JP3237527U - Parallel connection type battery cell with heat dissipation conductive holder - Google Patents

Parallel connection type battery cell with heat dissipation conductive holder Download PDF

Info

Publication number
JP3237527U
JP3237527U JP2022000352U JP2022000352U JP3237527U JP 3237527 U JP3237527 U JP 3237527U JP 2022000352 U JP2022000352 U JP 2022000352U JP 2022000352 U JP2022000352 U JP 2022000352U JP 3237527 U JP3237527 U JP 3237527U
Authority
JP
Japan
Prior art keywords
plate
conductive holder
heat
shaped
battery cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022000352U
Other languages
Japanese (ja)
Inventor
楊思▲ダン▼
呉孟鴻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Prologium Technology Co Ltd
Original Assignee
Prologium Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prologium Technology Co Ltd filed Critical Prologium Technology Co Ltd
Application granted granted Critical
Publication of JP3237527U publication Critical patent/JP3237527U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6553Terminals or leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/654Means for temperature control structurally associated with the cells located inside the innermost case of the cells, e.g. mandrels, electrodes or electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • H01M50/474Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by their position inside the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/512Connection only in parallel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/586Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries inside the batteries, e.g. incorrect connections of electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

Figure 0003237527000001

【課題】従来の導電端子の代わりに放熱導電性ホルダを用いて並列接続する放熱導電性ホルダを備えた並列接続型電池セルを提供する。
【解決手段】放熱導電性ホルダ31、32を備えた並列接続型電池セルは、電池ユニット20と、放熱導電性ホルダとを含む。放熱導電性ホルダは板状本体311と、板状本体から延在している複数の板状延在部312とを含み、板状延在部が電池ユニットの集電層24、25に直接接触する方式を用いて、電流経路を最大化すると同時に、放熱の伝導経路とすることで、電池セルの性能及び安定性に相当に大きな改善をもたらす。
【選択図】図2A

Figure 0003237527000001

PROBLEM TO BE SOLVED: To provide a parallel connection type battery cell provided with a heat dissipation conductive holder which is connected in parallel by using a heat dissipation conductive holder instead of a conventional conductive terminal.
A parallel connection type battery cell including heat-dissipating conductive holders 31 and 32 includes a battery unit 20 and a heat-dissipating conductive holder. The heat-dissipating conductive holder includes a plate-shaped main body 311 and a plurality of plate-shaped extending portions 312 extending from the plate-shaped main body, and the plate-shaped extending portions directly contact the current collecting layers 24 and 25 of the battery unit. By maximizing the current path and at the same time providing a conduction path for heat dissipation, the performance and stability of the battery cell can be significantly improved.
[Selection diagram] FIG. 2A

Description

本考案は電池セルに関し、とりわけ完全に且つ個別に封止された電池ユニットを用いて構成されるとともに、放熱導電性ホルダで並列接続されている電池セルに関する。 The present invention relates to a battery cell, and more particularly to a battery cell configured using a completely and individually sealed battery unit and connected in parallel with a radiating conductive holder.

近年、各種携帯型電子製品/電動自動車/蓄電ステーション等の分野の急速な進歩に伴い、蓄電密度が高く、環境に配慮した蓄電装置に対する高い要求が生じている。その内、イオン二次電池は第一の選択肢であり、例えばリチウムイオン二次電池、マグネシウムイオン二次電池、ナトリウムイオン二次電池等の各種二次電池が開発されている。実用上において、最も一般的なのは、電池ユニットを並列にして電池セルを構成することで、十分な容量により各種装置に応用するというものである。 In recent years, with the rapid progress in the fields of various portable electronic products / electric vehicles / power storage stations, etc., there has been a high demand for a power storage device having a high storage density and being environmentally friendly. Among them, the ion secondary battery is the first option, and various secondary batteries such as a lithium ion secondary battery, a magnesium ion secondary battery, and a sodium ion secondary battery have been developed. In practical use, the most common is to configure a battery cell by arranging battery units in parallel and apply it to various devices with sufficient capacity.

従来の直列接続方式では、主に集電体の突出部(Terminal端)を同じ極性ではんだ付けして構成されている。このような方式では、突出部は相対的に細長くなってしまうことから、電池セルの電流経路を最大化することができず、抵抗値が高くなり、発熱しやすく、電池セルの安定性に深刻な影響を与えてしまう。更に、はんだ付けスポットの接触面積が小さいことから、作業しにくく、はんだ付け状況の不良により接触状況が不良となる不具合が生じやすい。
以上の問題に鑑み、本考案では上記の欠陥に対して、斬新であり、放熱導電性ホルダを備えた並列接続型電池セルを提供する。
In the conventional series connection method, the protruding portion (terminal end) of the current collector is mainly soldered with the same polarity. In such a method, since the protruding portion becomes relatively elongated, the current path of the battery cell cannot be maximized, the resistance value becomes high, heat is easily generated, and the stability of the battery cell is serious. It will have an impact. Further, since the contact area of the soldering spot is small, it is difficult to work, and a defect that the contact condition becomes poor due to a poor soldering condition is likely to occur.
In view of the above problems, the present invention provides a parallel connection type battery cell provided with a heat dissipation conductive holder, which is novel for the above-mentioned defects.

本考案の主な目的は、放熱導電性ホルダを用いて大面積により直接接触する方式により電池セルの並列接続を構成することで、電池セルの電流経路を最大化し得る放熱導電性ホルダを備えた並列接続型電池セルを提供することにある。 The main object of the present invention is to provide a heat-dissipating conductive holder that can maximize the current path of the battery cells by constructing a parallel connection of the battery cells by a method of directly contacting a large area using the heat-dissipating conductive holder. The purpose is to provide a parallel connection type battery cell.

本考案の他の目的は、放熱導電性ホルダを放熱経路として、電池セルの動作により生じた熱を効果的に放熱して、電池セルの最適な性能を維持することができる、放熱導電性ホルダを備えた並列接続型電池セルを提供することにある。 Another object of the present invention is to use the heat dissipation conductive holder as a heat dissipation path to effectively dissipate the heat generated by the operation of the battery cell and maintain the optimum performance of the battery cell. It is to provide a parallel connection type battery cell equipped with.

