JP3247704B2 - Heavy metal removal method - Google Patents

Heavy metal removal method

Info

Publication number
JP3247704B2
JP3247704B2 JP21869491A JP21869491A JP3247704B2 JP 3247704 B2 JP3247704 B2 JP 3247704B2 JP 21869491 A JP21869491 A JP 21869491A JP 21869491 A JP21869491 A JP 21869491A JP 3247704 B2 JP3247704 B2 JP 3247704B2
Authority
JP
Japan
Prior art keywords
polymer
chelate
type
heavy metals
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21869491A
Other languages
Japanese (ja)
Other versions
JPH0557280A (en
Inventor
高信 須郷
真策 丸山
邦夫 藤原
好和 村田
英明 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP21869491A priority Critical patent/JP3247704B2/en
Publication of JPH0557280A publication Critical patent/JPH0557280A/en
Application granted granted Critical
Publication of JP3247704B2 publication Critical patent/JP3247704B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Removal Of Specific Substances (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は水中の重金属の除去に関
するものである。
The present invention relates to the removal of heavy metals from water.

【0002】[0002]

【従来の技術】従来は、「水処理技術 vol.23、
No.1 1982 p3」に記載がある様に 1)不溶性重金属塩や水酸化物として沈殿させる方法 2)蒸発濃縮する方法 3)吸着剤によって吸着除去する方法 4)膜分離する方法 5)溶媒によって抽出する方法 6)電気化学的に電極に析出させる方法 などがある。
2. Description of the Related Art Conventionally, "water treatment technology vol.23,
No. 1 1982 p3 ”1) Method of precipitation as insoluble heavy metal salt or hydroxide 2) Method of evaporation and concentration 3) Method of adsorption and removal by adsorbent 4) Method of membrane separation 5) Extraction with solvent Method 6) There is a method of electrochemically depositing on an electrode.

【0003】重金属含有排水の処理方法では処理水質が
安定してかなり良質であることが要求される。
A method for treating heavy metal-containing wastewater requires that the quality of treated water be stable and of fairly high quality.

【0004】しかし現在量も広く用いられている1)の
水酸化物等の沈殿方法では、生成スラッジの後処理や回
収、再利用が難しいこと、pHを上げすぎた場合に両性
物質の再溶解が起ること、錯塩等の除去が困難なことな
どの問題がある。
However, in the method of precipitating hydroxide and the like, which is widely used at present 1), it is difficult to post-process, recover and reuse the formed sludge, and when the pH is too high, the amphoteric substance is re-dissolved. And the difficulty of removing complex salts and the like.

【0005】[0005]

【発明が解決しようとする課題】その点3)の吸着法の
なかでもキレート樹脂吸着法は、これらの問題点を解決
する方法広く利用されてきている。
Among these 3) adsorption methods, the chelate resin adsorption method has been widely used to solve these problems.

【0006】その適用分野も排水処理への応用として 1)工場排水処理への応用 非鉄金属精練工場、メッキ工場、金属表面処理工場 水銀法食塩電解工場、電池工場等 2)大学、病院等の排水処理への応用 3)ごみ埋め立て場、ごみ焼却場排水処理 等がある。[0006] The field of application is also applied to wastewater treatment 1) Application to factory wastewater treatment Non-ferrous metal refining factory, plating factory, metal surface treatment factory Mercury salt electrolysis factory, battery factory, etc. 2) Wastewater of universities, hospitals, etc. Application to waste treatment 3) Waste landfill, waste incineration plant wastewater treatment, etc.

【0007】カルボキシル基をキレート基として有する
ものを例にとると、Na型のキレート樹脂で排水を処理
すると処理水pHが上昇し、H型では逆にpHは低下す
る。そのため、処理水の中和処理が必要になる。
Taking wastewater having a carboxyl group as a chelating group as an example, treating wastewater with a Na-type chelating resin increases the pH of the treated water, and conversely decreases the pH with H-type. Therefore, a neutralization treatment of the treated water is required.

【0008】しかし後述の実施例でも明らかな様に、コ
バルトの様な遷移金属を除去しようとする場合、H型で
処理するよりもNa型で処理する方が能力的に優れてい
ることがわかる。
However, as will be apparent from the examples described later, when it is intended to remove a transition metal such as cobalt, it is understood that the treatment with the Na type is more excellent in performance than the treatment with the H type. .

【0009】これはNa塩型の方がカルボキシル基が解
離しているためである。
This is because the carboxyl group is dissociated in the Na salt type.

