JP3245511U - Battery module with conductive heat sink - Google Patents

Battery module with conductive heat sink Download PDF

Info

Publication number
JP3245511U
JP3245511U JP2023004354U JP2023004354U JP3245511U JP 3245511 U JP3245511 U JP 3245511U JP 2023004354 U JP2023004354 U JP 2023004354U JP 2023004354 U JP2023004354 U JP 2023004354U JP 3245511 U JP3245511 U JP 3245511U
Authority
JP
Japan
Prior art keywords
plate
conductive
heat sink
insulating body
battery module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023004354U
Other languages
Japanese (ja)
Inventor
張明輝
呉炳毅
游麗霖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Prologium Technology Co Ltd
Original Assignee
Prologium Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prologium Technology Co Ltd filed Critical Prologium Technology Co Ltd
Application granted granted Critical
Publication of JP3245511U publication Critical patent/JP3245511U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【課題】全体の体積利用率及び廃熱除去性能を高める導電放熱板を備えたバッテリモジュールを提供する。【解決手段】導電放熱板を備えたバッテリモジュール1、10は、導電放熱板40が隣接する任意の2つのバッテリセル20の間に設置される。導電放熱板は板状電気絶縁本体41及び少なくとも1つの導電部42を有し、導電部は該板状電気絶縁本体の電気的伝達経路を構成し、バッテリセルの間に電気的接続を構成する。この導電放熱板はさらにマイクロチャネルを有することが可能である。【選択図】図1The present invention provides a battery module including a conductive heat sink that improves overall volumetric utilization and waste heat removal performance. A battery module (1, 10) equipped with a conductive heat sink is installed between any two battery cells (20) where a conductive heat sink (40) is adjacent. The conductive heat sink has a plate-like electrically insulating body 41 and at least one conductive part 42, the conductive part forming an electrical transmission path of the plate-like electrically insulating body and forming an electrical connection between the battery cells. . The conductive heat sink may further have microchannels. [Selection diagram] Figure 1

Description

本考案はバッテリモジュールに関し、特にバッテリモジュール内部に導電放熱板を設置したバッテリモジュールを指す。 The present invention relates to a battery module, and particularly refers to a battery module in which a conductive heat sink is installed inside the battery module.

近年、各種ポータブル電子機器/電気自動車/エネルギー貯蔵ステーションなどの分野の急速な発展に伴い、エネルギー貯蔵密度が比較的高く、環境保護を兼ね備えたエネルギー貯蔵装置に対する高度な要求が大きくなっている。イオン二次電池は第1候補となっており、さらにはリチウムイオン二次電池、マグネシウムイオン二次電池、ナトリウムイオン二次電池などの各種二次電池に発展している。実務において、最もよく見られるのは、バッテリセルから並列接続の方式を採用してバッテリモジュールを構成したものであり、十分な容量を達成して各種装置に利用される。 In recent years, with the rapid development of various portable electronic devices/electric vehicles/energy storage stations and other fields, there has been a growing demand for energy storage devices with relatively high energy storage density and environmental protection. Ion secondary batteries are the first candidate, and have been further developed into various secondary batteries such as lithium ion secondary batteries, magnesium ion secondary batteries, and sodium ion secondary batteries. In practice, what is most commonly seen is a battery module constructed by connecting battery cells in parallel, which achieves sufficient capacity and is used in various devices.

既存のバッテリモジュールは、相互に接続してバッテリモジュールを形成する(例えば直列接続)場合、追加でタブリードにより電気的に接続する必要がある。このような接続方式は工程を複雑にするだけでなく、バッテリモジュール全体の体積利用率も低下させる。もう1つの既存の方式は、バッテリモジュールの相互間を集電層により面及び面を直接接触させ、必要な電気的接続を構成する。しかしながら、集電層により面及び面を直接接触させて電気的接続を構成するため、生じた熱エネルギーを排出するのが難しく、バッテリモジュールの性能に深刻な影響を及ぼす。 Existing battery modules require additional electrical connection via tab leads when interconnected to form a battery module (eg, series connection). Such a connection method not only complicates the process, but also reduces the volume utilization rate of the entire battery module. Another existing approach is to bring the battery modules into direct face-to-face contact with each other through current collecting layers to make the necessary electrical connections. However, since the electrical connection is formed by direct surface-to-surface contact using the current collecting layer, it is difficult to dissipate the generated thermal energy, which seriously affects the performance of the battery module.

さらに、一般的なバッテリモジュールの放熱方式は、バッテリモジュールに冷却システム又は冷却板を加えることを採用している。このようにすると、バッテリモジュールの全体の体積が増加し、バッテリモジュールを均等に冷却するのが難しく、同様に、バッテリを組み立てる工程もより繁雑になる。 Furthermore, a common heat dissipation method for battery modules employs adding a cooling system or a cooling plate to the battery module. This increases the overall volume of the battery module, makes it difficult to cool the battery module evenly, and also makes the process of assembling the battery more complicated.

上記既存技術の欠点に基づいて、本考案は導電放熱板を備えたバッテリモジュールを示し、上記課題を効果的に解決する。 Based on the above drawbacks of the existing technology, the present invention presents a battery module with a conductive heat sink to effectively solve the above problems.

本考案の主な目的は、導電放熱板を備えたバッテリモジュールを提供することにある。導電放熱板を隣接する任意の2つのバッテリセルの間に直接挟み、電気的な接続及び放熱の目的を直接達成する。従来採用される外部接続のタブリード又はタブ及び追加の冷却システムを省き、高い体積利用率及び高効率の放熱を兼ね備えた効果を達成する。 The main purpose of the present invention is to provide a battery module with a conductive heat sink. A conductive heat dissipation plate is directly sandwiched between any two adjacent battery cells to directly achieve the purpose of electrical connection and heat dissipation. It eliminates the conventionally employed external connection tab lead or tab and additional cooling system, achieving a combination of high volume utilization and high efficiency heat dissipation.