本考案は、複数の電池ユニットと、第1の放熱導電性ホルダと、第2の放熱導電性ホルダとを含み、電池ユニットは2層の集電層と、この中に設けられている電気化学システムとを含む完全に且つ個別のモジュールであり、第1、第2の放熱導電性ホルダは板状本体と、板状本体から延在している複数の板状延在部とを有しており、同一の板状本体から延在している板状延在部は電池ユニットと同じ極性を有する板状集電層に直接接触するように設けられるとともに、少なくともそのうちの1つの板状延在部は積層されているいずれか2つの電池ユニット間に挿設されて、並列接続を完成する、放熱導電性ホルダを備えた並列接続型電池セルを提供する。 The present invention includes a plurality of battery units, a first heat-dissipating conductive holder, and a second heat-dissipating conductive holder, and the battery unit has a two-layer current collecting layer and an electrochemical provided therein. A complete and separate module that includes the system, the first and second radiating conductive holders have a plate-like body and a plurality of plate-like extensions extending from the plate-like body. The plate-shaped extending portion extending from the same plate-shaped main body is provided so as to be in direct contact with the plate-shaped current collecting layer having the same polarity as the battery unit, and at least one of the plate-shaped extending portions is provided. The section is inserted between any two stacked battery units to provide a parallel connection type battery cell with a radiating conductive holder that completes the parallel connection.

板状延在部と板状集電層は大面積で直接接触することから、電池セルの電流経路を最大化することができ、同時に放熱の熱伝導経路とすることもできる。更に、板状本体と板状延在部の接続面積が従来の導電端子と集電体との接触面積よりも遥かに広いことから、一層作業しやすくなる。 Since the plate-shaped extending portion and the plate-shaped current collector layer are in direct contact with each other over a large area, the current path of the battery cell can be maximized, and at the same time, it can be used as a heat conduction path for heat dissipation. Further, since the connection area between the plate-shaped main body and the plate-shaped extending portion is much larger than the contact area between the conventional conductive terminal and the current collector, the work becomes easier.

以下にて具体的な実施例により詳細な説明を行うことで、本考案の目的、技術内容、特長及びこれにより達成する効果をより一層理解しやすくする。 By giving a detailed explanation with specific examples below, it will be easier to understand the purpose, technical content, features and effects achieved by the present invention.

本考案の放熱導電性ホルダを備えた並列接続型電池セルの電池ユニットの概略図である。It is a schematic diagram of the battery unit of the parallel connection type battery cell provided with the heat dissipation conductive holder of this invention. 本考案の放熱導電性ホルダを備えた並列接続型電池セルの電池ユニットの他の実施例の概略図である。It is a schematic diagram of another embodiment of the battery unit of the parallel connection type battery cell provided with the heat dissipation conductive holder of this invention. 本考案の放熱導電性ホルダを備えた並列接続型電池セルの電池ユニットの分解概略図である。It is an exploded schematic diagram of the battery unit of the parallel connection type battery cell provided with the heat dissipation conductive holder of this invention. 本考案の放熱導電性ホルダを備えた並列接続型電池セルの概略図である。It is a schematic diagram of the parallel connection type battery cell provided with the heat dissipation conductive holder of this invention. 本考案の放熱導電性ホルダを備えた並列接続型電池セルの分解概略図である。It is an exploded schematic view of the parallel connection type battery cell provided with the heat dissipation conductive holder of this invention. 本考案の放熱導電性ホルダを備えた並列接続型電池セルの端面絶縁形態の概略図である。It is a schematic diagram of the end face insulation form of the parallel connection type battery cell provided with the heat dissipation conductive holder of this invention. 本考案の放熱導電性ホルダを備えた並列接続型電池セルの端面絶縁形態の概略図である。It is a schematic diagram of the end face insulation form of the parallel connection type battery cell provided with the heat dissipation conductive holder of this invention. 本考案の放熱導電性ホルダを備えた並列接続型電池セルの端面絶縁形態の概略図である。It is a schematic diagram of the end face insulation form of the parallel connection type battery cell provided with the heat dissipation conductive holder of this invention. 本考案の放熱導電性ホルダを備えた並列接続型電池セルの端面絶縁形態の概略図である。It is a schematic diagram of the end face insulation form of the parallel connection type battery cell provided with the heat dissipation conductive holder of this invention. 本考案の放熱導電性ホルダを備えた並列接続型電池セルの他の実施例の概略図である。It is a schematic diagram of another embodiment of the parallel connection type battery cell provided with the heat dissipation conductive holder of this invention. 本考案の放熱導電性ホルダを備えた並列接続型電池セルの他の実施例の概略図である。It is a schematic diagram of another embodiment of the parallel connection type battery cell provided with the heat dissipation conductive holder of this invention. 本考案の放熱導電性ホルダを備えた並列接続型電池セルの他の実施例の概略図である。It is a schematic diagram of another embodiment of the parallel connection type battery cell provided with the heat dissipation conductive holder of this invention.

本考案の長所、技術思想及び特徴をより明確に理解しやすくするために、以下で実施例に合わせて前記図面を参照して詳述する。言明しておくべきことは、これらの実施例は単に本考案の代表的な実施例に過ぎず、これをもって本考案の実施形態及び請求範囲をこれら実施例の形態に限定するものではない、ということである。これらの実施例を提供する目的は、本考案の開示する内容をより全般的に理解しやすくするというものに過ぎない。 In order to make it easier to understand the advantages, technical ideas and features of the present invention more clearly, the following will be described in detail with reference to the above drawings according to examples. It should be stated that these examples are merely representative examples of the present invention and are not intended to limit the embodiments and claims of the present invention to these embodiments. That is. The purpose of providing these examples is merely to make the disclosed contents of the present invention easier to understand in general.

本考案で開示する各種実施例中で使用する用語は、特定の実施例を記述する目的に用いるのみで、本考案で開示する各種実施例を限定するものではない。はっきりとした指示がない限り、使用される単数形式は複数形式も含むものである。別途限定がない限り、本明細書中で使用される全ての用語(技術用語及び科学用語を含む)は、本考案で開示する各種実施例における当業者が通常理解する意味と同じ意味を有する。上記用語(例えば一般的に使用される辞書中で限定される用語)は、同じ技術分野中での文脈語意と同じ意味を有すると解釈されるとともに、理想化された意味又は正式のものを越える意味として解釈されるべきではない。ただし本願で開示する各種実施例中にてはっきりと限定している場合はこの限りではない。 The terms used in the various examples disclosed in the present invention are used only for the purpose of describing a specific example, and are not limited to the various examples disclosed in the present invention. Unless explicitly instructed, the singular format used includes the plural. Unless otherwise specified, all terms used herein, including technical and scientific terms, have the same meanings commonly understood by one of ordinary skill in the art in the various embodiments disclosed in the present invention. The above terms (eg, terms limited in commonly used dictionaries) are construed to have the same meaning as the contextual meaning in the same technical field, and go beyond the idealized meaning or the formal one. It should not be interpreted as a meaning. However, this does not apply if it is clearly limited in the various examples disclosed in the present application.