【0010】[0010]

【課題を解決するための手段】従ってNa型のキレート
樹脂を用い、装置内の処理水側、もしくは装置外の下流
に強酸性樹脂、もしくは強酸性樹脂と強塩基性樹脂から
成る中和機能を設けるのが重金属除去を考えると最も適
していると言える。
Accordingly, a neutralizing function consisting of a strongly acidic resin or a strongly acidic resin and a strongly basic resin is provided on the treated water side in the apparatus or on the downstream side outside the apparatus by using a Na type chelate resin. It can be said that the provision is most suitable in consideration of heavy metal removal.

【0011】即ち、本発明においては、処理水中の重金
属(イオン、コロイド)を除去するために弱酸性のキレ
ート官能基を塩型にした繊維状キレート高分子を用いる
ことを特徴としている。
That is, the present invention is characterized in that a fibrous chelate polymer having a salt type weakly acidic chelate functional group is used to remove heavy metals (ions and colloids) in treated water.

【0012】ここで、キレート高分子は高分子母体に金
属イオンとキレート結合する官能基を導入したもので、
弱酸性、または弱塩基性、または両性である。官能基は
表1の様に、N、S、O、Pを用いたものが多い。
The chelate polymer is obtained by introducing a functional group capable of chelating with a metal ion into a polymer matrix.
It is weakly acidic, weakly basic, or amphoteric. As shown in Table 1, many functional groups use N, S, O, and P.

【0013】 [0013]

【0014】また被処理液がアルカリ側に移行すると重
金属の形態もかわることが知られている。
It is known that when the liquid to be treated shifts to the alkali side, the form of the heavy metal also changes.

【0015】日本原子力学会誌vol.29,No.9
(1987)のP76、P77にpHによるコバルトの
形態について、次の記載がある。
The Journal of the Atomic Energy Society of Japan, vol. 29, No. 9
(1987) P76 and P77 have the following description of the form of cobalt depending on pH.

【0016】「錯体化学の知識によると、Coは酸性の
状態では8面体構造の〔Co(H2O)62+として存
在し、中性に近づくと4面体構造の〔Co(H2 O)〕
となり、アルカリ性になるとH2 OのかわりにOH基が
ついた〔Co(H2O)3 (OH)〕+ や非イオン状の
〔Co(H2 O)2 (OH)2 〕となる。8面体構造の
Coは安定に溶存するが、4面体構造のCoは不安定で
ある。」しかしNa+ はキレート樹脂との結合力が弱
く、純水を通しただけでも容易にH+ と置換されてい
く。
"According to knowledge of complex chemistry, Co exists in an octahedral structure [Co (H 2 O) 6 ] 2+ in an acidic state, and in a tetrahedral structure [Co (H 2 O)]
Next, the OH group in place of the H 2 O becomes alkalinity with [Co (H 2 O) 3 ( OH) ] + and a non-ionic form of [Co (H 2 O) 2 ( OH) 2 ]. The octahedral structure Co is stably dissolved, but the tetrahedral structure Co is unstable. However, Na + has a weak binding force to the chelating resin, and is easily replaced with H + even through pure water.

【0017】Na型キレート樹脂の状態から出発し、一
部H+ 、一部重金属イオンと置換されながら重金属が吸
着していくが、キレート樹脂ではH型と他のイオン型と
は容積差が大きく、H型から他のイオン型にかわると樹
脂によっては容積が2倍位になることがある。従って容
器の破損の恐れや、樹脂が収縮する過程で必要以上に樹
脂層の差圧が上昇し、特に懸濁物質が多い時にその影響
が大きい。
Starting from the state of the Na-type chelating resin, heavy metals are adsorbed while being partially replaced by H + and partially heavy metal ions. However, in the chelating resin, the volume difference between the H-type and other ionic forms is large. When the H-type is replaced with another ion-type, the volume may be doubled depending on the resin. Therefore, there is a risk of damage to the container, and the differential pressure of the resin layer increases more than necessary in the process of resin shrinkage, and this is particularly significant when the amount of suspended matter is large.

