出現温度以
下の所定温度になるまで加熱し、この脱窒開始温度以上
で液相出現温度以下の所定温度に至った時点で窒素ガス
を導入させることにより窒素ガス雰囲気もしくは窒素ガ
スおよび不活性ガスの混合ガス雰囲気としてさらに昇温
を続け、焼結温度に達するまでの期間および焼結期間は
常に炉内全圧に対する窒素分圧を焼結体中の窒素の平行
解離圧以下(好ましくは、10torr〜200torr)とな
るように圧力調整を行い、引き続いて焼結期間中および
焼結終了後の冷却過程において、炉内全圧を100torr
以上の圧力に保ったまま窒素分圧を3torr以下に保つこ
とにより製造することができる。
In order to manufacture the cermet cutting tool of the present invention, raw powders having an average particle diameter of less than 2 μm are blended, mixed, and press-formed to form a green compact having a predetermined blending composition. The powder is inserted into a sintering furnace, and the inside of the sintering furnace is vacuumed or in an inert gas atmosphere.
Alternatively, heating is performed at a temperature equal to or higher than the temperature at which TiCN is decomposed and the generation of nitrogen gas is started (hereinafter, referred to as denitrification start temperature) to a predetermined temperature equal to or lower than the liquid phase appearance temperature. When the temperature reaches the predetermined temperature, the temperature is further increased as a nitrogen gas atmosphere or a mixed gas atmosphere of a nitrogen gas and an inert gas by introducing a nitrogen gas, and the period until the sintering temperature is reached and the sintering period are always The pressure is adjusted so that the nitrogen partial pressure with respect to the total pressure in the furnace is equal to or less than the parallel dissociation pressure of nitrogen in the sintered body (preferably, 10 torr to 200 torr), and then cooling during the sintering period and after the end of sintering In the process, the total pressure in the furnace was 100 torr
It can be manufactured by keeping the partial pressure of nitrogen at 3 torr or less while maintaining the above pressure.

【0016】さらにこの発明の表面被覆サーメット製切
削工具を製造するには、前記この発明のサーメット製切
削工具を基体とし、その表面に通常の物理蒸着法、化学
蒸着法の手段により炭化チタン、窒化チタンおよび炭窒
化チタンの内の1種の単層または2種以上の複数層から
なる硬質層を被覆することにより製造することができ
る。
Further, in order to manufacture the surface-coated cutting tool made of cermet of the present invention, the cutting tool made of cermet of the present invention is used as a base, and titanium carbide and nitride are formed on the surface thereof by ordinary physical vapor deposition or chemical vapor deposition. It can be produced by coating a single hard layer of titanium or titanium carbonitride or a hard layer composed of two or more layers.

【0017】[0017]

【実施例】つぎに、この発明を実施例に基づいて具体的
に説明する。原料粉末として、平均粒径:1.4μmの
TiCN(TiC/TiN=50/50)粉末、平均粒
径:1.5μmのTiC粉末、平均粒径:1.0μmの
TiN粉末、平均粒径:1.2μmのTaC粉末、平均
粒径:1.3μmのNbC粉末、平均粒径:1.2μm
のTaN粉末、平均粒径:1.0μmのWC粉末、平均
粒径:1.5μmのMo2 C粉末、平均粒径:2.0μ
mのVC粉末、平均粒径:1.5μmのZrC粉末、平
均粒径:2.0μmのCr3 2 粉末、平均粒径:1.
2μmのCo粉末、平均粒径:1.0μmのNi粉末、
並びに平均粒径:1.0μmのグラファイト粉末を用意
し、これら原料粉末をそれぞれ表1に示される配合組成
になるように配合し、ボールミルにて湿式混合し、乾燥
した後、1.5ton/cm2 の圧力でプレス成形するこ
とにより圧粉体A〜Gを作製した。
Next, the present invention will be specifically described based on embodiments. As raw material powder, TiCN (TiC / TiN = 50/50) powder having an average particle diameter of 1.4 μm, TiC powder having an average particle diameter of 1.5 μm, TiN powder having an average particle diameter of 1.0 μm, and average particle diameter: 1.2 μm TaC powder, average particle size: 1.3 μm NbC powder, average particle size: 1.2 μm
TaN powder, WC powder having an average particle size of 1.0 μm, Mo 2 C powder having an average particle size of 1.5 μm, and average particle size of 2.0 μm
m VC powder, ZrC powder having an average particle size of 1.5 μm, Cr 3 C 2 powder having an average particle size of 2.0 μm, average particle size: 1.
2 μm Co powder, average particle size: 1.0 μm Ni powder,
In addition, graphite powder having an average particle size of 1.0 μm was prepared, and these raw material powders were blended so as to have the composition shown in Table 1, wet-mixed in a ball mill, dried, and then 1.5 ton / cm 2. The green compacts A to G were produced by press molding at a pressure of 2 .

