JP3252686B2 - How to make a thermal spray coating - Google Patents

How to make a thermal spray coating

Info

Publication number
JP3252686B2
JP3252686B2 JP00110896A JP110896A JP3252686B2 JP 3252686 B2 JP3252686 B2 JP 3252686B2 JP 00110896 A JP00110896 A JP 00110896A JP 110896 A JP110896 A JP 110896A JP 3252686 B2 JP3252686 B2 JP 3252686B2
Authority
JP
Japan
Prior art keywords
plating
thermal spray
spray coating
particles
conductive particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00110896A
Other languages
Japanese (ja)
Other versions
JPH09157825A (en
Inventor
晴信 鈴木
仁 村松
徹也 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Co Ltd
Original Assignee
Suzuki Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Co Ltd filed Critical Suzuki Motor Co Ltd
Priority to JP00110896A priority Critical patent/JP3252686B2/en
Publication of JPH09157825A publication Critical patent/JPH09157825A/en
Application granted granted Critical
Publication of JP3252686B2 publication Critical patent/JP3252686B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、導電性粒子を用い
た分散めっきを母材表面に施すことによる、密着性に優
れた溶射皮膜の作成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a thermal sprayed coating having excellent adhesion by applying dispersion plating using conductive particles to the surface of a base material.

【0002】[0002]

【従来の技術】溶射皮膜を作成するときには、主として
アンカー効果によって相手材との密着強さを確保してい
る。そのため、溶射皮膜の密着強さを向上させるには、
相手材表面を溶射前にサンドブラスト処理などによっ
て、粗面化する必要がある。また、サンドブラスト処理
による粗面化の代わりに、めっき皮膜を下地層として用
い、めっき皮膜の表面粗さが大きいこと及び溶射皮膜と
のなじみやすさを利用して、密着強さを向上させる方法
がある。この方法に用いられるめっき皮膜には、Ni−
PやNi−P−SiC等がある。
2. Description of the Related Art When forming a thermal sprayed coating, the adhesion strength to a counterpart material is secured mainly by an anchor effect. Therefore, to improve the adhesion strength of the thermal spray coating,
It is necessary to roughen the surface of the mating material by sandblasting or the like before thermal spraying. In addition, instead of roughening by sandblasting, a method of using a plating film as an underlayer and improving the adhesion strength by utilizing the large surface roughness of the plating film and the easiness of compatibility with the thermal spray coating is known. is there. The plating film used in this method includes Ni-
P and Ni-P-SiC are available.

【0003】[0003]

【発明が解決しようとする課題】しかし、サンドブラス
ト処理により得られる母材の表面粗さは、3〜5μmR
a程度で、密着強さの向上には限界がある。また、Ni
−PやNi−P−SiC等のめっきでは、膜厚を300
μmと非常に大きくした場合でも、サンドブラスト処理
時と比べて、1. 5倍程度の密着強さしか得ることがで
きない。例えば、図6に示すように、めっき液中にSi
Cのような絶縁性粒子6をNi−P等のめっきマトリッ
クス中に分散させた場合、めっき層2中に取り込まれた
分散材を用いても、母材1の表面のめっき皮膜の表面粗
さが著しく大きくなることはない。よって、経済性を考
えた場合、それ以上にめっき膜厚を大きくして、密着強
さの向上をはかることは好ましくない。
However, the surface roughness of the base material obtained by sandblasting is 3 to 5 μmR.
At about a, there is a limit in improving the adhesion strength. Also, Ni
-P or Ni-P-SiC plating has a thickness of 300
Even when the thickness is as large as μm, only 1.5 times the adhesion strength can be obtained as compared with the sandblast treatment. For example, as shown in FIG.
When the insulating particles 6 such as C are dispersed in a plating matrix such as Ni-P, the surface roughness of the plating film on the surface of the base material 1 can be obtained even when the dispersing material taken into the plating layer 2 is used. Does not increase significantly. Therefore, from the viewpoint of economy, it is not preferable to increase the plating film thickness further to improve the adhesion strength.

【0004】したがって、本発明の目的は、従来のめっ
き法を用いた場合よりもめっき皮膜の厚さを減少させな
がら、めっきの表面粗さを大きくすることで、より大き
な密着強さを確保でき、コスト低減と作業性の向上を図
ることが可能な溶射皮膜の作成方法を提供することにあ
る。
Accordingly, an object of the present invention is to increase the surface roughness of the plating while reducing the thickness of the plating film as compared with the case of using the conventional plating method, thereby securing a greater adhesion strength. It is another object of the present invention to provide a method for forming a thermal spray coating capable of reducing costs and improving workability.