本考案のもう1つの目的は、導電放熱板を備えたバッテリモジュールを提供することにある。板状電気絶縁本体にマイクロチャネルをはめ込み、放熱効果を大幅に高め、バッテリモジュール全体の性能を高めることが可能である。 Another object of the present invention is to provide a battery module with a conductive heat sink. By incorporating microchannels into the plate-shaped electrically insulating body, it is possible to greatly enhance the heat dissipation effect and improve the overall performance of the battery module.

本考案は導電放熱板を備えたバッテリモジュールを示し、バッテリモジュール及び少なくとも1つの導電放熱板を含む。バッテリモジュールは複数のバッテリセルを単一の軸方向に積み重ねて形成され、各バッテリセルは相互に平行に設置され、該バッテリセルの異なる電極の電力出力端である2つの板状集電層を含む。導電放熱板は板状電気絶縁本体及びこの板状電気絶縁本体に設置される少なくとも1つの導電部を有し、隣接する任意の2つのバッテリセルの間に挟まれる。導電部は隣接する該2つのバッテリセルの該板状集電層と電気的接続を形成し、板状電気絶縁本体はこれらのバッテリセルの動作過程で生じる熱エネルギーを誘導する。 The present invention provides a battery module with a conductive heat sink, including a battery module and at least one conductive heat sink. A battery module is formed by stacking a plurality of battery cells in a single axial direction, and each battery cell is placed parallel to each other and has two plate-like current collecting layers, which are the power output ends of different electrodes of the battery cells. include. The conductive heat sink has a plate-shaped electrically insulating body and at least one conductive part installed in the plate-shaped electrically insulating body, and is sandwiched between any two adjacent battery cells. The conductive part forms an electrical connection with the plate-shaped current collecting layer of the two adjacent battery cells, and the plate-shaped electrically insulating body guides thermal energy generated during the operation of these battery cells.

以下、具体的な実施例により本考案を詳細に説明し、その目的、技術内容、特徴及び達成する効果をより容易に理解できるようにする。 Hereinafter, the present invention will be described in detail with reference to specific examples, so that the purpose, technical content, characteristics, and effects achieved can be more easily understood.

本考案の導電放熱板を備えたバッテリモジュールの概要図である。FIG. 1 is a schematic diagram of a battery module equipped with a conductive heat sink according to the present invention. 本考案の導電放熱板を備えたバッテリモジュールにおけるバッテリセルの概要図である。FIG. 3 is a schematic diagram of a battery cell in a battery module equipped with a conductive heat sink according to the present invention. 本考案の導電放熱板を備えたバッテリモジュールにおけるバッテリセルの別の実施例の概要図である。FIG. 3 is a schematic diagram of another embodiment of a battery cell in a battery module with a conductive heat sink according to the present invention; 本考案の導電放熱板を備えたバッテリモジュールにおけるバッテリセルの分解概要図である。FIG. 2 is an exploded schematic diagram of a battery cell in a battery module equipped with a conductive heat sink according to the present invention. 本考案の導電放熱板を備えたバッテリモジュールの側面概要図である。FIG. 1 is a schematic side view of a battery module equipped with a conductive heat sink according to the present invention. 本考案の導電放熱板を備えたバッテリモジュールにおける導電部の別の実施例の概要図である。FIG. 3 is a schematic diagram of another embodiment of a conductive part in a battery module equipped with a conductive heat sink according to the present invention. 本考案の導電放熱板を備えたバッテリモジュールにおける導電部の別の実施例の概要図である。FIG. 3 is a schematic diagram of another embodiment of a conductive part in a battery module equipped with a conductive heat sink according to the present invention. 本考案の図4Aの導電放熱板にマイクロチャネルを追加で設けた概要図である。FIG. 4B is a schematic diagram of the conductive heat sink of FIG. 4A of the present invention additionally provided with microchannels; 本考案の導電放熱板を備えたバッテリモジュールにマイクロチャネルを追加で設けた概要図である。FIG. 2 is a schematic diagram of a battery module with a conductive heat sink according to the present invention additionally provided with microchannels; 本考案の導電放熱板を備えたバッテリモジュールにマイクロチャネルを追加で設けた別の実施例の概要図である。FIG. 3 is a schematic diagram of another embodiment of a battery module with a conductive heat sink according to the present invention, in which a microchannel is additionally provided. 本考案の導電放熱板を備えたバッテリモジュールにマイクロチャネルを追加で設けた別の実施例の概要図である。FIG. 3 is a schematic diagram of another embodiment of a battery module with a conductive heat sink according to the present invention, in which a microchannel is additionally provided.

本考案の利点、主旨及び特徴をより容易に、明確に理解できるようにするため、以下に実施例により、さらに図を参照して詳述及び議論を行う。これらの実施例は本考案の代表的な実施例に過ぎず、本考案の実施形態及び請求の範囲が、これらの実施例の態様のみに限定されるものではないことを明確に示す必要がある。これらの実施例を提供する目的は、単に本考案の開示内容をより徹底的に、及び容易に理解できるようにすることである。 In order to make it easier and clearer to understand the advantages, gist and features of the present invention, detailed description and discussion will be given below by way of embodiments and with reference to figures. These examples are merely representative examples of the present invention, and it is necessary to clearly indicate that the embodiments and claims of the present invention are not limited only to the aspects of these examples. . The purpose of providing these examples is merely to enable the disclosure of the present invention to be more thoroughly and easily understood.

本考案で開示する各種実施例で使用される用語は、特定の実施例を記載する目的のためにのみ用いられ、本考案で開示する各種実施例を制限するものではない。明確に他に指示しない限り、使用する単数形式は複数形式も含む。他に限定しなければ、本明細書中で使用するすべての用語(技術用語及び科学用語を含む)は、本考案で開示する各種実施例が属する分野の当業者が通常理解する意味と同じ意味を有する。上記用語(例えば一般的に使用される辞典で限定される用語)は、本考案で開示する各種実施例において明確に限定する場合を除き、同じ技術分野における文脈の意味と同じ意味を有すると解釈され、理想化した意味又は過度に形式的な意味を有すると解釈されない。 The terms used in the various embodiments disclosed in the present invention are used only for the purpose of describing the specific embodiments, and are not intended to limit the various embodiments disclosed in the present invention. Unless clearly indicated otherwise, the singular forms used include the plural forms. Unless otherwise limited, all terms (including technical and scientific terms) used herein have the same meanings as commonly understood by one of ordinary skill in the art to which the various embodiments disclosed herein belong. has. The above terms (e.g., terms defined in commonly used dictionaries) shall be construed to have the same meaning as the context in the same technical field, unless explicitly limited in the various embodiments disclosed in this invention. and should not be construed as having an idealized or overly formal meaning.