【0018】これに対し、樹脂のかわりに繊維を用いる
ことで重金属を除去する過程で充てん層の体積変動もな
く、差圧も安定していることが確認できた。官能基を付
与する方法としてはポリエチレンやポリプロピレンを基
材とした放射線グラフト重合を行う方法があり、本発明
には好適である。付与できる単量体としては、アクリル
酸、メタクリル酸、フマル酸、マレイン酸等がある。官
能基に転換可能なものとしてメタクリル酸グリシジル、
スチレン、クロロメチルスチレン等がある。
On the other hand, it was confirmed that there was no change in the volume of the packed bed in the process of removing heavy metals by using fibers instead of the resin, and the differential pressure was stable. As a method for imparting a functional group, there is a method of performing radiation graft polymerization using polyethylene or polypropylene as a base, and is suitable for the present invention. Examples of the monomer that can be provided include acrylic acid, methacrylic acid, fumaric acid, and maleic acid. Glycidyl methacrylate which can be converted into a functional group,
There are styrene, chloromethylstyrene and the like.

【0019】繊維は単繊維、単繊維の集合体である織布
および不織布、それら加工品より選択して用いることが
できる。使用にあたっては繊維の特徴である表面積の大
きさ(したがって反応速度大)、および成形加工の容易
さを生かすことができる。単繊維としてはフィラメント
状やその切断したものを利用することができるが、あま
り短く切断すると取扱いが困難であるばかりでなく、充
てん層で使用した場合に差圧の上昇が早い。
The fibers can be selected from single fibers, woven fabrics and non-woven fabrics which are aggregates of single fibers, and processed products thereof. In use, the size of the surface area (therefore, the reaction rate is high), which is a characteristic of the fiber, and the ease of molding can be utilized. As a single fiber, a filament or a cut fiber thereof can be used. However, if the fiber is cut too short, not only is it difficult to handle but also the differential pressure rises rapidly when used in a packed bed.

【0020】単繊維の集合体である織布、不織布、撚糸
などはそのまま積層させて充てん層として用いてもよい
し、切断して充てんしてもよい。織布、不織布等を切断
し充てんする場合は最大幅を0.5〜50mm、特に好
ましくは0.5〜5mm、長さを最大幅以上とするのが
好ましい。さらに、織布、不織布等をプリーツ状やスパ
イラル状に成形し、カートリッジフィルタとして使用す
ることも可能である。これは繊維の利点の取扱いがよ
く、コンパクトでしかも微粒子と金属イオンの同時除去
という、機能の複合化ができる好適な例である。通常の
繊維断面は円形であるが、星形や中空など異径断面の繊
維も用途や要求水質等により選択することができる。放
射線グラフトはこのような種々の形状の基材にキレート
官能基を付与できるので好適である。
The woven fabric, nonwoven fabric, twisted yarn, etc., which are aggregates of single fibers, may be laminated as they are and used as a filling layer, or may be cut and filled. When cutting and filling a woven fabric, a nonwoven fabric, or the like, the maximum width is preferably 0.5 to 50 mm, particularly preferably 0.5 to 5 mm, and the length is preferably not less than the maximum width. Furthermore, a woven fabric, a nonwoven fabric, or the like can be formed into a pleated or spiral shape and used as a cartridge filter. This is a preferable example in which the advantages of the fiber are easily handled, the function is compact, and the function of compounding the fine particles and metal ions is simultaneously removed. Although the normal fiber cross section is circular, fibers having a different diameter cross section such as a star or a hollow can be selected according to the application, required water quality, and the like. Radiation grafting is preferred because it can impart chelating functional groups to such variously shaped substrates.

【0021】[0021]

【実施例】以下、本発明を実施例に基いて説明する。The present invention will be described below with reference to examples.