【0005】[0005]

【課題を解決するための手段】本発明は、母材の表面に
溶射下地層として導電性粒子を分散させためっきを施
し、そのめっき層の表面に溶射皮膜を作成する溶射皮膜
の作成方法を提供する。本発明の溶射皮膜の作成方法で
用いる導電性粒子としては、金属粒子や、活性炭、グラ
ファイトといった炭素粒子など様々なものがあげられ
る。導電性粒子の粒径は、0. 1〜75μmの範囲が好
ましい。このめっき層の表面粗さは、3μmRa以上で
あることが好ましい。また、上記導電性粒子として銅粒
子を使用する場合、銅粒子の分散量は0. 2〜5. 0g
/lの範囲とするのがよい。銅粒子を導電性粒子として
用いる場合には、比重が大きいため、特にその粒径は、
0.1〜40μmとするのが良い。上記導電性粒子とし
て炭素粒子を使用してもよく、その場合、炭素粒子のめ
っき液に対する分散量は、5〜130g/lが好まし
い。炭素粒子を導電性粒子として用いる場合には、粒径
は1〜75μmとするのがよい。
SUMMARY OF THE INVENTION The present invention provides a method for forming a thermal spray coating, in which a surface of a base material is plated as a thermal spray underlayer with conductive particles dispersed therein, and a thermal spray coating is formed on the surface of the plating layer. provide. Examples of the conductive particles used in the method of forming a thermal sprayed coating of the present invention include various particles such as metal particles and carbon particles such as activated carbon and graphite. The particle size of the conductive particles is preferably in the range of 0.1 to 75 μm. The surface roughness of the plating layer is preferably 3 μmRa or more. When copper particles are used as the conductive particles, the amount of the copper particles dispersed is 0.2 to 5.0 g.
/ L range. When copper particles are used as the conductive particles, since the specific gravity is large, especially the particle size,
The thickness is preferably 0.1 to 40 μm. Carbon particles may be used as the conductive particles. In this case, the dispersion amount of the carbon particles in the plating solution is preferably 5 to 130 g / l. When carbon particles are used as conductive particles, the particle size is preferably 1 to 75 μm.

【0006】[0006]

【発明の実施の形態】本発明の溶射皮膜の作成方法は、
図1に示すように、母材1の表面に溶射下地層として導
電性粒子を分散させためっきを施し、そのめっき層2の
表面に溶射皮膜3を作成することを特徴としている。本
発明の方法では、Ni−P等のめっきマトリックス中に
銅や炭素などの導電性粒子4を分散させたことで、図2
に示すように、母材1の表面に付着した導電性粒子4の
周りにめっきの成長が選択的に起こる。めっき層に絶縁
性粒子を分散させた場合やサンドブラスト処理時とは異
なり、その選択的に起こっためっきの成長部5が形成さ
れることによって、めっきの表面粗さが著しく大きくな
る。
BEST MODE FOR CARRYING OUT THE INVENTION
As shown in FIG. 1, the surface of the base material 1 is plated with a dispersion of conductive particles as a thermal spray underlayer, and a thermal spray coating 3 is formed on the surface of the plating layer 2. According to the method of the present invention, the conductive particles 4 such as copper and carbon are dispersed in a plating matrix such as Ni-P.
As shown in FIG. 5, plating grows selectively around the conductive particles 4 attached to the surface of the base material 1. Unlike the case where insulating particles are dispersed in the plating layer and the time of sandblasting, the formation of the selective growth portion 5 of the plating significantly increases the surface roughness of the plating.

【0007】溶射皮膜の密着強さは、アンカー効果によ
るものが主であるため、表面粗さの値が密着強さに大き
く影響する。めっきを下地層とした場合でも、サンドブ
ラスト処理時と同等以上の密着強さを得るためには、3
μmRa以上の表面粗さが必要である。図3の(A)に
示すように、従来のような絶縁性粒子6を用いた分散め
っきの表面に溶射皮膜3を作成しても、導電性粒子を用
いた分散めっきのときとは異なり、めっき層の選択的な
成長はみられず、アンカー効果もごく小さい。図3の
(B)に示すように、本発明の導電性粒子を用いた分散
めっき層2の表面に溶射を行うと、異常成長しためっき
皮膜の隙間に溶射皮膜3が入り込むため、アンカー効果
が高まり、溶射皮膜3の密着強さが大きくなる。したが
って、小さな膜厚で大きな表面粗さが得られる本発明の
導電性粒子を用いた分散めっきは、溶射下地層として用
いるのに適している。
[0007] Since the adhesion strength of the thermal spray coating is mainly due to the anchor effect, the value of the surface roughness greatly affects the adhesion strength. Even when plating is used as an underlayer, in order to obtain an adhesion strength equal to or higher than that during sandblasting, 3
A surface roughness of at least μmRa is required. As shown in FIG. 3A, even when the thermal spray coating 3 is formed on the surface of the conventional dispersion plating using the insulating particles 6, unlike the case of the dispersion plating using the conductive particles, There is no selective growth of the plating layer, and the anchor effect is very small. As shown in FIG. 3B, when thermal spraying is performed on the surface of the dispersed plating layer 2 using the conductive particles of the present invention, the thermal spray coating 3 penetrates into gaps between the abnormally grown plating films, so that the anchor effect is reduced. As a result, the adhesion strength of the thermal spray coating 3 increases. Therefore, the dispersion plating using the conductive particles of the present invention, which can obtain a large surface roughness with a small film thickness, is suitable for use as a thermal spray underlayer.