本明細書の記載において、参照用語の「実施例」、「具体的な実施例」などの記載は、該実施例に記載する具体的な特徴、構造、材料又は特性の組合せが本考案の少なくとも1つの実施例中に含まれることを意味する。本明細書において、上記用語に対する概要的な説明は必ずしも同じ実施例を指すとは限らない。さらに、記載する具体的な特徴、構造、材料又は特性は、いずれか1つ又は複数の実施例において適当に組み合わせることが可能である。 In the description of this specification, reference terms such as "example", "specific example", etc. are used to describe the specific features, structures, materials, or combinations of characteristics described in the example at least in accordance with the present invention. It is meant to be included in one embodiment. In this specification, the general explanations for the above terms do not necessarily refer to the same embodiment. Moreover, the specific features, structures, materials or characteristics described may be combined in any suitable combination in any one or more embodiments.

本考案の記載において、他に規定又は限定していなければ、「連結」、「接続」、「設置」という用語は広義に理解するべきであることを説明する必要がある。例えば、機械的に接続又は電気的に接続していても、2つの要素の内部が通じていてもよく、直接つながっていても、媒介物を間に介して間接的につながっていてもよい。当業者は、具体的な状況に基づいて、上記用語の具体的な意味を理解できる。 In the description of the present invention, it is necessary to explain that the terms "coupling", "connection" and "installation" should be understood in a broad sense, unless otherwise specified or limited. For example, two elements may be connected mechanically or electrically, the insides of two elements may communicate, they may be directly connected, or they may be indirectly connected with an intermediary interposed therebetween. Those skilled in the art can understand the specific meanings of the above terms based on the specific situation.

本考案で開示する導電放熱板を備えたバッテリモジュールは、バッテリモジュール及び少なくとも1つの導電放熱板で構成される。バッテリモジュールは複数のバッテリセルを単一の軸方向に積み重ねて形成され、各バッテリセルは相互に平行に設置される2つの板状集電層を含み、2つの板状集電層はバッテリセルの異なる電極の電力出力端である。導電放熱板は隣接する2つのバッテリセルの間に挟まれ、導電放熱板は板状電気絶縁本体及び該板状電気絶縁本体に設置される少なくとも1つの導電部を有する。導電部は隣接する2つのバッテリセルの板状集電層と電気的に接続され、導電経路を形成し、さらに板状電気絶縁本体は隣接する2つのバッテリセルが生成する熱エネルギーを誘導し、放熱経路を形成する。図1を参照されたい。例を挙げると、バッテリモジュール1はバッテリモジュール10及び導電放熱板40を有し、バッテリモジュール10は複数のバッテリセル20を垂直(Z軸)に積み重ねて形成される。複数のバッテリセル20の間の電気的な接続方式は、直列接続、並列接続又は直列接続、並列接続の混合形態でよい。導電放熱板40は隣接する2つのバッテリセル20の間に挟まれ、このとき、この隣接する2つのバッテリセル20の電気的な接続方式は直列接続又は並列接続でよい。ここで特に注意する必要があるのは、図に示すバッテリセル20の数量及び接続方式、並びに導電放熱板40の数量及びその設置位置は概要に過ぎないことである。各バッテリセル20は完全で独立したモジュールであり、以下に詳述する。 A battery module with a conductive heat sink disclosed in the present invention is composed of a battery module and at least one conductive heat sink. A battery module is formed by stacking a plurality of battery cells in a single axial direction, and each battery cell includes two plate-like current collecting layers arranged parallel to each other, and the two plate-like current collecting layers are connected to the battery cells. are the power output ends of the different electrodes. The conductive heat sink is sandwiched between two adjacent battery cells, and the conductive heat sink has a plate-like electrically insulating body and at least one conductive part installed on the plate-like electrically insulating body. The conductive part is electrically connected to the plate-shaped current collection layers of two adjacent battery cells to form a conductive path, and the plate-shaped electrically insulating body induces thermal energy generated by the two adjacent battery cells, Forms a heat radiation path. Please refer to FIG. For example, the battery module 1 includes a battery module 10 and a conductive heat sink 40, and the battery module 10 is formed by stacking a plurality of battery cells 20 vertically (Z axis). The electrical connection method between the plurality of battery cells 20 may be series connection, parallel connection, or a mixed form of series connection and parallel connection. The conductive heat sink 40 is sandwiched between two adjacent battery cells 20, and at this time, the two adjacent battery cells 20 may be electrically connected in series or in parallel. What should be particularly noted here is that the number and connection method of battery cells 20 shown in the figure, as well as the number of conductive heat sinks 40 and their installation positions are only an outline. Each battery cell 20 is a complete, independent module and will be described in detail below.

図1、2A、2Cを合わせて参照されたい。本考案は完全で独立したバッテリセル20を採用してバッテリモジュール10を構成し、バッテリセル20は2つの板状集電層24、25、電気化学システム201及びシーラント26を含み、2つの板状集電層24、25はバッテリセル20の異なる電極の出力端である。例を挙げると、板状集電層24が正極出力端であるとき、板状集電層25は負極出力端であり、板状集電層24が負極出力端であるとき、板状集電層25は正極出力端である。電気化学システム201はセパレータ21、2つの活物質層22、23、及び活物質層22、23に含浸/混練される電解質システムを含み、セパレータ21の材料は高分子材料、セラミック材料又はガラス繊維材料、あるいはセラミック粉体でコーティングした高分子材料又はガラス繊維材料から選択できる。セパレータ21はイオンを通過させることが可能であるマイクロポアを有し、マイクロポアは貫通孔又は蟻の巣穴状(非直線で貫通した態様)の形態でよく、さらには多孔性材料を直接採用して達成する。セラミック粉体はイオン伝導能力のない絶縁材料から選択されるとき、マイクロメートルレベル、ナノメートルレベルの、又はマイクロメートルレベル及びナノメートルレベルを混合した二酸化チタン(TiO)、三酸化二アルミニウム(Al)、二酸化ケイ素(SiO)などの材質或いはアルキル化したセラミック顆粒で形成できる。セラミック材料は、例えばリチウムランタンジルコニウム酸化物(lithium lanthanum zirconium oxide;LiLaZr12;LLZO)又はリン酸リチウムアルミニウムチタン(LATP)などの酸化物固体電解質からも選択できる。このほか、セラミック材料は上記絶縁セラミック材料及び酸化物固体電解質を混合して形成したものでもよい。セラミック粉体を堆積させて上記セパレータ21を構成するとき、例えばポリフッ化ビニリデン(Polyvinylidene difluoride;PVDF)、ポリフッ化ビニリデン-co-ヘキサフルオロプロピレン(PVDF-HFP)、ポリテトラフルオロエチレン(Polytetrafluoroethylene;PTFE)、アクリル酸接着剤(Acrylic Acid Glue)、エポキシ樹脂(Epoxy)、ポリエチレンオキシド(PEO)、ポリアクリロニトリル(PAN)又はポリイミド(PI)などの高分子接着剤をさらに含むことが可能である。 Please refer to FIGS. 1, 2A, and 2C together. The present invention adopts a complete and independent battery cell 20 to configure the battery module 10, and the battery cell 20 includes two plate-shaped current collecting layers 24, 25, an electrochemical system 201 and a sealant 26, Current collecting layers 24, 25 are the output ends of different electrodes of battery cell 20. For example, when the plate-like current collecting layer 24 is a positive electrode output end, the plate-like current collecting layer 25 is a negative electrode output end, and when the plate-like current collecting layer 24 is a negative electrode output end, the plate-like current collecting layer 25 is a negative electrode output end. Layer 25 is the positive output end. The electrochemical system 201 includes a separator 21, two active material layers 22, 23, and an electrolyte system impregnated/kneaded into the active material layers 22, 23, and the material of the separator 21 is a polymeric material, a ceramic material, or a glass fiber material. , or polymeric or glass fiber materials coated with ceramic powder. The separator 21 has micropores that allow ions to pass through, and the micropores may be in the form of through holes or ant's burrows (non-linear penetrating form), or directly employ porous materials. and achieve it. When the ceramic powder is selected from insulating materials without ionic conductivity, titanium dioxide (TiO 2 ), dialuminum trioxide (Al 2 O 3 ), silicon dioxide (SiO 2 ), or alkylated ceramic granules. The ceramic material can also be selected from oxide solid electrolytes, such as, for example, lithium lanthanum zirconium oxide (Li 7 La 3 Zr 2 O 12 ; LLZO) or lithium aluminum titanium phosphate (LATP). In addition, the ceramic material may be formed by mixing the above-described insulating ceramic material and oxide solid electrolyte. When forming the separator 21 by depositing ceramic powder, for example, polyvinylidene difluoride (PVDF), polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP), polytetrafluoroethylene (P) is used. TFE) , Acrylic Acid Glue, Epoxy, Polyethylene Oxide (PEO), Polyacrylonitrile (PAN) or Polyimide (PI).

電解質システムは活物質層22、23中に含浸又は混練され、液体、コロイド状、固体の電解質、又はその任意の組合せの混合電解質でよい。活物質層22、23及びセパレータ21は電気化学システム201を構成し、セパレータ21は活物質層22、23の間に挟まれ、活物質層22、23を隔てるのに用いられる。活物質層22、23はその活物質成分により化学エネルギーを電気エネルギーに変換して使用する(電力供給)か、又は電気エネルギーを化学エネルギーに変換してシステム中に貯蔵(充電)できる。イオンの伝導及び移動を同時に達成でき、生じた電子を板状集電層24、25から直接外に誘導できる。板状集電層24、25の材料は一般的なものは銅及びアルミニウムであり、当然その他のニッケル、スズ、銀、金などの金属又は金属合金でもよい。 The electrolyte system is impregnated or kneaded into the active material layers 22, 23 and may be a liquid, colloidal, solid electrolyte, or a mixed electrolyte of any combination thereof. The active material layers 22 and 23 and the separator 21 constitute an electrochemical system 201, and the separator 21 is sandwiched between the active material layers 22 and 23 and is used to separate the active material layers 22 and 23. The active material layers 22 and 23 can convert chemical energy into electrical energy for use (power supply) or convert electrical energy into chemical energy and store it in the system (charge) depending on their active material components. Ion conduction and movement can be achieved at the same time, and the generated electrons can be directly guided outside from the plate-like current collecting layers 24 and 25. The materials of the plate-shaped current collecting layers 24 and 25 are generally copper and aluminum, but other metals or metal alloys such as nickel, tin, silver, and gold may also be used.

さらに、板状集電層24、25を周縁のシーラント26と組み合わせて、バッテリセル20の封止モジュールとする。シーラント26は重合体材料であり、板状集電層24、25の表面に接着固定でき、さらに電解質システムに対して耐久性があればよく、特に制限されない。例を挙げると、シーラント26の材質はエポキシ樹脂、ポリエチレン、ポリプロピレン、ポリウレタン、熱可塑性ポリイミド、シリコーン樹脂、アクリル樹脂、シリコーンゴム又は紫外線硬化接着剤でよく、2つの板状集電層24、25の周縁に設けられ、電気化学システム201(活物質層22、23及び中間のセパレータ21)を取り囲んで封止する。さらに2つの板状集電層24、25を接着するのに用いられ、電解質システムを2つの板状集電層24、25の間に封止して漏出させず、かつ他のバッテリセル20の電解質システムと相互に流動しないようにする。従って、バッテリセル20は板状集電層24、25及びシーラント26を直接採用し、封止構造として形成された独立して完全な電力供給を行うモジュールである。 Further, the plate-shaped current collecting layers 24 and 25 are combined with a peripheral sealant 26 to form a sealed module of the battery cell 20. The sealant 26 is a polymer material, and is not particularly limited as long as it can be adhesively fixed to the surfaces of the plate-shaped current collecting layers 24 and 25 and has durability against the electrolyte system. For example, the material of the sealant 26 may be epoxy resin, polyethylene, polypropylene, polyurethane, thermoplastic polyimide, silicone resin, acrylic resin, silicone rubber, or ultraviolet curing adhesive, It is provided at the periphery and surrounds and seals the electrochemical system 201 (active material layers 22, 23 and intermediate separator 21). Furthermore, it is used to bond the two plate-shaped current collecting layers 24 , 25 , to seal the electrolyte system between the two plate-shaped current collecting layers 24 , 25 to prevent leakage, and to prevent leakage of the electrolyte system between the two plate-shaped current collecting layers 24 , 25 . Avoid interflow with electrolyte system. Therefore, the battery cell 20 is a module that directly employs the plate-like current collecting layers 24, 25 and the sealant 26, and is formed as a sealed structure and provides an independent and complete power supply.