【0022】実施例1 三井石油化学(株)製不織布シンテックス(材質:ポリ
プロピレン)を用い、放射線グラフト重合によりアクリ
ル酸(弱酸)、グリシン(弱酸、弱塩基)を反応させて
官能基を導入した。以降、反応させた繊維を単にそれぞ
れアクリル酸、グリシンと呼ぶ。官能基導入に先立って
γ線20Mradを前照射し、その前者はその後アクリ
ル酸、後者はGMA(メタクリル酸グリシジル)を導入
後、2次反応としてグリシンを反応させた。得られた交
換容量は表2の通りであった。この不織布(H型、およ
びNa型)を巾1〜2mm、長さ50〜150mmにカ
ッターで切断して繊維状とし、図1に示すカラムに8c
c/gの充てん比容積で10cc充てんし、図1の試験
装置で通水試験を実施した。重金属の代表としてコバル
トに着目し、硝酸コバルト水溶液を用いた。試験は常温
(約20℃)で行い、比較的低濃度コバルト(0.3〜
0.4ppmで通水し、10m/hの通水条件とした。
アクリル酸、グリシンのH型、Na型について処理水の
コバルト濃度の経時変化を図2、pHの変化を図3に示
す。これよりグリシンについてはH型が処理水コバルト
濃度は高いが他は低く維持されていることがわかる。グ
リシンにおいてNa型にすることでコバルト除去性能が
向上することがわかる。しかし処理水pHはNa型にす
ることで上昇し、中和操作が必要となる。
Example 1 Using nonwoven fabric Syntex (material: polypropylene) manufactured by Mitsui Petrochemical Co., Ltd., acrylic acid (weak acid) and glycine (weak acid, weak base) were reacted by radiation graft polymerization to introduce a functional group. . Hereinafter, the reacted fibers are simply referred to as acrylic acid and glycine, respectively. Prior to functional group introduction, γ-ray 20 Mrad was pre-irradiated, the former was subsequently introduced with acrylic acid, the latter with GMA (glycidyl methacrylate), and then reacted with glycine as a secondary reaction. The exchange capacity obtained was as shown in Table 2. This non-woven fabric (H type and Na type) is cut into a fibrous shape by cutting with a cutter into a width of 1 to 2 mm and a length of 50 to 150 mm, and the column shown in FIG.
10 cc was filled at a filling specific volume of c / g, and a water flow test was carried out with the test device of FIG. Focusing on cobalt as a representative of heavy metals, an aqueous solution of cobalt nitrate was used. The test was conducted at room temperature (about 20 ° C), and the concentration of cobalt was relatively low (0.3 to
Water was passed at 0.4 ppm, and the water was passed at 10 m / h.
FIG. 2 shows the time-dependent change in the cobalt concentration of the treated water for the H-type and Na-type of acrylic acid and glycine, and FIG. 3 shows the change in the pH. From this, it can be seen that for glycine, the H-form of the treated water has a high concentration of cobalt in the treated water, but the others are kept low. It can be seen that the use of Na type in glycine improves the cobalt removal performance. However, the pH of the treated water rises by making it Na-type, and a neutralization operation is required.

【0023】差圧は初期が約0.03kg/cm2 に対
し、480時間の通水完了後も差圧上昇度は0〜0.0
2kg/cm2 であり、わずかであった。
The differential pressure is about 0.03 kg / cm 2 at the initial stage, and the differential pressure rise is 0 to 0.0 even after the completion of the water supply for 480 hours.
2 kg / cm 2 , which was slight.

【0024】 [0024]

【0025】実施例2 実施例1と同じ仕様の繊維を用い、被処理水のコバルト
濃度を1ppmにあげて試験を行った。処理水のコバル
ト濃度変化を図4、pHの変化を図5に示す。これよ
り、アクリル酸、グリシンともNa型の方がコバルト除
去性能は良好である。しかしpHはアルカリ例となり、
下段でpH調整が必要となる。差圧の傾向は実施例1と
かわらなかった。
Example 2 Using a fiber having the same specifications as in Example 1, a test was conducted by increasing the cobalt concentration of the water to be treated to 1 ppm. FIG. 4 shows the change in the cobalt concentration of the treated water, and FIG. 5 shows the change in the pH. Accordingly, the Na type of acrylic acid and glycine both have better cobalt removal performance. However, pH is an example of alkali,
PH adjustment is required at the bottom. The tendency of the differential pressure was not different from that of Example 1.

【0026】[0026]

【発明の効果】本発明により、液中の重金属を比較的低
差圧で効率よく除去することが可能となった。また処理
水のpHは上昇してしまうので装置内の処理水側、もし
くは下流に強酸性高分子、もしくは強酸性高分子と強塩
基性高分子からなる中和機能を設けたことにより、重金
属の除去とともにpHをほぼ中性付近におさえることが
可能となった。
According to the present invention, heavy metals in a liquid can be efficiently removed at a relatively low differential pressure. Also, since the pH of the treated water rises, a neutralizing function consisting of a strongly acidic polymer or a strongly acidic polymer and a strongly basic polymer is provided on the treated water side or downstream in the apparatus, so that heavy metal With the removal, it became possible to keep the pH at about neutral.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施において用いられるカラム試験装
置の液体フローを示す図である。
FIG. 1 is a diagram showing a liquid flow of a column test apparatus used in the practice of the present invention.

【図2】処理水中のコバルト濃度に対するH型とNa型
のキレート繊維の相違による通水性能を比較した図であ
る。
FIG. 2 is a diagram comparing water passing performances due to differences between H-type and Na-type chelate fibers with respect to a cobalt concentration in treated water.

【図3】処理水のpHに対するH型とNa型のキレート
繊維の相違による通水性能を比較した図である。
FIG. 3 is a diagram comparing water passing performances due to differences between H-type and Na-type chelate fibers with respect to the pH of treated water.

【図4】処理水中のコバルト濃度に対するH型とNa型
のキレート繊維の相違による通水性能を比較した図であ
る。
FIG. 4 is a diagram comparing water passing performances due to differences between H-type and Na-type chelate fibers with respect to a cobalt concentration in treated water.

【図5】処理水のpHに対するH型とNa型のキレート
繊維の相違による通水性能を比較した図である。
FIG. 5 is a diagram comparing water passing performances due to differences between H-type and Na-type chelate fibers with respect to the pH of treated water.

【符号の説明】[Explanation of symbols]

1:ビーカー 2,3:流量計 5:吸着材 6:チューブラーポンプ 7:原液容器 8:圧力計 1: beaker 2, 3: flow meter 5: adsorbent 6: tubular pump 7: stock solution container 8: pressure gauge

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村田 好和 神奈川県相模原市並木4−1−30 (72)発明者 関口 英明 千葉県市原市青葉台6−17−8 (56)参考文献 実開 昭56−73586(JP,U) 特公 昭52−47755(JP,B2) 特公 昭56−17415(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C02F 1/42 B01J 45/00 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Yoshikazu Murata, Inventor 4-1-30 Namiki, Sagamihara City, Kanagawa Prefecture (72) Hideaki Sekiguchi 6-17-8, Aobadai, Ichihara City, Chiba Prefecture (56) References 56-73586 (JP, U) JP-B-52-47755 (JP, B2) JP-B-56-17415 (JP, B2) (58) Fields investigated (Int. Cl. 7 , DB name) C02F 1/42 B01J 45/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重金属を含有する被処理水から重金属
(イオン、コロイド)を除去する方法において、被処理
水を、ポリエチレン又はポリプロピレンからなる繊維状
の高分子基材にキレート官能基を有する単量体を放射線
グラフト重合させた後に官能基を塩型にした繊維状キレ
ート高分子グラフト重合体に通水して重金属を除去し、
重金属除去後の処理水を強酸性高分子、又は強酸性高分
子と強塩基性高分子からなる中和層に通水して中和処理
することを特徴とする方法。
1. A method for removing heavy metals (ions, colloids) from water to be treated containing heavy metals, wherein the water to be treated is a monomer having a chelate functional group on a fibrous polymer substrate made of polyethylene or polypropylene. After the body is subjected to radiation graft polymerization, the functional groups are passed through a fibrous chelate polymer graft polymer having a salt form to remove heavy metals,
A method comprising passing treated water from which heavy metals have been removed through a neutralization layer comprising a strongly acidic polymer or a strongly acidic polymer and a strongly basic polymer for neutralization.
【請求項2】 前記単量体が、キレート官能基を有する
アクリル酸、メタクリル酸、フマル酸若しくはマレイン
酸であり、又はキレート官能基に転換可能なメタクリル
酸グリシジル、スチレン若しくはクロロメチルスチレン
であることを特徴とする請求項1記載の方法。
2. The monomer is acrylic acid, methacrylic acid, fumaric acid or maleic acid having a chelate functional group, or glycidyl methacrylate, styrene or chloromethylstyrene convertible to a chelate functional group. The method of claim 1, wherein:
【請求項3】 前記繊維状キレート高分子グラフト重合
体の塩型がNa型である請求項1又は請求項2記載の方
法。
3. The method according to claim 1, wherein the salt type of the fibrous chelate polymer graft polymer is Na type.
【請求項4】 前記高分子基材が、単繊維、単繊維の集
合体である織布若しくは不織布、又はそれらの加工品で
ある請求項1乃至請求項3のいずれかに記載の方法。
4. The method according to claim 1, wherein the polymer substrate is a single fiber, a woven or nonwoven fabric which is an aggregate of single fibers, or a processed product thereof.
JP21869491A 1991-08-29 1991-08-29 Heavy metal removal method Expired - Lifetime JP3247704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21869491A JP3247704B2 (en) 1991-08-29 1991-08-29 Heavy metal removal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21869491A JP3247704B2 (en) 1991-08-29 1991-08-29 Heavy metal removal method