【0008】皮膜の作成は、例えば、母材がアルミニウ
ム合金であり、導電性粒子に銅粒子又は炭素粒子を用い
た場合には、以下の(1)から(7)の各工程を順次経
て行うことができる。 (1)アルカリ脱脂 アルカリ性溶液中に母材を浸漬して、表面の油脂分など
の脱脂を行い、水洗いする。
For example, when the base material is an aluminum alloy and copper particles or carbon particles are used as the conductive particles, the film is formed by sequentially performing the following steps (1) to (7). be able to. (1) Alkaline degreasing The base material is immersed in an alkaline solution to degrease surface oils and the like, and then washed with water.

【0009】(2)混酸処理 アルカリ脱脂処理を行った母材を、室温でフッ酸と硝酸
の混酸液中に浸漬して、アルカリ脱脂により生じたスマ
ットの除去を行い、水洗いする。
(2) Mixed acid treatment The base material subjected to the alkali degreasing treatment is immersed in a mixed acid solution of hydrofluoric acid and nitric acid at room temperature to remove the smut generated by the alkali degreasing, followed by washing with water.

【0010】(3)亜鉛置換 混酸処理を行った母材を、室温で亜鉛置換液中に浸漬
し、その後、水洗いする。この処理によって、亜鉛置換
液中にアルミニウムが溶解し、液中の亜鉛イオンがアル
ミニウムの表面に金属亜鉛となって析出する。
(3) Zinc Substitution The base material subjected to the mixed acid treatment is immersed in a zinc substitution liquid at room temperature, and then washed with water. By this treatment, aluminum is dissolved in the zinc-substituted solution, and zinc ions in the solution are precipitated as metal zinc on the surface of the aluminum.

【0011】(4)硝酸処理 亜鉛置換を行った母材を、室温で硝酸水溶液中に浸漬し
て、亜鉛置換皮膜を剥離する。
(4) Nitric acid treatment The zinc-substituted base material is immersed in a nitric acid aqueous solution at room temperature to peel off the zinc-substituted film.

【0012】(5)亜鉛置換 母材を室温で再び亜鉛置換液中に浸漬し、その後、水洗
いする。
(5) The zinc-substituted base material is immersed again in the zinc-substituted solution at room temperature, and then washed with water.

【0013】(6)分散めっき 2度目の亜鉛置換を行った母材の表面にNi−P−Cu
やNi−P−活性炭などの分散めっきを行い、その後、
水洗いする。
(6) Dispersion plating Ni-P-Cu is applied on the surface of the base material after the second zinc substitution.
And dispersion plating such as Ni-P-activated carbon, and then
Wash with water.

【0014】めっき方法には無電解法と電解法がある
が、所定の膜厚を任意に短時間で作成しやすいこと、無
電解法では導電性粒子の効果が得られないことの2点か
ら、電解法がより好適である。導電性粒子のめっき液に
対する分散量は、銅分子を導電性粒子として用いる場合
には、0. 2g/l程度でも十分に効果があるが、分散
量を大きくするほど表面粗さが大きくなり、密着強さも
向上する。ただし、あまり大きくしすぎると、分散して
いる導電性粒子によってめっきマトリックスの成長が抑
えられる。従って、最大でも5g/lが限界の分散量で
あると考えられる。すなわち、銅粒子の好ましい分散量
は、0. 2〜5g/lの範囲であり、最も好ましくは、
1g/l前後である。
[0014] There are two electroplating methods, an electroless method and an electrolytic method. The two points are that it is easy to form a predetermined film thickness arbitrarily in a short time and that the electroless method cannot obtain the effect of conductive particles. The electrolysis method is more preferable. In the case where copper molecules are used as the conductive particles, the amount of the conductive particles dispersed in the plating solution is sufficiently effective even at about 0.2 g / l, but the larger the amount of the dispersion, the larger the surface roughness becomes. The adhesion strength is also improved. However, if it is too large, the growth of the plating matrix is suppressed by the dispersed conductive particles. Therefore, it is considered that the maximum dispersion amount is 5 g / l. That is, the preferred dispersion amount of the copper particles is in the range of 0.2 to 5 g / l, and most preferably,
It is around 1 g / l.