本明細書中の記載において、参考用語「一つの実施例」、「一つの具体的な実施例」等で記述するものは、該実施例を結合して記述する具体的な特徴、構造、材料又は特長が本考案の少なくとも1つの実施例中に含まれることを意味している。本明細書中にて、上記用語の概略的な表現は必ずしも同じ実施例を意味するものではない。しかも、記述する具体的な特徴、構造、材料又は特長はいずれか一つ又は複数の実施例中にて適宜の方式で結合することができる。 In the description in the present specification, what is described by the reference terms "one embodiment", "one specific embodiment" and the like are specific features, structures and materials described by combining the examples. Alternatively, it means that the feature is included in at least one embodiment of the present invention. In the present specification, the schematic expressions of the above terms do not necessarily mean the same embodiment. Moreover, the specific features, structures, materials or features to be described can be combined in any one or more embodiments in an appropriate manner.

本考案の記述中にて、説明しておくべきことは、別途規定又は限定がない限り、用語「結合」、「接続」、「設ける」は広義的に理解されるべきであって、例えば、機械に接続される、又は電気的に接続されるというものは、2つの素子内部の連通であってもよく、直接接続でも、中間媒体を介した繋がりであってもよく、当業者にとっては、具体的な状況に応じて上記用語の具体的な意味を理解することができる、ということである。 In the description of the present invention, it should be explained in a broad sense that the terms "join", "connection", and "provide" should be understood in a broad sense, unless otherwise specified or limited. What is connected to a machine or electrically connected may be a communication inside two elements, a direct connection, or a connection via an intermediate medium, and for those skilled in the art, It means that the specific meanings of the above terms can be understood according to the specific situation.

本考案は完全に且つ個別の電池ユニット20を採用して並列接続を完成していることから、まず電池ユニット20の部分について説明する。
図1A、図1Cを参照されたい。本考案の電池ユニット20は、2層の集電層24、25と、電気化学システム201と、接着性枠体26とを含み、電気化学システム201はセパレータ層21と、2層の活性材料層22、23と、活性材料層22、23に含浸/混練されている電解質システムとを含む。セパレータ層21の材料は、イオン伝導性を持たない絶縁材料か、又はイオン伝導性を持つ材料から選択することができる。イオン伝導性を持たない絶縁材料から選択する場合、例えば高分子材料又はグラスファイバ材料から形成された多孔質層状物とするか、又はセラミックス粒子材料を積層するか、又は焼結にて微細孔を有する構造を形成するか、又は上記を混合して設けることができる。
セパレータ層21の材料自身がイオン伝導性を持たない場合、セパレータ層21はイオンが電解質媒体を介してセパレータ層を通過するように、微細孔形態を有するものとなる。セパレータ層21の材料がイオン伝導性を持つ材料である場合、例えば酸化物固体電解質の粉末セラミックスであるとき、セパレータ層21はイオンを伝達させる(微細)孔を持たないようにすることができるが、一方で酸化物固体電解質自身の固体-固体界面により接触伝達させることができる。上記した微細孔は直線孔としても、屈曲孔(非直線で貫通した形態)の形態としてもよい。
Since the present invention completes the parallel connection by completely and individually adopting the individual battery units 20, the part of the battery units 20 will be described first.
See FIGS. 1A and 1C. The battery unit 20 of the present invention includes two collector layers 24 and 25, an electrochemical system 201, and an adhesive frame 26, and the electrochemical system 201 includes a separator layer 21 and two active material layers. 22 and 23 and an electrolyte system impregnated / kneaded in the active material layers 22 and 23. The material of the separator layer 21 can be selected from an insulating material having no ionic conductivity or a material having ionic conductivity. When selecting from insulating materials that do not have ionic conductivity, for example, a porous layered material formed from a polymer material or a glass fiber material, a ceramic particle material is laminated, or micropores are formed by sintering. The structure having the above can be formed, or the above can be mixed and provided.
When the material of the separator layer 21 itself does not have ionic conductivity, the separator layer 21 has a micropore morphology so that ions pass through the separator layer via the electrolyte medium. When the material of the separator layer 21 is a material having ionic conductivity, for example, when it is a powdered ceramic of an oxide solid electrolyte, the separator layer 21 can be prevented from having (fine) pores for transmitting ions. On the other hand, it can be contact-transmitted by the solid-solid interface of the oxide solid electrolyte itself. The above-mentioned fine holes may be in the form of a straight hole or a bent hole (a form penetrating in a non-straight line).

上記した粉末セラミックスはイオン伝導性を持たない絶縁材料又はイオン伝導性を持つ酸化物固体電解質とすることができ、元の粒子径範囲はマイクロメートルレベル又はナノメートルレベル又は、例えばマイクロメートルレベルとナノメートルレベルとを混合するといった差が大きな二種類のサイズを混合するものとすることができる。粉末セラミックスがイオン伝導性を持たない絶縁材料から選択される場合、二酸化チタン(TiO)、酸化アルミニウム(Al)、二酸化ケイ素(SiO)等の材質又はアルキル化したセラミックス粒子により形成することができる。
粉末セラミックスがイオン伝導性を持つ酸化物固体電解質から選択される場合、具体的な材料は、例えばリチウムランタンジルコニウムオキサイド(lithium lanthanum zirconium oxide; LiLaZr12;LLZO)又はリン酸チタンアルミリチウム(LATP)等とすることができる。また、セラミックス材料は、上記絶縁セラミックス材料と酸化物固体電解質とを混合してなるものでもよい。粉末セラミックスを積層して上記したセパレータ層を構成する場合、例えばポリフッ化ビニリデン(Polyvinylidene fluoride;PVDF)、ポリフッ化ビニリデン-ヘキサフルオロプロピレン共重合体(PVDF-HFP)、ポリテトラフルオロエチレン(Polytetrafluoroethene;PTFE)、アクリル酸系接着剤(Acrylic Acid Glue)、エポキシ樹脂(Epoxy)、ポリエチレンオキシド(PEO)、ポリアクリロニトリル(PAN)又はポリイミド(PI)等の高分子接着剤を更に含むことができる。
The powdered ceramics described above can be an insulating material having no ionic conductivity or an oxide solid electrolyte having ionic conductivity, and the original particle size range is at the micrometer level or nanometer level, or for example, at the micrometer level and nanometer level. It is possible to mix two sizes with a large difference, such as mixing with the metric level. When powdered ceramics are selected from insulating materials that do not have ionic conductivity, they are formed from materials such as titanium dioxide (TIM 2 ), aluminum oxide (Al 2 O 3 ), silicon dioxide (SiO 2 ) or alkylated ceramic particles. can do.
When powdered ceramics are selected from oxide solid electrolytes with ionic conductivity, the specific material may be, for example, lithium lanthanum zirconium oxide; Li 7 La 3 Zr 2 O 12 ; LLZO or titanium phosphate. It can be aluminum lithium (LATP) or the like. Further, the ceramic material may be a mixture of the insulating ceramic material and the oxide solid electrolyte. When the above-mentioned separator layer is formed by laminating powdered ceramics, for example, polyvinylidene fluoride (PVDF), vinylidene-hexafluoropropylene copolymer (PVDF-HFP), polytetrafluoroethylene (PTFE), and polytetrafluoroethylene (PTFE). ), Acrylic Acid Blue, epoxy resin (Epoxy), polyethylene oxide (PEO), polyacrylonitrile (PAN) or polyimide (PI) and other polymer adhesives can be further included.