【0018】[0018]

【表1】 (ただし、C*は、グラファイトを示す)[Table 1] (However, C * indicates graphite)

【0019】実施例1 これら表1に示される圧粉体A〜Gを焼結炉に装入し、
この焼結炉内を表2に示される種類の不活性ガス雰囲気
に保持して昇温し、原料粉末のTiNが分解し窒素ガス
の発生を開始する温度あるいはTiCNが分解し窒素ガ
スの発生を開始する温度以上で液相出現温度以下の表2
に示される温度(以下、窒素導入温度という)になるま
で加熱した時点で窒素ガスを導入し、焼結炉内を表2に
示される窒素分圧の窒素ガスおよび不活性ガスの混合ガ
ス雰囲とし、さらに昇温を続け、表2に示される焼結温
度に達するまでの期間および焼結期間を前記窒素分圧の
窒素ガスおよび不活性ガスの混合ガス雰囲気に保持し、
引き続いて焼結途中あるいは焼結終了後の冷却過程にお
いて、表2に示される3torr以下の低い窒素分圧に保つ
ことにより、ISO規格CNMG120408(無研磨
級スローアウエイチップ)の形状を有する本発明サーメ
ット製切削工具(以下、本発明切削工具という)1〜7
を製造した。
Example 1 These compacts A to G shown in Table 1 were charged into a sintering furnace,
The temperature inside the sintering furnace was maintained while maintaining an inert gas atmosphere of the type shown in Table 2, and the temperature at which TiN of the raw material powder was decomposed and the generation of nitrogen gas was started or TiCN was decomposed to generate nitrogen gas. Table 2 below the starting temperature and below the liquid phase appearance temperature
(Hereinafter referred to as nitrogen introduction temperature), nitrogen gas was introduced at the time of heating, and the inside of the sintering furnace was mixed gas atmosphere of nitrogen gas and inert gas at a partial pressure of nitrogen shown in Table 2. The temperature is further increased, and a period until the sintering temperature shown in Table 2 is reached and a sintering period are maintained in a mixed gas atmosphere of nitrogen gas and an inert gas at the nitrogen partial pressure,
Subsequently, during the sintering or in the cooling process after the end of the sintering, the cermet of the present invention having a shape of ISO standard CNMG120408 (non-polishing grade throwaway chip) is maintained by maintaining a low nitrogen partial pressure of 3 torr or less as shown in Table 2. Cutting tools (hereinafter referred to as cutting tools of the present invention) 1 to 7
Was manufactured.

【0020】[0020]

【表2】 [Table 2]

【0021】さらに、比較のために、前記圧粉体A〜G
を焼結炉に挿入し、この焼結炉内を表3に示される炉内
の全圧力の真空としたのち加熱し、炉内温度が1000
℃になった時点で窒素を導入し、表3に示される焼結温
度に至るまでの昇温期間と焼結期間中および1200℃
までの冷却期間中のすべてにわたって窒素分圧を50T
orrとすることでISO規格CNMG120408
(無研磨級スローアウエイチップ)の形状を有する従来
サーメット製切削工具(以下、従来切削工具という)1
〜7を製造した。
Further, for comparison, the green compacts A to G
Was inserted into a sintering furnace, and the inside of the sintering furnace was evacuated to the full pressure in the furnace shown in Table 3 and then heated.
° C, nitrogen was introduced, and the temperature was raised to the sintering temperature shown in Table 3, during the sintering period, and at 1200 ° C.
50T nitrogen partial pressure over the entire cooling period until
orr and ISO standard CNMG120408
Conventional cermet cutting tool (hereinafter referred to as conventional cutting tool) having the shape of (non-abrasive grade throwaway tip) 1
~ 7 were produced.