【0015】炭素粒子を導電性粒子として用いる場合に
は、活性炭、グラファイト等の炭素粒子が好ましい。炭
素粒子は、5g/l以上の分散量が必要であり、5g/
l以下ではめっきの選択的な成長が不十分なため、望ま
しいめっきの表面粗さが得られない。炭素分散量が13
0g/l以上でも十分にめっきの表面粗さを大きくする
ことができるが、めっき皮膜内に取り込むことができる
活性炭量に限界があるため、過度の分散量は無駄とな
り、好ましくない。比較的大きい密着強さを得ることが
できる40〜90g/lが特に好ましい範囲である。導
電性粒子は、通常のめっき液に投入して、攪拌すればよ
い。
When carbon particles are used as the conductive particles, carbon particles such as activated carbon and graphite are preferred. The carbon particles need a dispersion amount of 5 g / l or more, and 5 g / l
If it is less than 1, the selective growth of the plating is insufficient, and the desired surface roughness of the plating cannot be obtained. 13 carbon dispersion
Although the surface roughness of the plating can be sufficiently increased even with 0 g / l or more, the amount of activated carbon that can be taken into the plating film is limited, so that an excessive amount of dispersion is wasteful and is not preferable. A particularly preferred range is from 40 to 90 g / l, at which a relatively large adhesion strength can be obtained. The conductive particles may be charged into a normal plating solution and stirred.

【0016】めっき皮膜の表面粗さは、めっき膜厚が大
きく、導電性粒子の分散量が多いほど大きくなる傾向が
ある。めっき膜厚は、100μm程度が望ましい。あま
り小さいと、十分な表面粗さを得ることができない。ま
た、大きすぎると、めっき時間がかかり経済的でなくな
る。この方法により得られためっき層の表面粗さは、約
3. 0〜50μmRaの範囲となる。
The surface roughness of the plating film tends to increase as the plating film thickness increases and as the amount of dispersed conductive particles increases. The plating film thickness is desirably about 100 μm. If it is too small, sufficient surface roughness cannot be obtained. On the other hand, if it is too large, it takes a long time for plating, which is not economical. The surface roughness of the plating layer obtained by this method is in the range of about 3.0 to 50 μmRa.

【0017】(7)プラズマ溶射 最後にめっき層表面に金属、サーメット又はセラミック
スの溶射材料を溶射して、溶射皮膜を形成する。溶射法
としては、プラズマ溶射法を用いるのが好適である。 上記方法による(1)〜(7)の各工程を順に経ると、
母材にめっきを施し、そのめっき層の表面に溶射皮膜を
作成できる。
(7) Plasma spraying Finally, a metal, cermet or ceramic spray material is sprayed on the surface of the plating layer to form a spray coating. As the thermal spraying method, it is preferable to use a plasma thermal spraying method. When each of the steps (1) to (7) according to the above method is sequentially performed,
A base material is plated, and a thermal spray coating can be formed on the surface of the plating layer.

【0018】[0018]

【実施例】以下に実施例を挙げて、本発明をさらに詳細
に説明するが、これらにより本発明を制限するものでは
ない。ここでは代表的な導電性粒子である銅粒子及び活
性炭を例にとって説明するが、本発明は導電性粒子を銅
粒子及び活性炭に限定するものではない。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the present invention is limited thereto. Here, copper particles and activated carbon, which are representative conductive particles, will be described as an example, but the present invention is not limited to copper particles and activated carbon.

【0019】試験片として、アルミニウム鋳造合金(A
C4C)の板状体(50×130×8t mm)を使用し
た。65℃で2分間のアルカリ脱脂処理を行った試験片
を、室温でフッ酸:硝酸=1:3の割合の混酸液中に3
0秒間浸漬して、水洗いした。混酸処理後、室温で亜鉛
置換液中に30秒間浸漬し、その後、水洗いした。次
に、硝酸水溶液中に室温で15秒間浸漬した後、室温で
再び亜鉛置換液中に30秒間浸漬して水洗いし、2度目
の亜鉛置換を行った。
As a test piece, an aluminum cast alloy (A
Plate-like body of C4C) a (50 × 130 × 8 t mm ) was used. A test piece subjected to alkaline degreasing treatment at 65 ° C. for 2 minutes was placed in a mixed acid solution of hydrofluoric acid: nitric acid = 1: 3 at room temperature.
It was immersed for 0 seconds and washed with water. After the mixed acid treatment, the substrate was immersed in a zinc replacement solution at room temperature for 30 seconds, and then washed with water. Next, after being immersed in a nitric acid aqueous solution at room temperature for 15 seconds, it was immersed again in a zinc substitution solution at room temperature for 30 seconds, washed with water, and subjected to a second zinc substitution.