電解質システムを活性材料層22、23に含浸又は混練するときには、電解質システムは液状、ゲル状、固体電解質、又はその任意の組合せの混合電解質とすることができる。活性材料層22、23は、中間のセパレータ層21により隔絶されており、しかも活性材料層22、23とセパレータ層21とで電気化学システム201を構成している。その活性材料成分により化学エネルギーを電気エネルギーに変換して使用する(電力供給)か、又は電気エネルギーを化学エネルギーに変換してシステムに蓄電する(充電)することができ、そしてイオンの伝導とマイグレーションを同時に実現することができ、発生した電子は板状集電層24、25から直接外部に導出することができる。なお板状集電層24、25の材料の一般的なものは銅及びアルミニウムであるが、当然のこと、ニッケル、スズ、銀、金等のその他金属又は金属の合金としてもよい。 When the electrolyte system is impregnated or kneaded into the active material layers 22, 23, the electrolyte system can be a liquid, gel, solid electrolyte, or any combination thereof. The active material layers 22 and 23 are separated by an intermediate separator layer 21, and the active material layers 22 and 23 and the separator layer 21 constitute an electrochemical system 201. Its active material components can be used by converting chemical energy into electrical energy (power supply), or by converting electrical energy into chemical energy and storing it in the system (charging), and ion conduction and migration. Can be realized at the same time, and the generated electrons can be directly derived to the outside from the plate-shaped current collector layers 24 and 25. The general materials for the plate-shaped current collector layers 24 and 25 are copper and aluminum, but of course, other metals such as nickel, tin, silver, and gold, or alloys of metals may be used.

同時に、板状集電層24、25は、周縁の接着性枠体26を電池ユニット20の封止体とすることで、電気化学システム201を外部環境から隔絶している。接着性枠体26はポリマー材料であって、板状集電層24、25の表面上に接着固定されるとともに電解質システムに対して耐久性を持つものであれば特に制限はないが、熱可塑性樹脂が最も好ましい。例えば、接着性枠体26の材質はエポキシ樹脂、ポリエチレン、ポリプロピレン、ポリウレタン、熱可塑性ポリイミド、シリコーン樹脂、アクリル樹脂、シリコーン又はUV硬化型接着剤とすることができる。
接着性枠体26は2層の板状集電層24、25の間の周縁部に介在されており、電気化学システム201(活性材料層22、23と中間のセパレータ層21)を囲んで封止すると同時に、両端面の少なくとも一部と2層の板状集電層24、25とが接着されている。接着性枠体26及び2層の集電層24、25は、電解質システムが2層の集電層24、25の間で漏れないように、且つ電池ユニット20の他の電解質システムと互いに流動しないように封止している。よって、電池ユニット20は、集電層24、25及び接着性枠体26を直接的に封止構造として採用して形成されている個別で且つ完全な電力供給モジュールである。
At the same time, the plate-shaped current collector layers 24 and 25 isolate the electrochemical system 201 from the external environment by using the adhesive frame 26 on the peripheral edge as a sealing body of the battery unit 20. The adhesive frame 26 is not particularly limited as long as it is a polymer material and is adhesively fixed on the surfaces of the plate-shaped current collector layers 24 and 25 and has durability against the electrolyte system, but is thermoplastic. Resin is most preferred. For example, the material of the adhesive frame 26 can be an epoxy resin, polyethylene, polypropylene, polyurethane, a thermoplastic polyimide, a silicone resin, an acrylic resin, a silicone, or a UV curable adhesive.
The adhesive frame 26 is interposed in the peripheral portion between the two plate-shaped current collector layers 24 and 25, and surrounds and seals the electrochemical system 201 (active material layers 22 and 23 and an intermediate separator layer 21). At the same time as stopping, at least a part of both end faces and the two plate-shaped current collector layers 24 and 25 are adhered to each other. The adhesive frame 26 and the two-layer current collector layers 24 and 25 prevent the electrolyte system from leaking between the two-layer current collector layers 24 and 25 and do not flow with each other with the other electrolyte systems of the battery unit 20. It is sealed like this. Therefore, the battery unit 20 is an individual and complete power supply module formed by directly adopting the current collector layers 24 and 25 and the adhesive frame 26 as a sealing structure.

そして接着性枠体26の封止効果をより好適にするために、シリコーン材質を採用する場合、接着性枠体26が3層構造を持つように設計することができる。
図1Bを参照されたい。上下2つの層は変性シリコーン層261、262であって、中間はシリコーン層263であり、両側の変性シリコーン層261、262は、シリコーンを付加型シリコーンと縮合型シリコーンとの組成割合を調整するか、又は添加物を添加することで変性して、異種材料の接着に適合させたものである(ここでの異種材料とは板状集電層24、25のことである)。この設計により、その界面の接着力が向上し、同時に、全体的な外観の整合性がより高まり、生産での歩留まりもまた向上させることができる。
When a silicone material is used, the adhesive frame 26 can be designed to have a three-layer structure in order to make the sealing effect of the adhesive frame 26 more suitable.
See FIG. 1B. The upper and lower two layers are the modified silicone layers 261 and 262, the middle is the silicone layer 263, and the modified silicone layers 261 and 262 on both sides adjust the composition ratio of the silicone-added silicone and the condensed silicone. Or, it is modified by adding an additive to be adapted to the adhesion of different materials (here, the different materials are the plate-shaped current collector layers 24 and 25). This design improves the adhesion of the interface, while at the same time increasing the overall appearance consistency and also improving the yield in production.