シーラント26の封止効果をより好ましくするため、シリコーンゴム材質を採用するとき、シーラント26が3層の構造を有するように設計できる。図2Bを参照されたい。上下2層は変性シリコーンゴム層261、262、中間はシリコーンゴム層263であり、両側の変性シリコーンゴム層261、262は、付加型シリコーンゴム及び縮合型シリコーンゴムの組成比率を調整することにより、又は添加物を添加することによりシリコーンゴムを変性させ、異なる性質の材料(つまり板状集電層24、25及び中間のシリコーンゴム層263)への接着に適するようにする。この設計により境界面間の接着力を高めることが可能であり、同時に、これにより外観全体の完全性がより高く、生産良品率も高くなる。 In order to improve the sealing effect of the sealant 26, when silicone rubber is used, the sealant 26 can be designed to have a three-layer structure. See Figure 2B. The upper and lower two layers are modified silicone rubber layers 261 and 262, and the middle is a silicone rubber layer 263.The modified silicone rubber layers 261 and 262 on both sides are made by adjusting the composition ratio of addition type silicone rubber and condensation type silicone rubber. Alternatively, the silicone rubber can be modified by adding additives to make it suitable for adhesion to materials of different nature (ie, the plate-like current collecting layers 24, 25 and the intermediate silicone rubber layer 263). This design allows for increased adhesion between interfaces, which at the same time provides higher overall appearance integrity and higher production yield.

続いて図1に戻る。導電放熱板40は板状電気絶縁本体41及び板状電気絶縁本体41に設置される少なくとも1つの導電部42を有する。導電放熱板40は上下2つの隣接するバッテリセル20の相互に面する板状集電層24、25の間に挟まれ、板状電気絶縁本体41の表面積は本質的にバッテリセル20の板状集電層24、25に等しい。本実施例について、導電部42は板状電気絶縁本体41を貫通する複数の導電柱の形態であり、導電柱の上下両端はそれぞれ隣接する2つのバッテリセル20の板状集電層24、25と直接接触する。導電部42(導電柱)の上下両端は板状電気絶縁本体41の外側に突出し、導電部42(導電柱)の数量は複数であり、アレイの形態で板状電気絶縁本体41に配置できる。 Next, return to FIG. 1. The conductive heat sink 40 has a plate-shaped electrically insulating body 41 and at least one conductive part 42 installed on the plate-shaped electrically insulating body 41 . The conductive heat dissipating plate 40 is sandwiched between the plate-shaped current collecting layers 24 and 25 of two adjacent upper and lower battery cells 20 facing each other, and the surface area of the plate-shaped electrically insulating body 41 is essentially the same as that of the plate-shaped battery cells 20. Equal to current collecting layers 24 and 25. In this embodiment, the conductive portion 42 is in the form of a plurality of conductive columns passing through the plate-shaped electrically insulating body 41, and the upper and lower ends of the conductive columns are connected to the plate-shaped current collecting layers 24 and 25 of the two adjacent battery cells 20, respectively. come into direct contact with. Both upper and lower ends of the conductive portions 42 (conductive columns) protrude outside the plate-shaped electrically insulating body 41, and a plurality of conductive portions 42 (conductive columns) can be arranged in the form of an array on the plate-shaped electrically insulating body 41.

導電放熱板40の板状電気絶縁本体41は主に担体として用いられ、導電部42を固定(定位)するのに用いられる以外に、放熱の用途も備え、従ってセラミック又はシリコーンゴムの熱伝導板などでよい。導電放熱板40の導電部42は上下2つのバッテリセル20と電気的に接続され、その方式は直列接続又は並列接続でよい。従って、図1及び図3を同時に参照されたい。導電部42は上下両側の隣接するバッテリセル20の板状集電層24、25(つまり導電放熱板40に向いた一側)と直接接触して電気的な接続を形成し、該電気的接続の方式は直列接続である。もう1つの実施例(図示せず)において、導電部42は上下両側の隣接するバッテリセル20の同じ極性を有する板状集電層と直接接触して電気的接続を形成し、その接続方式は並列接続である。導電部42の材質は銅、金、銀、アルミニウムなどの各種導電材質でよい。十分な伝導面積を達成するため、導電放熱板40の導電部42の上下表面、つまり板状集電層24、25と接触するのに用いられる表面積は、板状電気絶縁本体41の表面積の75%~90%である。さらに、上下2つの隣接するバッテリセル20の電気的接続を確実に保証し、一定の放熱及び支持効果を維持するため、導電部42(導電柱)の厚さは該板状電気絶縁本体41の厚さより厚い。導電部42(導電柱)の厚さは好ましくは0.8~1.2ミリメートルであり、板状電気絶縁本体41の厚さは好ましくは0.6~1.0ミリメートルである。 The plate-shaped electrically insulating body 41 of the conductive heat dissipation plate 40 is mainly used as a carrier, and in addition to being used to fix (orient) the conductive part 42, it also has a heat dissipation purpose, so it can be used as a heat conduction plate made of ceramic or silicone rubber. etc. is fine. The conductive portion 42 of the conductive heat sink 40 is electrically connected to the two upper and lower battery cells 20, and the system may be a series connection or a parallel connection. Therefore, please refer to FIGS. 1 and 3 simultaneously. The conductive portion 42 directly contacts the plate-shaped current collection layers 24 and 25 (that is, one side facing the conductive heat sink 40) of the upper and lower adjacent battery cells 20 to form an electrical connection, and the electrical connection The method is series connection. In another embodiment (not shown), the conductive part 42 directly contacts the plate-like current collecting layers of the upper and lower adjacent battery cells 20 having the same polarity to form an electrical connection, and the connection method is This is a parallel connection. The conductive portion 42 may be made of various conductive materials such as copper, gold, silver, and aluminum. In order to achieve a sufficient conduction area, the upper and lower surfaces of the conductive portion 42 of the conductive heat sink 40, that is, the surface area used for contacting the plate-shaped current collecting layers 24 and 25, is 75 times larger than the surface area of the plate-shaped electrically insulating body 41. % to 90%. Furthermore, in order to reliably guarantee the electrical connection between the upper and lower two adjacent battery cells 20 and to maintain a certain heat dissipation and support effect, the thickness of the conductive portion 42 (conductive column) is adjusted to the thickness of the plate-shaped electrically insulating body 41. Thicker than thick. The thickness of the conductive portion 42 (conductive column) is preferably 0.8 to 1.2 mm, and the thickness of the plate-shaped electrically insulating body 41 is preferably 0.6 to 1.0 mm.