【0020】実施例1〜5、比較例1 (導電性粒子として銅粒子を用いた場合)2度目の亜鉛
置換を行った試験片の表面にNi−P−Cuの分散めっ
きを行って、膜厚が約60μmのめっき層を作成し、水
洗いした。
Examples 1 to 5 and Comparative Example 1 (In the case of using copper particles as conductive particles) Ni-P-Cu dispersion plating was performed on the surface of a test piece subjected to the second zinc substitution to obtain a film. A plating layer having a thickness of about 60 μm was formed and washed with water.

【0021】めっき浴は、一般に使用されているスルフ
ァミン酸ニッケル浴とし、銅微粒子を分散させることに
より得られるNi−P−Cuの分散めっきを試験に供し
た。本実施例では、めっき方法として、電解法を採用し
た。めっき液中に分散させた銅の分散量は、実施例1で
は0. 25g/l、実施例2では0. 5g/l、実施例
3では0. 75g/l、実施例4では1. 0g/l、実
施例5では1. 25g/lとした。また、比較例1は、
めっきを行わず、母材にブラスト処理後、溶射皮膜を作
成したものである。
The plating bath was a commonly used nickel sulfamate bath, and Ni--P--Cu dispersion plating obtained by dispersing copper fine particles was used for the test. In this embodiment, an electrolysis method was adopted as a plating method. The amount of copper dispersed in the plating solution was 0.25 g / l in Example 1, 0.5 g / l in Example 2, 0.75 g / l in Example 3, and 1.0 g in Example 4. / L, and in Example 5, it was 1.25 g / l. Comparative Example 1
This is the one in which the base material is blasted without plating and then a thermal spray coating is formed.

【0022】この方法により得られためっき層の表面粗
さは、後述する表1で示すように3. 2〜46. 7μm
Raの範囲であった。最後に、めっき層表面に金属の溶
射材料を溶射して、溶射皮膜を形成した。溶射法として
は、プラズマ溶射法を用い、また、溶射材料としては、
NiCrを用いた。
The surface roughness of the plating layer obtained by this method is 3.2 to 46.7 μm as shown in Table 1 described later.
Ra range. Finally, a metal spray material was sprayed on the plating layer surface to form a sprayed film. As a thermal spraying method, a plasma spraying method is used, and as a thermal spraying material,
NiCr was used.

【0023】上記のような方法で得られた溶射皮膜の密
着性を評価するために、試験片を30×30mmの切断
片に切り出して試料9とし、引っ張り試験を行った。引
っ張り試験回数は、各試料とも3回ずつとし、3回の平
均を表1に示した。
In order to evaluate the adhesion of the thermal sprayed coating obtained by the above-mentioned method, a test piece was cut out into a cut piece of 30 × 30 mm to obtain a sample 9, and a tensile test was performed. The number of tensile tests was three for each sample, and the average of the three is shown in Table 1.

【0024】密着性試験には、図4に示すようなJIS
法に従った、直径D1 が40mmの上下一対の引っ張り
試験治具7、8を用いて行われるのがふつうである。こ
の試験法は、溶射皮膜3が形成された試料9の上下面
を、接着剤10で試験治具7、8に固定し、試料9が上
下に引っ張られた時の溶射皮膜3にかかる剥離荷重を測
定するものである。しかし、密着性が良好な溶射皮膜3
の場合には、皮膜3の剥離に要する荷重が非常に大きす
ぎて、引っ張り試験機及び接着剤10の性能を越えてし
まうことがある。そのため、本実施例では、図5に示す
試験法のように、直径D2 が25mmの上下一対の引っ
張り試験治具11、12を用いて、溶射皮膜3に接着す
る側の試験治具11の先端部直径dを12mmとして接
着面積を小さく形成し、小さい荷重で溶射皮膜3の剥離
が起こるようにして引っ張り試験を行った。
In the adhesion test, JIS as shown in FIG.
According to the law, it is usual that the diameter D 1 is performed using a pair of upper and lower tensile test jig 7 and 8 of 40 mm. In this test method, the upper and lower surfaces of the sample 9 on which the thermal spray coating 3 is formed are fixed to test jigs 7 and 8 with an adhesive 10, and a peeling load applied to the thermal spray coating 3 when the sample 9 is pulled up and down. Is measured. However, thermal sprayed coating 3 having good adhesion
In the case of (1), the load required for peeling the film 3 may be too large, and may exceed the performance of the tensile tester and the adhesive 10. Therefore, in this embodiment, as shown in FIG. 5, a pair of upper and lower tensile test jigs 11 and 12 having a diameter D 2 of 25 mm is used to attach the test jig 11 to the thermal spray coating 3. A tensile test was performed with the tip diameter d being 12 mm to form a small adhesive area and the thermal spray coating 3 to be peeled off with a small load.