続いて、本考案の放熱導電性ホルダを備えた並列接続型電池セルの第1の形態について、図2A、図2Bを参照されたい。これは、複数の単一軸方向で積層された電池ユニット20と、少なくとも1つの放熱導電性ホルダとを含み、図面上で言えば、第1の放熱導電性ホルダ31と、第2の放熱導電性ホルダ32とが図示されている。第1の放熱導電性ホルダ31は1つの板状本体311と、板状本体311から延在している複数の板状延在部312とを有しており、この板状延在部312は連結する電池ユニット20に合わせて設計されている。つまりこの実施形態で言えば、主に3つの電池ユニット20に対応していることから、第1の放熱導電性ホルダ31の板状延在部312もまた3つである。同じように、第2の放熱導電性ホルダ32も1つの板状本体321と、板状本体321から延在している3つの板状延在部322とを有している。 Subsequently, please refer to FIGS. 2A and 2B for the first embodiment of the parallel connection type battery cell provided with the heat dissipation conductive holder of the present invention. This includes a plurality of battery units 20 stacked in a single axial direction and at least one heat radiation conductive holder, and in terms of drawings, a first heat radiation conductive holder 31 and a second heat radiation conductive holder. The holder 32 is shown. The first heat-dissipating conductive holder 31 has one plate-shaped main body 311 and a plurality of plate-shaped extending portions 312 extending from the plate-shaped main body 311, and the plate-shaped extending portion 312 has a plurality of plate-shaped extending portions 312. It is designed according to the battery unit 20 to be connected. That is, in this embodiment, since it mainly corresponds to three battery units 20, there are also three plate-shaped extending portions 312 of the first heat dissipation conductive holder 31. Similarly, the second heat dissipation conductive holder 32 also has one plate-shaped main body 321 and three plate-shaped extending portions 322 extending from the plate-shaped main body 321.

つまりこの実施形態で言えば、電池ユニット20は同方向で積層されている。言い換えれば、同じ極性の板状集電層24はいずれも上向きに設けられるとともに、いずれもが第1の放熱導電性ホルダ31の板状延在部312に直接接触するように電気的に接続されている。同様に、他極性の板状集電層25はいずれも下向きとなるとともに第2の放熱導電性ホルダ32の板状延在部322に直接接触するように電気的に接続されている。つまり、第1の放熱導電性ホルダ31の板状延在部312と第2の放熱導電性ホルダ32の板状延在部322とは互い違いに配置された形態となることで、並列接続された接続形態となることから、第1の放熱導電性ホルダ31及び第2の放熱導電性ホルダ32はいずれも導電材料により構成される。このとき、中間にある互い違いに配置された第1の放熱導電性ホルダ31の板状延在部312と第2の放熱導電性ホルダ32の板状延在部322とが互いに接触して短絡するのを回避するために、両者の間に絶縁板40を増設して隔絶することができる。 That is, in this embodiment, the battery units 20 are stacked in the same direction. In other words, all of the plate-shaped current collector layers 24 having the same polarity are provided upward, and both are electrically connected so as to be in direct contact with the plate-shaped extending portion 312 of the first heat-dissipating conductive holder 31. ing. Similarly, all of the plate-shaped current collector layers 25 having other polarities face downward and are electrically connected so as to be in direct contact with the plate-shaped extending portion 322 of the second heat-dissipating conductive holder 32. That is, the plate-shaped extending portion 312 of the first heat-dissipating conductive holder 31 and the plate-shaped extending portion 322 of the second heat-dissipating conductive holder 32 are arranged in parallel. Since it is a connection form, both the first heat dissipation conductive holder 31 and the second heat dissipation conductive holder 32 are made of a conductive material. At this time, the plate-shaped extending portions 312 of the first heat-dissipating conductive holder 31 and the plate-shaped extending portions 322 of the second heat-dissipating conductive holder 32, which are alternately arranged in the middle, come into contact with each other and short-circuit. In order to avoid this, an insulating plate 40 can be added between the two to isolate them.

一方、電池ユニット20の端面でも、第1の放熱導電性ホルダ31又は第2の放熱導電性ホルダ32の板状本体311、321の内側に接触して短絡する恐れがあることから、図3Aを参照するに、板状本体311、321の内側、板状延在部312、322の間に絶縁体41が設けられることで電池ユニット20の端面が接触するのを回避することができる。更に、絶縁体41を採用する方式以外に、電池ユニット20の接着性枠体26も絶縁材質であることを考慮することから、電池ユニット20の接着性枠体26も外向きに延在して板状集電層24及び/又は板状集電層25側縁外に突出させることができる。更には、図3Bに示すように、第1の放熱導電性ホルダ31又は第2の放熱導電性ホルダ32の板状本体311、321の内側にまで延在して接触させることができる。当然のこと、外向きに延在するものの第1の放熱導電性ホルダ31又は第2の放熱導電性ホルダ32の板状本体311、321の内側に接触させなくてもよいが、これは主に、電池ユニット20最外側の板状集電層24、25と第1の放熱導電性ホルダ31又は第2の放熱導電性ホルダ32の板状本体311、321の内側とが接触するのを防止するためである。
更に図3Cを参照されたい。図示するものは、接着性枠体26が外向きに延在して板状集電層25側縁外に突出しているが、このとき、電池ユニット20の板状集電層24は元より第1の放熱導電性ホルダ31の板状延在部312に接触して同じ極性となっていることから、板状集電層24は第1の放熱導電性ホルダの板状本体311の内側に接触するが短絡していない。このため、この部分の板状集電層24は接着性枠体26とともに延在することで、接触面積を増加させて、ひいては放熱効果を増進することができる。又は、板状集電層25は板状集電層24に対して電池ユニットの中心に向けて退縮することで、異なる極性の板状集電層25が板状本体311、321の内側に触れるのを回避している。
この2つの実施例(図3B、3C)について言えば、接着性枠体26が外向きに延在するということは反対の概念と見なすことができるものであって、達成したい効果に基づいて言えば、板状集電層24、25は内向きに縮退していると見なすことができる。同じように、絶縁体41を同時に増設して、接着性枠体26を外向きに延在させてもよく、図3Dに示すように、電池ユニット20の端面が接触することで短絡しないように更に確保することができる。
On the other hand, since there is a possibility that the end face of the battery unit 20 may come into contact with the inside of the plate-shaped main bodies 311 and 321 of the first heat-dissipating conductive holder 31 or the second heat-dissipating conductive holder 32 and cause a short circuit, FIG. 3A is shown. For reference, by providing the insulator 41 inside the plate-shaped main bodies 311 and 321 and between the plate-shaped extending portions 312 and 322, it is possible to prevent the end faces of the battery unit 20 from coming into contact with each other. Further, in addition to the method of adopting the insulator 41, considering that the adhesive frame 26 of the battery unit 20 is also an insulating material, the adhesive frame 26 of the battery unit 20 also extends outward. The plate-shaped current collector layer 24 and / or the plate-shaped current collector layer 25 can be projected outside the side edge. Further, as shown in FIG. 3B, the heat-dissipating conductive holder 31 or the second heat-dissipating conductive holder 32 can be extended to the inside of the plate-shaped main bodies 311 and 321 to be brought into contact with each other. As a matter of course, although it extends outward, it does not have to be in contact with the inside of the plate-shaped main bodies 311 and 321 of the first heat-dissipating conductive holder 31 or the second heat-dissipating conductive holder 32, but this is mainly Prevents the outermost plate-shaped current collector layers 24 and 25 of the battery unit 20 from coming into contact with the inside of the plate-shaped main bodies 311 and 321 of the first heat-dissipating conductive holder 31 or the second heat-dissipating conductive holder 32. This is because.
Further see FIG. 3C. In the figure shown, the adhesive frame 26 extends outward and protrudes outside the side edge of the plate-shaped current collector layer 25. At this time, the plate-shaped current collector layer 24 of the battery unit 20 is originally the first. Since the plate-shaped current collector layer 24 is in contact with the plate-shaped extending portion 312 of the heat-dissipating conductive holder 31 of 1 and has the same polarity, the plate-shaped current collector layer 24 is in contact with the inside of the plate-shaped main body 311 of the first heat-dissipating conductive holder. However, it is not short-circuited. Therefore, the plate-shaped current collector layer 24 in this portion extends together with the adhesive frame body 26 to increase the contact area and thus the heat dissipation effect. Alternatively, the plate-shaped current collector layer 25 retracts toward the center of the battery unit with respect to the plate-shaped current collector layer 24, so that the plate-shaped current collector layers 25 having different polarities touch the inside of the plate-shaped main bodies 311 and 321. Is avoiding.
Regarding these two examples (FIGS. 3B and 3C), the fact that the adhesive frame 26 extends outward can be regarded as the opposite concept, and can be said based on the effect desired to be achieved. For example, the plate-shaped current collector layers 24 and 25 can be considered to be degenerate inward. Similarly, the insulator 41 may be added at the same time to extend the adhesive frame 26 outward, and as shown in FIG. 3D, the end faces of the battery unit 20 may not be short-circuited due to contact with each other. It can be further secured.