【0022】[0022]

【表3】 [Table 3]

【0023】このようにして製造された本発明切削工具
1〜7および従来切削工具1〜7について、逃げ面焼結
肌表面を内部方向に0.1mm以内の深さに電解研磨を
施し、X線回折法により結合金属相の回折角2θを求
め、結合金属相の結晶格子定数を算出し、サーメット製
切削工具表層部の結合金属相の結晶格子定数(X)の値
をそれぞれ表4および表5に示した。
With respect to the cutting tools 1 to 7 of the present invention and the conventional cutting tools 1 to 7 thus manufactured, the flank sintered surface is subjected to electrolytic polishing to a depth of 0.1 mm or less inward and X The diffraction angle 2θ of the binding metal phase is determined by the X-ray diffraction method, the crystal lattice constant of the binding metal phase is calculated, and the values of the crystal lattice constant (X) of the binding metal phase in the surface layer of the cermet cutting tool are shown in Tables 4 and 4, respectively. 5 is shown.

【0024】また、前記逃げ面焼結肌表面から内部方向
に0.1mm以内の深さに電解研磨した本発明切削工具
1〜7および従来切削工具1〜7の逃げ面を、さらに、
1mm以上研削除去し、電解研磨処理を施した後、同様
にして結合金属相の結晶格子定数を求め、サーメット製
切削工具内部の結合金属相の結晶格子定数(Y)の値を
それぞれ表4および表5に示し、さらに、内部の結合金
属相の結晶格子定数値と表層部の結合金属相の結晶格子
定数値の差(Y−X)についても表4および表5に示し
た。
Further, the flank surfaces of the cutting tools 1 to 7 of the present invention and the conventional cutting tools 1 to 7 which are electrolytically polished to a depth of 0.1 mm or less inward from the flank sintered surface,
After grinding and removing by 1 mm or more and performing the electropolishing treatment, the crystal lattice constant of the bonded metal phase was determined in the same manner, and the value of the crystal lattice constant (Y) of the bonded metal phase inside the cermet cutting tool was determined in Table 4 and Table 4, respectively. Table 4 shows the difference (Y-X) between the crystal lattice constant of the internal bonding metal phase and the crystal lattice constant of the surface bonding metal phase.

【0025】これら本発明切削工具1〜7および従来切
削工具1〜7を用い、被削材:SCM440、切削速
度:200m/min.、送り:0.5mm/re
v.、切込み:2mm、切削時間:1min.、の条件
で鋼の乾式高送り連続切削を行い、切刃の塑性変形を含
む逃げ面摩耗幅の大きさを測定し、さらに、耐熱クラッ
ク性を評価する目的で、被削材:SCM440、切削速
度:200m/min.、送り:0.3mm/re
v.、切込み:2.5mm、湿式にて5秒おきに切削の
条件で鋼の断続的湿式切削を行い、切刃が欠損するまで
の切削回数を測定し、それらの結果を表4および表5に
示した。
Using these cutting tools 1 to 7 of the present invention and conventional cutting tools 1 to 7, a work material: SCM440, a cutting speed: 200 m / min. , Feed: 0.5mm / re
v. , Depth of cut: 2 mm, cutting time: 1 min. In order to evaluate the flank wear width including the plastic deformation of the cutting edge and to evaluate the heat crack resistance, a work material: SCM440, cutting Speed: 200 m / min. , Feed: 0.3mm / re
v. , Depth of cut: 2.5 mm, intermittent wet cutting of steel under the condition of cutting every 5 seconds in a wet manner, the number of cuts until the cutting edge was broken was measured, and the results are shown in Tables 4 and 5. Indicated.

【0026】[0026]

【表4】 [Table 4]

【0027】[0027]

【表5】 [Table 5]

【0028】表4〜5に示された結果から、サーメット
製切削工具の表面を構成する結合相の結晶格子定数の値
がサーメット製切削工具内部の結合相の結晶格子定数の
値よりも0.01オングストローム以上小さい本発明切
削工具1〜7は、その差が0.01オングストローム未
満の従来切削工具1〜7に比べて耐塑性変形性および耐
熱クラック性に優れていることが分かる。
From the results shown in Tables 4 and 5, the value of the crystal lattice constant of the binder phase constituting the surface of the cermet cutting tool is more than the value of the crystal lattice constant of the binder phase inside the cermet cutting tool by 0. It can be seen that the cutting tools 1 to 7 of the present invention, which are smaller than 01 Å, are more excellent in plastic deformation resistance and heat crack resistance than the conventional cutting tools 1 to 7 having a difference of less than 0.01 Å.