【0025】なお、JIS法では、引っ張り試験治具
7、8の面積を剥離面積とするのに対して、本実施例の
試験法では、試験治具11の先端部によって皮膜が引っ
張られて剥離した面積を剥離面積とした。また、密着強
さは、剥離荷重を剥離面積で割った値とした。上記のよ
うにして行った実施例1から5及び比較例1の試験結果
を表1に示す。表1から、めっき液中の銅分散量の増加
に伴って、めっき面の表面粗さと溶射皮膜の密着強さが
増加しているのがわかる。
In the JIS method, the area of the tensile test jigs 7 and 8 is defined as the peeling area, whereas in the test method of the present embodiment, the film is pulled by the tip of the test jig 11 and peeled. The area obtained was defined as a peeled area. The adhesion strength was a value obtained by dividing the peeling load by the peeling area. Table 1 shows the test results of Examples 1 to 5 and Comparative Example 1 performed as described above. From Table 1, it can be seen that the surface roughness of the plating surface and the adhesion strength of the thermal spray coating increase as the amount of copper dispersed in the plating solution increases.

【0026】[0026]

【表1】 [Table 1]

【0027】実施例6〜11、比較例2 (導電性粒子として炭素粒子を用いた場合)銅粒子を導
電性粒子として用いた場合と同じ手順で、2度目の亜鉛
置換を行った試験片の表面にNi−P−活性炭、又はN
i−P−グラファイトの分散めっきを行って、膜厚が約
60μmのめっき層を作成し、水洗いした。
Examples 6 to 11 and Comparative Example 2 (when carbon particles are used as conductive particles) A test piece subjected to a second zinc substitution by the same procedure as when copper particles were used as conductive particles was used. Ni-P-activated carbon or N
Dispersion plating of i-P-graphite was performed to form a plating layer having a thickness of about 60 μm, which was washed with water.

【0028】めっき浴は、スルファミン酸ニッケル浴と
し、活性炭又はグラファイトを分散させることにより得
られるNi−P−活性炭、又はNi−P−グラファイト
の分散めっきを試験に供した。本実施例では、めっき方
法として、電解法を採用した。めっき液中に分散させた
活性炭の分散量は、実施例6では5g/l、実施例7で
は10g/l、実施例8では40g/l、実施例9では
90g/l、実施例10では130g/lとした。ま
た、実施例11は、導電性粒子として、グラファイトを
40g/l分散させたものであり、比較例2は、活性炭
の分散量を3g/lとしたものである。めっき皮膜作成
後、めっき皮膜表面を充分に洗浄し、密着の弱い層を除
去した。この方法により得られためっき層の表面粗さ
は、後述する表2で示すように3. 6〜8. 4μmRa
の範囲であった。
The plating bath was a nickel sulfamate bath, and Ni-P-activated carbon or Ni-P-graphite dispersed plating obtained by dispersing activated carbon or graphite was subjected to the test. In the present embodiment, an electrolysis method was adopted as a plating method. The amount of activated carbon dispersed in the plating solution was 5 g / l in Example 6, 10 g / l in Example 7, 40 g / l in Example 8, 90 g / l in Example 9, and 130 g in Example 10. / L. In Example 11, 40 g / l of graphite was dispersed as conductive particles, and in Comparative Example 2, the dispersion amount of activated carbon was 3 g / l. After the formation of the plating film, the surface of the plating film was sufficiently washed to remove a layer having weak adhesion. The surface roughness of the plating layer obtained by this method was 3.6 to 8.4 μm Ra as shown in Table 2 below.
Was in the range.

【0029】最後に、めっき層表面に金属の溶射材料を
溶射して、溶射皮膜を作成した。溶射法としては、プラ
ズマ溶射法を用い、また、溶射材料としては、NiCr
を用いた。
Finally, a metal spray material was sprayed on the surface of the plating layer to form a sprayed coating. Plasma spraying is used as the thermal spraying method, and NiCr is used as the thermal spraying material.
Was used.