よって、第1の放熱導電性ホルダ31の板状延在部312及び第2の放熱導電性ホルダ32の板状延在部322を採用することで2層の板状集電層24、25に大面積で接触することから、この並列接続式電池セルの電流経路を最大化させることができる。このため、第1の放熱導電性ホルダ31の板状延在部312及び第2の放熱導電性ホルダ32の板状延在部322は概ね2層の板状集電層24、25と同じ寸法とすることができる。
そして第1の放熱導電性ホルダ31の板状本体311と板状延在部312、及び第2の放熱導電性ホルダ32の板状本体321と板状延在部322は一体成型又は溶接等の方式で接続して成形することができることから、どのような方式を採用したとしても、その間の接続面積は従来の突出部(Terminal端)の接続方式よりも遥かに広い。よって、接続方式はより安定し、且つ電池セル全体の製作作業もより便利になる。同時に、接続面積が大幅に向上することから、抵抗値も追従するように低下し、動作時に生じる熱も低減する。
Therefore, by adopting the plate-shaped extending portion 312 of the first heat-dissipating conductive holder 31 and the plate-shaped extending portion 322 of the second heat-dissipating conductive holder 32, the two-layer plate-shaped current collector layers 24 and 25 can be formed. Since the contacts are made in a large area, the current path of this parallel connection type battery cell can be maximized. Therefore, the plate-shaped extending portion 312 of the first heat-dissipating conductive holder 31 and the plate-shaped extending portion 322 of the second heat-dissipating conductive holder 32 have substantially the same dimensions as the two-layer plate-shaped current collector layers 24 and 25. Can be.
The plate-shaped main body 311 and the plate-shaped extending portion 312 of the first heat-dissipating conductive holder 31 and the plate-shaped main body 321 and the plate-shaped extending portion 322 of the second heat-dissipating conductive holder 32 are integrally molded or welded. Since it can be connected and molded by a method, the connection area between them is much wider than that of the conventional connection method of the protruding portion (Terminal end) regardless of the method adopted. Therefore, the connection method is more stable, and the manufacturing work of the entire battery cell becomes more convenient. At the same time, since the connection area is significantly improved, the resistance value is also reduced to follow, and the heat generated during operation is also reduced.

更に、第1の放熱導電性ホルダ31及び第2の放熱導電性ホルダ32は熱伝導性の高い導電材料で構成することで、更に電池セルの放熱経路として、電池セル動作時に生じる熱を放熱することができる。そして前記した接続面積の向上に合わせることで、派生的に生じた熱を大幅に低減し、この大面積接触の放熱経路を合わせて、相乗的な効果により、この並列型電池セルが最適な動作性能を更に維持することができる。 Further, the first heat-dissipating conductive holder 31 and the second heat-dissipating conductive holder 32 are made of a conductive material having high thermal conductivity, thereby further dissipating heat generated during battery cell operation as a heat-dissipating path of the battery cell. be able to. Then, by matching with the above-mentioned improvement of the connection area, the heat generated as a derivative is greatly reduced, and the heat dissipation path of this large area contact is matched, and the synergistic effect makes this parallel type battery cell optimally operate. Performance can be further maintained.

引き続き図4を参照されたい。反対方向で積層する形態では、図中には合計7個の電池ユニット20を図示している。奇数の電池ユニット20は板状集電層24で上向き、一方偶数の電池ユニット20は板状集電層25で上向きとなっていることから、中間にある第1の放熱導電性ホルダ31の板状延在部312及び第2の放熱導電性ホルダ32の板状延在部322は同時に上下の電池ユニット20の同じ極性の板状集電層24、25に接触して、板状延在部312、322の数量、絶縁板40の配置を減らすことで、電池セルの全体的な単位エネルギー密度を向上することができる。 Please continue to refer to FIG. In the form of stacking in the opposite direction, a total of seven battery units 20 are shown in the figure. Since the odd-numbered battery unit 20 faces upward in the plate-shaped current collector layer 24, while the even-numbered battery unit 20 faces upward in the plate-shaped current collector layer 25, the plate of the first heat-dissipating conductive holder 31 in the middle The plate-shaped extending portion 312 and the plate-shaped extending portion 322 of the second heat-dissipating conductive holder 32 are in contact with the plate-shaped current collector layers 24 and 25 of the same polarity of the upper and lower battery units 20 at the same time, and the plate-shaped extending portion By reducing the quantity of 312 and 322 and the arrangement of the insulating plates 40, the overall unit energy density of the battery cell can be improved.

更に、図5を参照されたい。図2Aと同じく同一方向で配置された形態であるが、電池ユニット20の数量が4個であることで、全体が並列接続された状態を完成している。残りの内容は前記と同じであることから、別途説明しない。 Further see FIG. The form is arranged in the same direction as in FIG. 2A, but the number of battery units 20 is 4, so that the whole state is completed in parallel. The rest of the content is the same as above, so it will not be described separately.

同様に、図6を参照されたい。図4と同じく反対方向で配置されているが、電池ユニット20の数量を6個に変更している。このとき、第1の放熱導電性ホルダ31の板状延在部312は第2の放熱導電性ホルダ32の板状延在部322よりも1個多くなければ、全体が並列接続された状態が完成しない。残りの内容は前記と同じであることから、別途説明しない。前記は単にこれらの数量に図面を合わせて説明するに過ぎず、これは主に奇数及び偶数個の電池ユニット20の相違点として表されているものであって、その他図示していない数量は同じ原理により配置することができる。 Similarly, see FIG. Although they are arranged in the opposite directions as in FIG. 4, the number of battery units 20 is changed to six. At this time, if the plate-shaped extending portion 312 of the first heat-dissipating conductive holder 31 is not one more than the plate-shaped extending portion 322 of the second heat-dissipating conductive holder 32, the whole is connected in parallel. Not completed. The rest of the content is the same as above, so it will not be described separately. The above is merely described with reference to these quantities, which are mainly represented as differences between the odd and even battery units 20, and the other quantities not shown are the same. It can be arranged according to the principle.

上記をまとめるに、本考案では放熱導電性ホルダを備えた並列接続型電池セルを提供するものであって、従来の導電端子(Terminal端)の接続方式の代わりに放熱導電性ホルダを用いて、その板状の延在部と板状集電層とで、大面積の直接接触接続を行うことで、電池セルの電流経路を最大化することができる。同時に放熱導電性ホルダは放熱経路とすることも可能で、電池セルの動作により生じた熱を効果的に放熱して、電池セルの最適な性能を維持することができる。 To summarize the above, the present invention provides a parallel connection type battery cell provided with a heat dissipation conductive holder, and uses a heat dissipation conductive holder instead of the conventional conductive terminal (Terminal end) connection method. The current path of the battery cell can be maximized by making a large-area direct contact connection between the plate-shaped extending portion and the plate-shaped current collector layer. At the same time, the heat dissipation conductive holder can be used as a heat dissipation path, and the heat generated by the operation of the battery cell can be effectively dissipated to maintain the optimum performance of the battery cell.

ただし上記は単に本考案の好ましい実施例に過ぎず、本考案の範囲を限定するためのものではない。よって本考案の実用新案登録請求の範囲に記載する特徴及び技術思想によりなされる均等な変化又は付加はいずれも本考案の実用新案登録請求の範囲に含まれるものである。 However, the above is merely a preferred embodiment of the present invention and is not intended to limit the scope of the present invention. Therefore, any of the features and even changes or additions made by the technical idea described in the scope of the utility model registration claim of the present invention are included in the scope of the utility model registration claim of the present invention.

20 電池ユニット
201 電気化学システム
21 セパレータ層
22、23 活性材料層
24、25 板状集電層
26 接着性枠体
261 変性シリコーン層
262 変性シリコーン層
263 シリコーン層
31 第1の放熱導電性ホルダ
311 板状本体
312 板状延在部
32 第2の放熱導電性ホルダ
321 板状本体
322 板状延在部
40 絶縁板
41 絶縁体
20 Battery unit 201 Electrochemical system 21 Separator layer 22, 23 Active material layer 24, 25 Plate-shaped current collector layer 26 Adhesive frame 261 Modified silicone layer 262 Modified silicone layer 263 Silicone layer 31 First heat dissipation conductive holder 311 plate Shaped body 312 Plate-shaped extending part 32 Second heat dissipation conductive holder 321 Plate-shaped main body 322 Plate-shaped extending part 40 Insulating plate 41 Insulator

Claims (10)

放熱導電性ホルダを備えた並列接続型電池セルであって、
単一軸方向で積層されている複数の電池ユニットを含み、該電池ユニットの各々は、
該電池ユニットの封止体とされる、互いに平行して設けられている2層の板状集電層と、
該2層の板状集電層の間に設けられており、互いに接触しない電解質体を含む電気化学システムと、
板状本体と、該本体から延在している複数の板状延在部とを含み、該複数の板状延在部は該複数の電池の同じ極性の該複数の板状集電層に直接接触するように設けられており、少なくともそのうちの1つの板状延在部は積層されているいずれか2つの該電池ユニット間に挿設されている、第1の放熱導電性ホルダと、を含むことを特徴とする、
放熱導電性ホルダを備えた並列接続型電池セル。
A parallel connection type battery cell equipped with a heat dissipation conductive holder.
A plurality of battery units stacked in a single axial direction are included, and each of the battery units includes a plurality of battery units.
A two-layer plate-shaped current collector layer provided in parallel with each other, which is a sealing body of the battery unit,
An electrochemical system provided between the two plate-shaped current collector layers and containing electrolytes that do not contact each other, and an electrochemical system.
A plate-shaped main body and a plurality of plate-shaped extending portions extending from the main body are included, and the plurality of plate-shaped extending portions are formed on the plurality of plate-shaped current collector layers having the same polarity of the plurality of batteries. A first heat-dissipating conductive holder, which is provided for direct contact and at least one of the plate-shaped extending portions is inserted between any two of the stacked battery units. Characterized by including,
Parallel connection type battery cell with heat dissipation conductive holder.
板状本体と該板状本体から延在している複数の板状延在部とを有する第2の放熱導電性ホルダを更に含み、該複数の板状延在部は、複数の電池ユニットが他方の極性の該複数の板状集電層で直接接触するように設けられている、請求項1に記載の放熱導電性ホルダを備えた並列接続型電池セル。 A second heat-dissipating conductive holder having a plate-shaped main body and a plurality of plate-shaped extending portions extending from the plate-shaped main body is further included, and the plurality of plate-shaped extending portions include a plurality of battery units. The parallel connection type battery cell provided with the heat dissipation conductive holder according to claim 1, which is provided so as to be in direct contact with the plurality of plate-shaped current collector layers having the other polarity. 前記第1の放熱導電性ホルダ及び前記第2の放熱導電性ホルダの前記複数の板状延在部が、積層して設けられている前記複数の電池ユニットの間で互い違いに且つ互いに絶縁するように設けられている、請求項2に記載の放熱導電性ホルダを備えた並列接続型電池セル。 The plurality of plate-shaped extending portions of the first heat radiation conductive holder and the second heat radiation conductive holder are alternately and insulated from each other among the plurality of battery units provided in a laminated manner. A parallel connection type battery cell provided with the heat radiation conductive holder according to claim 2. 前記複数の板状延在部の間に設けられている絶縁板を更に含む、請求項3に記載の放熱導電性ホルダを備えた並列接続型電池セル。 The parallel connection type battery cell provided with the heat dissipation conductive holder according to claim 3, further comprising an insulating plate provided between the plurality of plate-shaped extending portions. 前記第1の放熱導電性ホルダ及び前記第2の放熱導電性ホルダの前記複数の板状本体の内側面に設けられるとともに前記複数の板状延在部の間に位置している少なくとも1つの絶縁体を更に含む、請求項3に記載の放熱導電性ホルダを備えた並列接続型電池セル。 At least one insulator provided on the inner side surface of the plurality of plate-shaped main bodies of the first heat-dissipating conductive holder and the second heat-dissipating conductive holder and located between the plurality of plate-shaped extending portions. A parallel connection type battery cell comprising the heat dissipation conductive holder according to claim 3, further comprising a body. 前記第1の放熱導電性ホルダ及び前記第2の放熱導電性ホルダの前記複数の板状延在部は前記複数の電池ユニットの前記複数の板状集電層と概ね同じ寸法である、請求項3に記載の放熱導電性ホルダを備えた並列接続型電池セル。 The plurality of plate-shaped extending portions of the first heat-dissipating conductive holder and the second heat-dissipating conductive holder have substantially the same dimensions as the plurality of plate-shaped current collector layers of the plurality of battery units. A parallel connection type battery cell provided with the heat dissipation conductive holder according to 3. 前記複数の電気化学システムの前記電解質体は互いに流動せず、且つ隣接する前記複数の電気化学システムは電荷の移動のみで電気化学反応は行わない、請求項1に記載の放熱導電性ホルダを備えた並列接続型電池セル。 The heat-dissipating conductive holder according to claim 1, wherein the electrolytes of the plurality of electrochemical systems do not flow with each other, and the plurality of adjacent electrochemical systems only transfer charges and do not undergo an electrochemical reaction. Parallel connection type battery cell. 前記電池ユニットは、前記2層の板状集電層の間に設けられ且つ前記電気化学システムの周囲を囲む接着性枠体を更に含み、該接着性枠体及び前記2層の板状集電層は前記電池ユニットの封止構造である、請求項1に記載の放熱導電性ホルダを備えた並列接続型電池セル。 The battery unit further includes an adhesive frame provided between the two-layer plate-shaped current collectors and surrounding the electrochemical system, and the adhesive frame and the two-layer plate-shaped current collector. The parallel connection type battery cell provided with the heat dissipation conductive holder according to claim 1, wherein the layer is a sealing structure of the battery unit. 前記接着性枠体は外向きに延在し且つ少なくとも1つの前記板状集電層の側縁外に突出している、請求項8に記載の放熱導電性ホルダを備えた並列接続型電池セル。 The parallel connection type battery cell provided with the heat dissipation conductive holder according to claim 8, wherein the adhesive frame extends outward and protrudes outside the side edge of at least one plate-shaped current collector layer. 前記第1の放熱導電性ホルダ及び第2の放熱導電性ホルダの前記複数の板状本体の内側面に設けられるとともに前記複数の板状延在部の間に位置している少なくとも1つの絶縁体を更に含む、請求項9に記載の放熱導電性ホルダを備えた並列接続型電池セル。 At least one insulator provided on the inner side surface of the plurality of plate-shaped main bodies of the first heat-dissipating conductive holder and the second heat-dissipating conductive holder and located between the plurality of plate-shaped extending portions. A parallel connection type battery cell comprising the heat radiation conductive holder according to claim 9.
JP2022000352U 2021-03-18 2022-02-08 Parallel connection type battery cell with heat dissipation conductive holder Active JP3237527U (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW110202879U TWM615886U (en) 2021-03-18 2021-03-18 Parallel battery cell with heat dissipation conductive lead
TW110202879 2021-03-18

Publications (1)

Publication Number Publication Date
JP3237527U true JP3237527U (en) 2022-05-23

Family

ID=78286102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022000352U Active JP3237527U (en) 2021-03-18 2022-02-08 Parallel connection type battery cell with heat dissipation conductive holder

Country Status (4)

Country Link
JP (1) JP3237527U (en)
KR (1) KR20220002301U (en)
DE (1) DE202022100058U1 (en)
TW (1) TWM615886U (en)

Also Published As

Publication number Publication date
DE202022100058U1 (en) 2022-04-11
KR20220002301U (en) 2022-09-27
TWM615886U (en) 2021-08-21

Similar Documents

Publication Publication Date Title
US11444359B2 (en) Composite battery cell
JP3237010U (en) Button type battery module and its battery device
JP6745890B2 (en) All solid state battery
KR102614018B1 (en) Rechargeable battery, bipolar electrode and bipolar electrode manufacturing method
KR20140058508A (en) Lithium accumulator
JP3237527U (en) Parallel connection type battery cell with heat dissipation conductive holder
JP3232116U (en) Multi-axis electricity supply system
KR102239783B1 (en) Multi-stacked monopolar all solid stae battery
CN214753907U (en) Parallel battery core with heat radiation conductive handle
JP7398489B2 (en) Battery module with cooling cartridge and its battery system
JP3237011U (en) Individual monitoring type metal shell type battery device
JP2015138646A (en) Battery module
JP3246636U (en) Soft-pack battery module and its power supply
CN219419169U (en) Battery module with conductive heat sink
CN115117497A (en) Battery module with heat dissipation box body and battery system thereof
KR20150059891A (en) All-solid battery
JP7215433B2 (en) battery
CN214754060U (en) Button-like battery module and battery device thereof
CN115117522B (en) Soft package type battery module and electric energy supply device thereof
CN212161991U (en) Multi-axial electric energy supply system
KR101368226B1 (en) Electrode structure comprising the electrode materialand secondary battery comprising the electrodestructure
KR102325035B1 (en) Battery cell and manufacturing method thereof
KR101383250B1 (en) Electrode structure comprising the electrode materialand secondary battery comprising the electrodestructure
KR101374783B1 (en) Electrode structure comprising the electrode materialand secondary battery comprising the electrodestructure
CN118231558A (en) Electrode assembly, battery cell, battery and electric equipment

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220304

R150 Certificate of patent or registration of utility model

Ref document number: 3237527

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150