Publications (2)

Publication Number Publication Date
JPH0557280A JPH0557280A (en) 1993-03-09
JP3247704B2 true JP3247704B2 (en) 2002-01-21

Family

ID=16723952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21869491A Expired - Lifetime JP3247704B2 (en) 1991-08-29 1991-08-29 Heavy metal removal method

Country Status (1)

Country Link
JP (1) JP3247704B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010122954A1 (en) 2009-04-23 2010-10-28 日本フイルコン株式会社 Metal adsorbent containing chelating polymer
WO2013111891A1 (en) 2012-01-27 2013-08-01 日本フイルコン株式会社 Polymer adsorbent
WO2013121863A1 (en) 2012-02-14 2013-08-22 日本フイルコン株式会社 Metal-adsorbing gel and adsorbent supporting metal-adsorbing gel
WO2014038415A1 (en) 2012-09-05 2014-03-13 日本フイルコン 株式会社 Fibrous metal adsorbent

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3822329B2 (en) * 1996-10-15 2006-09-20 キレスト株式会社 Fiber having metal chelate-forming ability, process for producing the same, and metal ion trapping method using the fiber
GB0025502D0 (en) * 2000-10-18 2000-11-29 Johnson Matthey Plc Metal scavenging
JP4683820B2 (en) * 2001-01-31 2011-05-18 中部キレスト株式会社 Method for treating metal and / or metal-containing solution
JP6198368B2 (en) * 2011-05-24 2017-09-20 三菱ケミカルアクア・ソリューションズ株式会社 Deionizer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010122954A1 (en) 2009-04-23 2010-10-28 日本フイルコン株式会社 Metal adsorbent containing chelating polymer
WO2013111891A1 (en) 2012-01-27 2013-08-01 日本フイルコン株式会社 Polymer adsorbent
WO2013121863A1 (en) 2012-02-14 2013-08-22 日本フイルコン株式会社 Metal-adsorbing gel and adsorbent supporting metal-adsorbing gel
US9592489B2 (en) 2012-02-14 2017-03-14 Nippon Filcon Co., Limited Metal-adsorbing gel and adsorbent supporting metal-adsorbing gel
WO2014038415A1 (en) 2012-09-05 2014-03-13 日本フイルコン 株式会社 Fibrous metal adsorbent
US9687814B2 (en) 2012-09-05 2017-06-27 Nippon Filcon Co., Limited Fibrous metal-adsorbing material

Also Published As

Publication number Publication date
JPH0557280A (en) 1993-03-09

Similar Documents

Publication Publication Date Title
JP3883491B2 (en) Method for producing lithium concentrate from aqueous solution containing lithium
JPH05209012A (en) Purified ion-exchange resin and method of its purification
JP4064046B2 (en) Organic polymer material, method for producing the same, and heavy metal ion removing agent composed thereof
JP3247704B2 (en) Heavy metal removal method
JPH11190907A (en) Regenerating method of photoresist developer waste liquid
JP2003251118A (en) Filter cartridge having high performance metal capturing capacity
JPH0525560A (en) Method for recovering nickel
US5304309A (en) Cyclic process for selective coagulant recovery from clarifier sludge
JPH0557281A (en) Heavy metal removing method
KR0162157B1 (en) Process for treating chemical waste by reverse osmotic membrane system
JP3232466B2 (en) Ultrapure water production method
JPH10279713A (en) Anion exchanger, its production and chemical filter
JPH0889954A (en) Point-of-use module system
JP2001187823A (en) Separation-functional material
JPH08199480A (en) Production of separation functional fiber, and ion exchange fiber and gas adsorbing material produced by using the same
JPS5815193B2 (en) How to treat boron-containing water
JP3618764B2 (en) Recovery method of volatile acids
JP3795428B2 (en) Boron removal method
JPH07232915A (en) Method for recovering fluorine in waste water
JPS61192385A (en) Treatment of fluorine-containing waste solution
KR20010017298A (en) A method for treating electrogalvanizing wastewaters
JP3223311B2 (en) Treatment method of condensate and desalinated reclaimed water
JP2002018245A (en) Antistaining porous filter membrane
JP2004351288A (en) Method for treating heavy-metal containing water or heavy-metal-containing soil
JP2005349241A (en) Material for removing cation in water at high speed and high efficiency and secondary treatment for waste water using the material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20091102

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20101102

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20111102

EXPY Cancellation because of completion of term