【0030】得られた溶射皮膜は、上記に述べた銅粒子
を導電性粒子として用いたときと同様に密着強さが測定
された。実施例6〜11及び比較例2の試験結果を表2
に示す。
The adhesion strength of the obtained thermal spray coating was measured in the same manner as when the copper particles described above were used as the conductive particles. Table 2 shows the test results of Examples 6 to 11 and Comparative Example 2.
Shown in

【0031】表2から、活性炭分散めっきを下地層とす
ることで、従来のブラスト処理よりも最大198%まで
密着強さを向上させることができることがわかった。活
性炭の分散量としては、5g/l以上が必要であり、5
g/l以下では、めっきの選択的な成長が不十分なた
め、密着強さの向上はみられない。また、130g/l
以上に多量に分散させた場合も、表面粗さ及び密着強さ
はほとんど変化しないことがわかった。なお、グラファ
イトを導電性粒子として用いた場合も、活性炭を用いた
とき同様、密着強さを向上させることができた。
From Table 2, it was found that the adhesion strength could be improved up to 198% compared to the conventional blasting treatment by using the activated carbon dispersed plating as the underlayer. The dispersion amount of activated carbon is required to be 5 g / l or more.
At g / l or less, the selective growth of the plating is insufficient, so that no improvement in the adhesion strength is observed. In addition, 130 g / l
It was found that the surface roughness and the adhesion strength hardly changed even when the particles were dispersed in a large amount as described above. In addition, even when graphite was used as the conductive particles, the adhesion strength could be improved as in the case of using activated carbon.

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【発明の効果】上記したところから明らかなように、本
発明によれば、サンドブラスト処理及び絶縁性粒子を分
散させためっきを下地層とした場合に比べて、密着強さ
が大幅に向上した溶射皮膜を得ることができる。また、
めっきを下地層としているので、めっき可能なものであ
れば、どのような素材を母材としても、本発明の溶射皮
膜の作成方法を適用することができ、溶射皮膜の密着強
さを向上できる。さらに、本発明によれば、絶縁性粒子
を分散させためっきを施した場合と同程度の密着強さを
得るのに必要なめっき膜厚が薄くてすむので、めっきの
処理時間を短縮でき、分散材の添加量を大幅に低減でき
るので、コスト低減と作業性の向上を図ることができ
る。安価な粒子を分散材として使用できるので、分散材
のコストを大幅に低減でき、経済的である。
As is apparent from the above description, according to the present invention, thermal spraying whose adhesion strength is greatly improved as compared with the case where the underlayer is formed by sandblasting and plating in which insulating particles are dispersed. A film can be obtained. Also,
Since plating is used as an underlayer, any material can be used as a base material, as long as it can be plated, and the method for forming a thermal spray coating of the present invention can be applied, and the adhesion strength of the thermal spray coating can be improved. . Furthermore, according to the present invention, the plating film thickness required to obtain the same level of adhesion strength as in the case where plating with insulating particles dispersed therein is required, so that the plating processing time can be reduced, Since the amount of the dispersant added can be significantly reduced, cost reduction and improvement in workability can be achieved. Since inexpensive particles can be used as the dispersing material, the cost of the dispersing material can be significantly reduced, and it is economical.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の溶射皮膜の切断面を示す模式図。FIG. 1 is a schematic view showing a cut surface of a thermal spray coating of the present invention.

【図2】本発明の導電性粒子を用いためっきが施された
母材の切断面を示す模式図。
FIG. 2 is a schematic view showing a cut surface of a base material plated with conductive particles of the present invention.

【図3】絶縁性粒子を用いためっきが施された溶射皮膜
の切断面(A)及び本発明の溶射皮膜の切断面(B)を
示す模式図。
FIG. 3 is a schematic diagram showing a cut surface (A) of a thermal spray coating coated with plating using insulating particles and a cut surface (B) of a thermal spray coating of the present invention.

【図4】JIS法による引っ張り試験治具。FIG. 4 is a tensile test jig according to the JIS method.

【図5】本発明の溶射皮膜を測定するのに用いた引っ張
り試験治具。
FIG. 5 is a tensile test jig used to measure the thermal sprayed coating of the present invention.

【図6】従来の絶縁性粒子を用いためっきが施された母
材の切断面を示す模式図。
FIG. 6 is a schematic view showing a cut surface of a base material plated with conventional insulating particles.

【符号の説明】[Explanation of symbols]

1 母材 2 めっき層 3 溶射皮膜 4 導電性粒子 5 選択的に起こっためっきの成長部 6 絶縁性粒子 7、8 引っ張り試験治具(JIS法) 9 試料 10 接着剤 11 引っ張り試験治具(上) 12 引っ張り試験治具(下) DESCRIPTION OF SYMBOLS 1 Base material 2 Plating layer 3 Thermal spray coating 4 Conductive particle 5 Growth part of plating which occurred selectively 6 Insulating particle 7, 8 Tensile test jig (JIS method) 9 Sample 10 Adhesive 11 Tensile test jig (top) 12) Tensile test jig (bottom)