【0029】実施例2 表2に示される条件で焼結された本発明切削工具1〜7
および表3に示される条件で焼結された従来切削工具1
〜7を基体とし、その表面に、物理蒸着装置または化学
蒸着装置を用い、通常の物理蒸着条件または化学蒸着条
件で表6に示される硬質層をそれぞれ被覆し、本発明表
面被覆サーメット製切削工具(以下、本発明表面被覆切
削工具という)1〜7および表7に示される従来表面被
覆サーメット製切削工具(以下、従来表面被覆切削工具
という)1〜7を作製した。
Example 2 Cutting tools 1 to 7 of the present invention sintered under the conditions shown in Table 2
And conventional cutting tool 1 sintered under the conditions shown in Table 3.
-7 as a substrate, the surface of which is coated with a hard layer shown in Table 6 under a normal physical vapor deposition condition or a chemical vapor deposition condition using a physical vapor deposition device or a chemical vapor deposition device. (Hereinafter referred to as surface-coated cutting tool of the present invention) 1 to 7 and cutting tools made of conventional surface-coated cermet (hereinafter referred to as conventional surface-coated cutting tools) 1 to 7 shown in Table 7 were produced.

【0030】これら本発明表面被覆切削工具1〜7およ
び従来表面被覆切削工具1〜7を用い、被削材: SC
M440、切削速度:200m/mim.、送り:
0.5mm/rev.、切込み: 2mm、切削時間:
1min.、の条件で鋼の乾式高送り連続切削を行い、
切刃の塑性変形性の大きさを測定し、さらに、耐熱クラ
ック性を評価する目的で、被削材: SCM440、切
削速度:200m/mim.、送り: 0.3mm/
rev.、切込み: 2.5mm、湿式にて5秒おきに
切削、の条件で鋼の断続的湿式切削を行い、刃先が欠損
するまでの切削回数を測定し、それらの結果を表6およ
び表7に示した。
Using these surface-coated cutting tools 1 to 7 of the present invention and conventional surface-coated cutting tools 1 to 7, a work material: SC
M440, cutting speed: 200 m / mim. , Feed:
0.5 mm / rev. , Depth of cut: 2 mm, cutting time:
1 min. , Dry high-feed continuous cutting of steel under the conditions of
For the purpose of measuring the magnitude of the plastic deformability of the cutting blade and further evaluating the heat crack resistance, the work material: SCM440, the cutting speed: 200 m / m. , Feed: 0.3mm /
rev. The steel was cut intermittently by wet cutting under conditions of 2.5 mm, cutting every 5 seconds by wet method, and the number of cuts until the cutting edge was broken was measured. The results are shown in Tables 6 and 7. Indicated.

【0031】[0031]

【表6】 [Table 6]

【0032】[0032]

【表7】 [Table 7]

【0033】表6および表7に示される結果から、本発
明切削工具1〜7の表面に硬質層を被覆した本発明表面
被覆切削工具1〜7は、従来切削工具1〜7の表面に硬
質層を被覆した従来表面被覆切削工具1〜7に比べて耐
欠損性および耐摩耗性は大幅に向上していることが分か
る。
From the results shown in Tables 6 and 7, the surface-coated cutting tools 1 to 7 according to the present invention in which the surfaces of the cutting tools 1 to 7 according to the present invention are coated with a hard layer, It can be seen that the chipping resistance and wear resistance are significantly improved as compared with the conventional surface-coated cutting tools 1 to 7 in which the layers are coated.

【0034】実施例3 さらに、表1に示される圧粉体B、CおよびFをそれぞ
れ焼結炉に装入し、表2に示される本発明切削工具2、
3および6と全く同様の条件で焼結し、ISO規格SN
GG120408(研磨級スローアウエイチップ)の形
状を有する本発明切削工具8〜10を製造した。
Example 3 Further, the green compacts B, C and F shown in Table 1 were charged into a sintering furnace, and the cutting tools 2 of the present invention shown in Table 2 were used.
Sintered under exactly the same conditions as 3 and 6, and
The cutting tools 8 to 10 of the present invention having the shape of GG120408 (polishing grade throwaway tip) were manufactured.

【0035】また、比較のために、前記圧粉体B、Cお
よびFをそれぞれ焼結炉に装入し、この圧粉体B、Cお
よびFを表3に示される従来切削工具2、3および6と
全く同様の条件で焼結し、ISO規格SNGG1204
08(研磨級スローアウエイチップ)の形状を有する従
来切削工具8〜10を製造した。
For comparison, the green compacts B, C and F were respectively charged into a sintering furnace, and the green compacts B, C and F were placed in conventional cutting tools 2 and 3 shown in Table 3. And 6 under the same conditions as in ISO standard SNGG1204
Conventional cutting tools 8 to 10 having a shape of 08 (polishing grade throw-away tip) were manufactured.

【0036】得られた本発明切削工具8〜10および従
来切削工具8〜10を逃げ面研削面表面から内部方向に
0.1mm以内の深さに電解研磨し、X線回折法により
結合金属相の回折角2θを求め、結合金属相の結晶格子
定数を算出し、サーメット製切削工具表層部の結合金属
相の結晶格子定数(X)の値を表8に示した。
The obtained cutting tools 8 to 10 of the present invention and the conventional cutting tools 8 to 10 are electrolytically polished to a depth of 0.1 mm or less inward from the flank ground surface, and the bonded metal phase is subjected to X-ray diffraction. Was calculated, the crystal lattice constant of the binder metal phase was calculated, and the value of the crystal lattice constant (X) of the binder metal phase in the surface layer of the cutting tool made of Cermet is shown in Table 8.

【0037】また、前記逃げ面研削面表面から内部方向
に0.1mm以内の深さに電解研磨した本発明切削工具
8〜10および従来切削工具8〜10の逃げ面を、さら
に、1mm以上研削除去し、電解研磨処理を施した後、
同様にして結合金属相の結晶格子定数を求め、サーメッ
ト製切削工具内部の結合金属相の結晶格子定数(Y)の
値を表8に示し、さらに、内部の結合金属相の結晶格子
定数値と表層部の結合金属相の結晶格子定数値の差(Y
−X)についても表8に示した。
The flank surfaces of the cutting tools 8 to 10 of the present invention and the conventional cutting tools 8 to 10 which have been electropolished to a depth of 0.1 mm or less inward from the flank grinding surface surface are further ground by 1 mm or more. After removing and subjecting to electropolishing,
Similarly, the crystal lattice constant of the bonded metal phase was determined, and the value of the crystal lattice constant (Y) of the bonded metal phase inside the cermet cutting tool is shown in Table 8, and the crystal lattice constant value of the internal bonded metal phase and Difference in crystal lattice constant value of the bonding metal phase in the surface layer (Y
-X) is also shown in Table 8.

【0038】これら本発明切削工具8〜10および従来
切削工具8〜10を用い、実施例1で示した条件と全く
同じの条件で鋼の乾式高送り連続切削を行い、切刃の塑
性変形を含む逃げ面摩耗幅の大きさを測定し、さらに、
耐熱クラック性を評価する目的で、実施例1で示した条
件と全く同じの条件で鋼の断続的湿式切削を行い、切刃
が欠損するまでの切削回数を測定し、それらの結果を表
8に示した。
Using these cutting tools 8 to 10 of the present invention and conventional cutting tools 8 to 10, dry high-feed continuous cutting of steel was performed under exactly the same conditions as those described in Example 1 to reduce the plastic deformation of the cutting blades. Measure the size of the flank wear width, including
For the purpose of evaluating the heat crack resistance, intermittent wet cutting of steel was performed under exactly the same conditions as in Example 1, and the number of cuts until the cutting edge was broken was measured. It was shown to.

【0039】[0039]

【表8】 [Table 8]

【0040】表8に示された結果から、サーメット製切
削工具の表面を構成する結合相の結晶格子定数の値がサ
ーメット製切削工具内部の結合相の結晶格子定数の値よ
りも0.01オングストローム以上小さいISO規格S
NGG120408(研磨級スローアウエイチップ)の
形状を有する本発明切削工具8〜10は、その差が0.
01オングストローム未満のISO規格SNGG120
408(研磨級スローアウエイチップ)の形状を有する
従来切削工具8〜10に比べて耐塑性変形性および耐熱
クラック性に優れていることが分かる。
From the results shown in Table 8, the value of the crystal lattice constant of the binder phase constituting the surface of the cermet cutting tool is 0.01 Å larger than the value of the crystal lattice constant of the binder phase inside the cermet cutting tool. Smaller ISO standard S
The difference between the cutting tools 8 to 10 of the present invention having the shape of NGG120408 (abrasive grade throw-away tip) is 0.
ISO standard SNGG120 less than 01 Å
It can be seen that compared to the conventional cutting tools 8 to 10 having the shape of 408 (polishing grade throw-away tip), they are excellent in plastic deformation resistance and heat crack resistance.

【0041】[0041]

【発明の効果】この発明のサーメット製切削工具および
表面被覆サーメット製切削工具は、従来よりも工具寿命
を大幅に向上させることができ、産業上優れた効果を奏
するものである。
The cutting tool made of cermet and the cutting tool made of surface-coated cermet of the present invention can greatly improve the tool life as compared with the conventional one, and have excellent industrial effects.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B23B 27/14 B23P 15/28 C22C 29/02 - 29/04 ──────────────────────────────────────────────────続 き Continuation of front page (58) Field surveyed (Int. Cl. 7 , DB name) B23B 27/14 B23P 15/28 C22C 29/02-29/04

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 鉄族金属のうち1種または2種以上から
なる結合相形成成分:1〜30重量%と、残りが組成
式:TiC、TiN、TiCN、または(Ti、M)
(CN)(ただし、Mは、Ta、Nb、V、Zr、W、
Mo、Crのうちの1種または2種以上)で表される炭
化物、窒化物、炭窒化物および複合炭窒化物のうちの1
種または2種以上からなる硬質分散相形成成分(以下、
単に硬質分散相形成成分という)とからなる組成を有す
るサーメット製切削工具において、 前記サーメット製切削工具の表面を構成する結合相の結
晶格子定数の値は、サーメット製切削工具内部の結合相
の結晶格子定数の値よりも0.01オングストローム以
上小さいことを特徴とするサーメット製切削工具。
1. A binder phase-forming component comprising one or more of iron group metals: 1 to 30% by weight, and the remainder having a composition formula: TiC, TiN, TiCN, or (Ti, M)
(CN) (where M is Ta, Nb, V, Zr, W,
One or more of Mo, Cr), one of carbides, nitrides, carbonitrides, and composite carbonitrides
Or a hard dispersed phase-forming component comprising two or more
A cermet cutting tool having a composition consisting of a hard dispersed phase-forming component), wherein the value of the crystal lattice constant of the binder phase constituting the surface of the cermet cutting tool is a crystal of the binder phase inside the cermet cutting tool. 0.01 angstrom or less than the value of lattice constant
A cermet cutting tool characterized by its small size .
【請求項2】 鉄族金属のうち1種または2種以上から
なる結合相形成成分:1〜30重量%と、残りが硬質分
散相形成成分からなる組成を有するサーメット製切削工
具において、 前記サーメット製切削工具の表面から深さ:0.1mm
以内の表層部を構成する結合相の結晶格子定数の値は、
サーメット製切削工具の表面から深さ:1mm以上の内
部を構成する結合相の結晶格子定数の値よりも0.01
オングストローム以上小さいことを特徴とするサーメッ
ト製切削工具。
2. A cermet-made cutting tool having a composition comprising 1 to 30% by weight of a binder phase-forming component composed of one or more of iron group metals and a balance composed of a hard dispersed phase-forming component. Depth from the surface of the cutting tool: 0.1mm
The value of the crystal lattice constant of the binder phase constituting the surface layer within
Depth from the surface of the cermet cutting tool: 0.01 mm or more than the value of the crystal lattice constant of the binder phase constituting the inner part of 1 mm or more.
Cermet cutting tool characterized by being smaller than angstrom .
【請求項3】 請求項1〜2記載のサーメット製切削工
具を基体とし、その表面に、平均層厚:0.5〜10μ
mの炭化チタン、窒化チタンおよび炭窒化チタンの内の
1種の単層または2種以上の複数層からなる硬質層を被
覆してなることを特徴とする表面被覆サーメット製切削
工具。
3. A cutting tool made of cermet according to claim 1 or 2 as a substrate, having an average layer thickness of 0.5 to 10 μm on its surface.
m. A surface-coated cermet cutting tool comprising a single layer of titanium carbide, titanium nitride and titanium carbonitride, and a hard layer composed of two or more layers.
JP28958592A 1992-10-02 1992-10-02 Cermet cutting tools and surface coated cermet cutting tools Expired - Lifetime JP3254761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28958592A JP3254761B2 (en) 1992-10-02 1992-10-02 Cermet cutting tools and surface coated cermet cutting tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28958592A JP3254761B2 (en) 1992-10-02 1992-10-02 Cermet cutting tools and surface coated cermet cutting tools

Publications (2)

Publication Number Publication Date
JPH06114609A JPH06114609A (en) 1994-04-26
JP3254761B2 true JP3254761B2 (en) 2002-02-12

Family

ID=17745142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28958592A Expired - Lifetime JP3254761B2 (en) 1992-10-02 1992-10-02 Cermet cutting tools and surface coated cermet cutting tools

Country Status (1)

Country Link
JP (1) JP3254761B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2948803B1 (en) 1998-03-31 1999-09-13 日本特殊陶業株式会社 Cermet tool and its manufacturing method
US9074270B2 (en) 2008-09-26 2015-07-07 Kyocera Corporation Sintered cermet and cutting tool

Also Published As

Publication number Publication date
JPH06114609A (en) 1994-04-26

Similar Documents

Publication Publication Date Title
JP5328653B2 (en) Ti-based cermet, coated cermet and cutting tool
JP5559575B2 (en) Cermet and coated cermet
JP3250134B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance
JP3972299B2 (en) Surface coated cermet cutting tool with excellent chipping resistance in high speed heavy cutting
JP2009066741A (en) Cutting tool made of wc-based cemented carbide excellent in chipping resistance
JP4461407B2 (en) Cutting tool made of surface-coated cemented carbide with excellent chipping resistance in high-speed intermittent cutting
JP3254761B2 (en) Cermet cutting tools and surface coated cermet cutting tools
JP3331929B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer
JP2007136655A (en) Surface coated cutting tool made of cubic boron nitride-base ultra-high pressure sintered material having hard coated layer exhibiting excellent wear resistance in high-speed heavy cutting of high-hardness steel
JP3250414B2 (en) Method for producing cutting tool coated with titanium carbonitride layer surface
JP3693001B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed cutting and hard coating layer
JP3269305B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent interlayer adhesion with hard coating layer
JPS5928628B2 (en) Surface coated cemented carbide tools
JP2003136303A (en) Surface coated cemented carbide cutting tool having hard coating layer exerting excellent wear resistance in high-speed cutting
JP5023895B2 (en) Surface coated cutting tool
JP4013238B2 (en) Method of manufacturing a surface-coated tungsten carbide-based cemented carbide cutting tool that exhibits excellent fracture resistance in intermittent heavy cutting
JP3661503B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance with hard coating layer in intermittent heavy cutting
JP3849135B2 (en) Cutting tool made of surface-coated cemented carbide with a hard coating layer showing good biting properties against the work material under heavy cutting conditions
JP2003145317A (en) Cutting tool of surface-coated cemented carbide with abrasion-resistant coat layer having excellent adhesion performance and chipping resistance
JP2910293B2 (en) Manufacturing method of tungsten carbide based cemented carbide cutting tool coated with hard layer
JP3912494B2 (en) Slow-away tip made of surface-coated cemented carbide that exhibits excellent heat-resistant plastic deformation with a hard coating layer
JPH09248703A (en) Surface coating tungsten carbide radical cemented carbide cutting tool having excellent chipping resistance in hard coating layer
JP2748583B2 (en) Surface-coated tungsten carbide based cemented carbide cutting tool with excellent adhesion of hard coating layer
JP3230396B2 (en) Surface-coated tungsten carbide based cemented carbide cutting tool with excellent interlayer adhesion with hard coating layer
JP4210931B2 (en) Surface-coated throw-away tip that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011030

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071130

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081130

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081130

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091130

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091130

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 11

EXPY Cancellation because of completion of term