さらに、導電部42の導電柱の形態は、図1に示すような角柱体以外に、円柱体又はその他の各種形状にも設計でき、アレイ配置の密度、位置なども、需要に応じて調整できる。 Furthermore, the shape of the conductive pillars of the conductive part 42 can be designed into a cylindrical shape or various other shapes in addition to the prismatic shape shown in FIG. 1, and the density and position of the array arrangement can also be adjusted according to demand. .

他に、上記導電柱の形態の導電部42以外に、導電部42を導電層の形態にも設計できる。図4A、4Bに示すように、導電層の形態の導電部42は板状電気絶縁本体41を貫通し、言い換えると、板状電気絶縁本体41がこの導電部42の周縁を取り囲む。導電層(導電部42)は上下2つの表面を有し、板状電気絶縁本体41の外側に突出し、これにより上下2つの表面は上下2つの隣接するバッテリセル20の相互に面する2つの板状集電層24、25と直接接触できる。従って、上下2つの隣接するバッテリセル20は導電層(導電部42)により電気的接続を形成する。導電部42(導電層)の厚さは該板状電気絶縁本体41の厚さより厚く、導電部42(導電層)の厚さは好ましくは0.8~1.2ミリメートル、板状電気絶縁本体41の厚さは好ましくは0.6~1.0ミリメートルであり、導電部42(導電層)が上下2つの隣接するバッテリセル20の相互に面する2つの板状集電層24、25に接触し、電気的接続を形成し、一定の放熱及び支持効果を維持できることを確実に保証する。 Besides, the conductive part 42 can be designed in the form of a conductive layer in addition to the conductive part 42 in the form of a conductive column. As shown in FIGS. 4A and 4B, a conductive part 42 in the form of a conductive layer passes through the plate-like electrically insulating body 41, in other words, the plate-like electrically insulating body 41 surrounds the periphery of this conductive part 42. As shown in FIGS. The conductive layer (conductive part 42) has two upper and lower surfaces and protrudes to the outside of the plate-shaped electrically insulating body 41, so that the upper and lower two surfaces form two mutually facing plates of the upper and lower two adjacent battery cells 20. It is possible to directly contact the shaped current collecting layers 24, 25. Therefore, the upper and lower two adjacent battery cells 20 form an electrical connection through the conductive layer (conductive portion 42). The thickness of the conductive part 42 (conductive layer) is thicker than the thickness of the plate-shaped electrically insulating body 41, and the thickness of the conductive part 42 (conductive layer) is preferably 0.8 to 1.2 mm. The thickness of 41 is preferably 0.6 to 1.0 mm, and the conductive portion 42 (conductive layer) is formed on the two plate-shaped current collecting layers 24 and 25 of the upper and lower two adjacent battery cells 20 facing each other. to ensure that it can make contact, form an electrical connection, and maintain a certain heat dissipation and support effect.

続いて図5を参照されたい。導電放熱板40の放熱効果をさらに高めるため、導電部42(導電層)内にマイクロチャネル43を有することが可能であり、流体(例えば空気又は冷却液など)を流動させて放熱する。導電部42(導電層)が板状電気絶縁本体41の中に嵌設されるため、導電部42(導電層)のマイクロチャネル43に対応して板状電気絶縁本体41に入口及び出口を設け、流体を流入及び流出させる必要がある。 Please continue to refer to FIG. In order to further enhance the heat dissipation effect of the conductive heat dissipation plate 40, it is possible to have a microchannel 43 in the conductive part 42 (conductive layer), and heat is dissipated by flowing a fluid (for example, air or a cooling liquid). Since the conductive part 42 (conductive layer) is fitted into the plate-shaped electrically insulating body 41, an inlet and an outlet are provided in the plate-shaped electrically insulating body 41 corresponding to the microchannels 43 of the electrically conductive part 42 (conductive layer). , fluids need to flow in and out.

続いて図6を参照されたい。同様に図1、3の態様においても、板状電気絶縁本体41内にマイクロチャネル43を有することが可能であり、流体を流動させて放熱する。マイクロチャネル43は一側にのみ設けることが可能であり、上方は透かし彫り構造である。流体を直接板状集電層24、25に接触させることが可能であり、加工が便利であるだけでなく、放熱効果を上昇させることも可能であり、このとき流体は空気などでよい。そのほか、隣接する2つのバッテリセル20の放熱効果の均等性を考慮する場合、両側のいずれにもマイクロチャネル43を設けることも可能である。図7Aを参照されたい。両側の接触した板状集電層24、25のいずれにも最適な放熱効果を達成させることが可能である。或いは図7Bに示すように、マイクロチャネル43を嵌め込んだ形態に設計し、このとき流体は空気又は冷却液でよい。これらの図に示す導電部42及びマイクロチャネル43の態様は概要に過ぎない。例を挙げると、マイクロチャネル43は矩形の導電柱の形態である導電部42を組み合わせて示しており、つまりその他の任意の形態の導電部42はいずれも適したマイクロチャネル43を組み合わせて設置できる。マイクロチャネル43の流動方向及び位置、幅なども実際の需要に応じて設置でき、図に示したものは概要に過ぎない。 Please refer to FIG. 6 next. Similarly, in the embodiments of FIGS. 1 and 3, it is possible to have microchannels 43 within the plate-shaped electrically insulating body 41, allowing fluid to flow and radiating heat. The microchannels 43 can be provided only on one side, the upper part being an openwork structure. It is possible to bring the fluid into direct contact with the plate-shaped current collecting layers 24 and 25, which is not only convenient for processing, but also improves the heat dissipation effect, and in this case, the fluid may be air or the like. In addition, when considering uniformity of heat dissipation effect between two adjacent battery cells 20, it is also possible to provide microchannels 43 on both sides. See Figure 7A. It is possible to achieve an optimal heat dissipation effect with both of the plate-shaped current collecting layers 24 and 25 that are in contact with each other on both sides. Alternatively, as shown in FIG. 7B, a microchannel 43 is embedded, and the fluid may be air or a cooling liquid. The embodiments of the conductive portion 42 and microchannel 43 shown in these figures are only schematic. By way of example, a microchannel 43 is shown in combination with a conductive part 42 in the form of a rectangular conductive column, meaning that any other form of conductive part 42 can be installed in combination with a suitable microchannel 43. . The flow direction, position, width, etc. of the microchannel 43 can also be installed according to actual needs, and what is shown in the figure is only an outline.

要約すると、本考案は導電放熱板を備えたバッテリモジュールを示し、導電放熱板をバッテリモジュールにおける隣接する任意の2つのバッテリセルの間に直接挟むことにより、電気的に接続するだけでなく、同時に導電放熱板の板状電気絶縁本体が大面積の放熱経路も提供でき、バッテリモジュールの作用で生じた熱を効果的に誘導でき、バッテリモジュールの最適な性能を維持する。導電放熱板は電気的接続及び放熱を同時に提供するため、従来の例えばタブリード又はタブなどを採用した外部接続の機構を省くことが可能であり、好ましい体積利用率を提供する。さらに、板状電気絶縁本体はマイクロチャネルを設置でき、さらに全体の放熱効果を高めることが可能であり、高い体積利用率及び高効率の放熱効果を兼ね備えることができる。 In summary, the present invention presents a battery module with a conductive heat sink, which can be directly sandwiched between any two adjacent battery cells in the battery module to not only electrically connect but also simultaneously The plate-shaped electrical insulation body of the conductive heat sink can also provide a large-area heat dissipation path, which can effectively guide the heat generated by the action of the battery module, and maintain the optimal performance of the battery module. Since the conductive heat sink provides electrical connection and heat dissipation at the same time, conventional external connection mechanisms employing, for example, tab leads or tabs can be omitted, providing favorable volume utilization. Furthermore, the plate-shaped electrical insulating body can be provided with microchannels, which can further enhance the overall heat dissipation effect, and can have both a high volume utilization rate and a highly efficient heat dissipation effect.

しかし、以上の記載は本考案の好ましい実施例に過ぎず、本考案の実施の範囲を限定するものではない。従って、本考案の実用新案登録請求の範囲に記載する特徴及び主旨に基づく均等変化又は修飾は、いずれも本考案の実用新案登録請求の範囲内に含まれるべきである。 However, the above description is only a preferred embodiment of the present invention, and does not limit the scope of implementation of the present invention. Therefore, any equivalent changes or modifications based on the features and gist described in the claims of the utility model registration of the present invention should be included within the scope of the claims of the utility model registration of the present invention.

1 バッテリモジュール
10 バッテリモジュール
20 バッテリセル
201 電気化学システム
21 セパレータ
22 活物質層
23 活物質層
24 板状集電層
25 板状集電層
26 シーラント
261 変性シリコーンゴム層
262 変性シリコーンゴム層
263 シリコーンゴム層
40 導電放熱板
41 板状電気絶縁本体
42 導電部
43 マイクロチャネル
1 Battery module 10 Battery module 20 Battery cell 201 Electrochemical system 21 Separator 22 Active material layer 23 Active material layer 24 Plate current collection layer 25 Plate current collection layer 26 Sealant 261 Modified silicone rubber layer 262 Modified silicone rubber layer 263 Silicone rubber Layer 40 Conductive heat sink 41 Plate electrical insulation body 42 Conductive part 43 Microchannel

Claims (10)

複数のバッテリセルを単一の軸方向に積み重ねて形成されるバッテリモジュールであって、各前記バッテリセルは相互に平行して設置される2つの板状集電層を含み、前記2つの板状集電層は前記バッテリセルの異なる電極の電力出力端であるバッテリモジュールと、
隣接する2つの前記バッテリセル間に挟まれる少なくとも1つの導電放熱板であって、板状電気絶縁本体及び前記板状電気絶縁本体に設置される少なくとも1つの導電部を有し、導電部は前記隣接する前記バッテリセルの前記板状集電層と電気的に接続されて、導電経路を形成し、前記板状電気絶縁本体は前記隣接する2つの前記バッテリセルが生成した熱エネルギーを誘導し、放熱経路を形成する導電放熱板と、を含む、
導電放熱板を備えたバッテリモジュール。
A battery module formed by stacking a plurality of battery cells in a single axial direction, each battery cell including two plate-shaped current collecting layers disposed in parallel with each other, a battery module in which the current collecting layer is the power output end of the different electrodes of the battery cell;
at least one conductive heat sink sandwiched between two adjacent battery cells, the conductive heat sink having a plate-shaped electrically insulating body and at least one conductive part installed in the plate-shaped electrically insulating body, the electrically conductive part being connected to the plate-shaped electrically insulating body; electrically connected to the plate-shaped current collecting layers of the adjacent battery cells to form a conductive path, the plate-shaped electrically insulating body inducing thermal energy generated by the two adjacent battery cells; a conductive heat dissipation plate forming a heat dissipation path;
Battery module with conductive heat sink.
前記導電放熱板の前記導電部は前記板状電気絶縁本体を貫通し、その両端は前記隣接する2つの前記バッテリセルの前記2つの板状集電層と直接接触することを特徴とする、請求項1に記載の導電放熱板を備えたバッテリモジュール。 The conductive portion of the conductive heat sink passes through the plate-shaped electrically insulating body, and both ends thereof are in direct contact with the two plate-shaped current collecting layers of the two adjacent battery cells. Item 2. A battery module comprising the conductive heat sink according to item 1. 前記導電部の数量は複数であり、アレイの形態で前記板状電気絶縁本体に設置されることを特徴とする、請求項2に記載の導電放熱板を備えたバッテリモジュール。 3. The battery module with a conductive heat sink as set forth in claim 2, wherein a plurality of the conductive parts are installed on the plate-shaped electrically insulating body in the form of an array. 前記導電部の上下両端は、前記板状電気絶縁本体の外側に突出することを特徴とする、請求項2に記載の導電放熱板を備えたバッテリモジュール。 3. The battery module with a conductive heat sink according to claim 2, wherein both upper and lower ends of the conductive part protrude outside the plate-shaped electrically insulating body. 前記導電部の表面積は、前記板状電気絶縁本体の表面積の75%~90%であることを特徴とする、請求項1に記載の導電放熱板を備えたバッテリモジュール。 The battery module with a conductive heat sink according to claim 1, wherein the surface area of the conductive part is 75% to 90% of the surface area of the plate-shaped electrically insulating body. 前記導電放熱板の前記導電部は前記板状電気絶縁本体に嵌設され、前記導電部は前記板状電気絶縁本体の外側に露出する上下2つの表面を有し、前記上下2つの表面は前記隣接する2つの前記バッテリセルの相互に面する前記2つの板状集電層に直接接触することを特徴とする、請求項1に記載の導電放熱板を備えたバッテリモジュール。 The conductive part of the conductive heat sink is fitted into the plate-shaped electrically insulating body, and the electrically conductive part has two upper and lower surfaces exposed to the outside of the plate-shaped electrically insulating body, and the two upper and lower surfaces are connected to the plate-shaped electrically insulating body. The battery module according to claim 1, characterized in that the conductive heat sink directly contacts the two plate-shaped current collecting layers of two adjacent battery cells facing each other. 前記導電部内にマイクロチャネルを有し、流体を流動させて放熱することを特徴とする、請求項6に記載の導電放熱板を備えたバッテリモジュール。 7. The battery module equipped with a conductive heat sink according to claim 6, wherein the conductive part has a microchannel, and heat is radiated by flowing a fluid. 前記導電部の厚さは前記板状電気絶縁本体の厚さより厚いことを特徴とする、請求項6に記載の導電放熱板を備えたバッテリモジュール。 The battery module according to claim 6, wherein the thickness of the conductive part is thicker than the thickness of the plate-shaped electrically insulating body. 前記板状電気絶縁本体の表面積は、本質的に前記バッテリセルの前記板状集電層と等しいことを特徴とする、請求項1に記載の導電放熱板を備えたバッテリモジュール。 The battery module with a conductive heat sink according to claim 1, characterized in that the surface area of the plate-shaped electrically insulating body is essentially equal to the plate-shaped current collecting layer of the battery cell. 前記板状電気絶縁本体内にマイクロチャネルを有し、流体を流動させて放熱することを特徴とする、請求項1に記載の導電放熱板を備えたバッテリモジュール。 The battery module equipped with a conductive heat sink according to claim 1, characterized in that the plate-shaped electrically insulating body has a microchannel, and heat is radiated by flowing a fluid.
JP2023004354U 2023-02-08 2023-12-04 Battery module with conductive heat sink Active JP3245511U (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW112201093U TWM645238U (en) 2023-02-08 2023-02-08 Battery module with conductive cooling fin
TW112201093 2023-02-08

Publications (1)

Publication Number Publication Date
JP3245511U true JP3245511U (en) 2024-02-01

Family

ID=88560158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023004354U Active JP3245511U (en) 2023-02-08 2023-12-04 Battery module with conductive heat sink

Country Status (3)

Country Link
JP (1) JP3245511U (en)
DE (1) DE202023107195U1 (en)
TW (1) TWM645238U (en)

Also Published As

Publication number Publication date
TWM645238U (en) 2023-08-21
DE202023107195U1 (en) 2024-01-09

Similar Documents

Publication Publication Date Title
CN1555584A (en) A bipolar battery and a biplate assembly
JP3237010U (en) Button type battery module and its battery device
KR20100033831A (en) Battery cell and battery pack having the same
JP3245511U (en) Battery module with conductive heat sink
CN219419169U (en) Battery module with conductive heat sink
JP3232116U (en) Multi-axis electricity supply system
JP7398489B2 (en) Battery module with cooling cartridge and its battery system
CN115117367A (en) Electrode assembly and battery device thereof
JP3246636U (en) Soft-pack battery module and its power supply
US20220302463A1 (en) Electrode assembly and its battery device thereof
JP3237527U (en) Parallel connection type battery cell with heat dissipation conductive holder
TWI796927B (en) Electrode assembly and its battery device thereof
CN214753907U (en) Parallel battery core with heat radiation conductive handle
CN115117522B (en) Soft package type battery module and electric energy supply device thereof
CN214754060U (en) Button-like battery module and battery device thereof
CN214848765U (en) Metal shell type battery device with independent monitoring
CN115117497A (en) Battery module with heat dissipation box body and battery system thereof
CN220604917U (en) Battery cell, battery module and battery
TWM615113U (en) Metal casing battery device having independent monitoring
KR100366083B1 (en) Assembly of electrode plate for lithium secondry battery
CN116231241A (en) Adhesive electrode and laminated battery pack thereof
CN118231558A (en) Electrode assembly, battery cell, battery and electric equipment

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Ref document number: 3245511

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150