フロントページの続き (56)参考文献 特開 昭58−3970(JP,A) (58)調査した分野(Int.Cl.7,DB名) C23C 4/02 C23C 4/06 C23C 4/10 C23C 28/02 Continuation of front page (56) References JP-A-58-3970 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C23C 4/02 C23C 4/06 C23C 4/10 C23C 28 / 02

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 母材表面に、溶射下地層として導電性粒
子を分散させためっきを施し、該めっきの表面上に溶射
皮膜を作成する溶射皮膜の作成方法であって、上記導電
性粒子として銅粒子を使用し、該銅粒子のめっき液に対
する分散量が0.2〜5.0g/Lの範囲である溶射皮
膜の作成方法。
Claims: 1. A method for producing a thermal spray coating, in which a base material surface is subjected to plating in which conductive particles are dispersed as a thermal spray base layer, and a thermal spray coating is formed on the surface of the plating. A method for producing a thermal spray coating using copper particles, wherein a dispersion amount of the copper particles in a plating solution is in a range of 0.2 to 5.0 g / L.
【請求項2】 母材表面に、溶射下地層として導電性粒
子を分散させためっきを施し、該めっきの表面上に溶射
皮膜を作成する溶射皮膜の作成方法であって、上記導電
性粒子として炭素粒子を使用し、該炭素粒子のめっき液
に対する分散量が5〜130g/Lの範囲である溶射皮
膜の作成方法。
2. A method for producing a thermal spray coating, wherein plating is performed on a surface of a base material by dispersing conductive particles as a thermal spray underlayer, and a thermal spray coating is formed on the surface of the plating. A method for producing a thermal spray coating, wherein carbon particles are used and a dispersion amount of the carbon particles in a plating solution is in a range of 5 to 130 g / L.
【請求項3】 上記メッキ表面の表面粗さが、3μmR
a以上である請求項1または2に記載の溶射皮膜の作成
方法。
3. The surface roughness of the plating surface is 3 μmR.
3. The method for producing a thermal sprayed coating according to claim 1, wherein the value is not less than a.
JP00110896A 1995-09-28 1996-01-09 How to make a thermal spray coating Expired - Fee Related JP3252686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00110896A JP3252686B2 (en) 1995-09-28 1996-01-09 How to make a thermal spray coating

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-250375 1995-09-28
JP25037595 1995-09-28
JP00110896A JP3252686B2 (en) 1995-09-28 1996-01-09 How to make a thermal spray coating

Publications (2)

Publication Number Publication Date
JPH09157825A JPH09157825A (en) 1997-06-17
JP3252686B2 true JP3252686B2 (en) 2002-02-04

Family

ID=26334273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00110896A Expired - Fee Related JP3252686B2 (en) 1995-09-28 1996-01-09 How to make a thermal spray coating

Country Status (1)

Country Link
JP (1) JP3252686B2 (en)

Also Published As

Publication number Publication date
JPH09157825A (en) 1997-06-17

Similar Documents

Publication Publication Date Title
US4346128A (en) Tank process for plating aluminum substrates including porous aluminum castings
EP0393169B1 (en) Method for plating on titanium
US4416739A (en) Electroplating of titanium and titanium base alloys
US6913791B2 (en) Method of surface treating titanium-containing metals followed by plating in the same electrolyte bath and parts made in accordance therewith
US2811484A (en) Electrodeposition of zinc on magnesium and its alloys
US5368719A (en) Method for direct plating of iron on aluminum
JP3252686B2 (en) How to make a thermal spray coating
US6932897B2 (en) Titanium-containing metals with adherent coatings and methods for producing same
JP3426800B2 (en) Pretreatment method for plating aluminum alloy material
KR101137493B1 (en) A electro plating method for aluminum alloy wheels
US6737173B2 (en) Pretreating method before plating and composites having a plated coat
JPS641557B2 (en)
JP4616490B2 (en) Plating method for CVT pulley
JP3213857B2 (en) Manufacturing method of precious metal plating
JP3452442B2 (en) Manufacturing method of platinum plated products
JPH07173635A (en) Method for surface treatment of metal
JP3153979B2 (en) Method for producing chromium-containing foil with excellent adhesion to resin or paint
JPH08209321A (en) Production of thermally sprayed coating
JP3196207B2 (en) Electroplating method for aluminum material
JP3525618B2 (en) Plating method for metal substrate
JP3683024B2 (en) High corrosion resistance Ni-P alloy electroplating method
JPH02149685A (en) Surface treatment of titanium and titanium-based composite material
JP2001192860A (en) Plating method to pulley for cvt and pretreating method in same plating method
JPH08232056A (en) Production of sprayed coating
JPH04362187A (en) Coating of tantalum with platinum

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees