JP3233725B2 - Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading - Google Patents

Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading

Info

Publication number
JP3233725B2
JP3233725B2 JP09554993A JP9554993A JP3233725B2 JP 3233725 B2 JP3233725 B2 JP 3233725B2 JP 09554993 A JP09554993 A JP 09554993A JP 9554993 A JP9554993 A JP 9554993A JP 3233725 B2 JP3233725 B2 JP 3233725B2
Authority
JP
Japan
Prior art keywords
steel
bearing
fatigue life
rolling
microstructure change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09554993A
Other languages
Japanese (ja)
Other versions
JPH06287693A (en
Inventor
聡 安本
俊幸 星野
明博 松崎
虔一 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP09554993A priority Critical patent/JP3233725B2/en
Publication of JPH06287693A publication Critical patent/JPH06287693A/en
Application granted granted Critical
Publication of JP3233725B2 publication Critical patent/JP3233725B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ころ軸受あるいは玉軸
受といった転がり軸受の要素部材として用いられる軸受
鋼に関し、とくに繰り返し応力負荷によって転動接触面
下に発生するミクロ組織変化(劣化)に対する遅延特性
に優れた軸受鋼について提案する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bearing steel used as an element member of a rolling bearing such as a roller bearing or a ball bearing, and more particularly to a delay against a microstructural change (deterioration) occurring under a rolling contact surface due to a repeated stress load. We propose a bearing steel with excellent characteristics.

【0002】[0002]

【従来の技術】自動車ならびに産業機械等で用いられる
ころがり軸受としては、従来、高炭素クロム軸受鋼(JI
S:SUJ 2)が最も多く使用されている。一般に軸受鋼と
いうのは、転動疲労寿命の長いことが重要な性質の1つ
であるが、この転動疲労寿命に与える要因としては、鋼
中の硬質な非金属介在物の影響が大きいと考えられてい
た。そのため、最近の研究の主流は、鋼中酸素量の低減
を通じて非金属介在物の量, 大きさを制御することによ
って軸受寿命を向上させる方策がとられてきた。
2. Description of the Related Art Rolling bearings used in automobiles, industrial machines, and the like are conventionally known as high carbon chromium bearing steel (JI).
S: SUJ 2) is used the most. In general, bearing steel has one of the important properties that the rolling fatigue life is long. One of the factors affecting the rolling fatigue life is that hard non-metallic inclusions in steel have a large effect. Was thought. Therefore, the mainstream of recent research has been to improve the bearing life by controlling the amount and size of nonmetallic inclusions by reducing the amount of oxygen in steel.

【0003】例えば、軸受の転動疲労寿命の一層の向上
を目指して開発されたものとしては、特開平1−306542
号公報や特開平3−126839号公報などの提案があり、こ
れらは、鋼中の酸化物系非金属介在物の組成, 形状ある
いは分布状態をコントロールする技術である。
For example, Japanese Unexamined Patent Publication (Kokai) No. 1-306542 has been developed with the aim of further improving the rolling fatigue life of a bearing.
And Japanese Patent Application Laid-Open No. 3-126839, which are techniques for controlling the composition, shape or distribution of oxide-based nonmetallic inclusions in steel.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、非金属
介在物の少ない軸受鋼を製造するには、鋼中酸素量の低
減が不可欠であるところ、これも既に限界に達してお
り、高価な溶製設備の設置あるいは従来設備の大幅な改
良が必要であり、経済的な負担が大きいという問題があ
った。また、本発明者らが行った最近の研究によれば、
転動寿命を決めている要因としては、従来から一般に論
じられてきた現象;すなわち、熱処理時に生じる“脱炭
層”(低C濃度領域)や上述した“非金属介在物”の存
在以外の要因もあるということが判った。というのは、
従来技術の下で単に脱炭層や非金属介在物を減少させて
も、軸受の転動疲労寿命、特に、高負荷あるいは高温と
いった過酷な条件下での軸受寿命の向上には大きな効果
が得られないことを多く経験したからである。このこと
から、特有の軸受寿命を律する他の要因の存在を確信し
たのである。
However, in order to manufacture a bearing steel having a small amount of nonmetallic inclusions, it is essential to reduce the oxygen content in the steel. There is a problem that the installation of the equipment or a significant improvement of the conventional equipment is required, and the economic burden is large. Also, according to a recent study conducted by the present inventors,
Factors that determine the rolling life include phenomena that have been generally discussed in the past; that is, factors other than the presence of the “decarburized layer” (low C concentration region) generated during heat treatment and the aforementioned “non-metallic inclusions”. It turned out that there was. I mean,
Simply reducing the decarburized layer and non-metallic inclusions under the conventional technology has a significant effect on improving the rolling contact fatigue life of bearings, especially under severe conditions such as high loads or high temperatures. Because he has experienced many things that are not. From this, I was convinced that there were other factors that govern the specific bearing life.

【0005】そこで、本発明者らは、転がり軸受の剥離
の発生原因について調査を行った。その結果、軸受の内
・外輪と転動体と転動体との回転接触時に発生する繰り
返し剪断応力により、転動接触面の下層部分(表層部)
に、図1(a) に示すような、帯状の白色生成物と棒状の
析出物からなるミクロ組織変化層が発生し、これが転動
回数を増すにつれて次第に成長し、終いにはこのミクロ
組織変化部から疲労剥離( 図1(b)) が生じて軸受寿命に
つながるということが判った。さらに、軸受使用環境の
過酷化すなわち, 高面圧化(小型化), 使用温度の上昇
は、これらミクロ組織変化が発生するまでの転動回数を
短縮し、従来の軸受鋼SUJ2では著しい軸受寿命の低下と
なるということをつきとめた。すなわち、軸受寿命とい
うのは、従来技術のような、脱炭層や非金属介在物だけ
の制御では不十分であり、例えば、単に非金属介在物の
量や大きさを低減させただけでは、上述した転動接触面
下で発生するミクロ組織変化が発生するまでの時間を遅
延させることはできない。その結果として、軸受寿命の
今まで以上の向上は図り得ないということを知見したの
である。
Therefore, the present inventors investigated the cause of the occurrence of peeling of the rolling bearing. As a result, due to the repetitive shear stress generated when the inner and outer races of the bearing, the rolling elements, and the rolling elements are in rotational contact, the lower part (surface layer) of the rolling contact surface
Then, as shown in FIG. 1 (a), a microstructure change layer consisting of a band-like white product and a rod-like precipitate is generated, which gradually grows as the number of rollings increases, and finally this microstructure changes. It was found that fatigue exfoliation (Fig. 1 (b)) occurred from the changed part, which led to the life of the bearing. In addition, the harsh operating environment of the bearing, that is, high surface pressure (small size) and an increase in operating temperature, reduce the number of rollings before these microstructure changes occur, and the conventional bearing steel SUJ2 has a remarkable bearing life. Was found to decrease. That is, the bearing life is not enough to control only the decarburized layer and the non-metallic inclusions as in the prior art.For example, simply reducing the amount and size of the non-metallic inclusions is not enough. It is not possible to delay the time until the microstructural change occurs under the rolling contact surface. As a result, they found that the bearing life could not be further improved.

【0006】そこで、本発明の目的は、過酷な使用条件
の下での転動疲労寿命特性を向上させるために、高負荷
下における軸受使用中に発生するミクロ組織変化を遅延
させることができると共に、非金属介在物の最大粒径を
小さく抑制することにより、軸受寿命の著しい向上をも
たらすことのできる軸受鋼を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to improve the rolling fatigue life under severe operating conditions by delaying the microstructural change occurring during use of the bearing under a high load. Another object of the present invention is to provide a bearing steel that can significantly improve the bearing life by suppressing the maximum particle size of nonmetallic inclusions.

【0007】[0007]

【課題を解決するための手段】さて、本発明者らは、上
述した知見に基づき軸受寿命を律する要因として、新た
に“ミクロ組織変化遅延特性”というものに着目た。そ
して、この特性の向上を図るには、当然そのための新た
な合金設計(成分組成)が必要であり、このことの実現
なくして軸受のより一層の寿命向上は図れないという認
識に立って、さらに種々の実験と検討とを行った。その
結果、多量のCuを適正量含有させれば、繰り返し応力負
荷による転動接触面下に生成する上述したミクロ組織変
化を著しく遅延できることを見い出し、本発明軸受鋼に
想到した。
On the basis of the above findings, the present inventors have newly focused on "microstructure change delay characteristic" as a factor that determines the bearing life. In order to improve these characteristics, it is natural that a new alloy design (composition composition) is necessary, and from the recognition that the life of the bearing cannot be further improved without realizing this, Various experiments and studies were performed. As a result, it has been found that if a large amount of Cu is contained in an appropriate amount, the above-mentioned microstructure change generated below the rolling contact surface due to repeated stress load can be significantly delayed, and the present inventors have conceived the bearing steel of the present invention.

【0008】すなわち、本発明軸受鋼は、以下の如き要
旨構成を有するものである。 (1)C:0.5〜1.5wt%,Cu:1.0超〜2.5wt%を含み、残部
がFeおよび不可避的不純物からなり、かつ酸化物系非金
属介在物の最大粒径が8μm以下である, 繰り返し応力
負荷によるミクロ組織変化の遅延特性に優れた軸受鋼
(第1発明)。 (2)C:0.5〜1.5 wt%,Cu:1.0超〜2.5 wt%を含有し、
さらに、Si:0.05〜0.5wt%, Mn:0.05〜2.0 wt%,
Cr:0.05〜2.5 wt%,Ni:0.05〜1.0 wt%,Mo:0.05〜0.
5 wt%, B:0.0005〜0.01wt%,Sb:0.0001〜0.015 wt
%,Al:0.005 〜0.07wt%及びN:0.0005〜0.012wt%の
うちから選ばれるいずれか1種または2種以上を含み、
残部がFeおよび不可避的不純物からなり、かつ酸化物系
非金属介在物の最大粒径が8μm以下である, 繰り返し
応力負荷によるミクロ組織変化の遅延特性に優れた軸受
鋼(第2発明)。 (3)C:0.5〜1.5 wt%,Cu:1.0超〜2.5 wt%を含有し、
さらにSi:0.5超〜2.5 wt%,Mn:2.0超〜5.0 wt%,Cr:
2.5超〜8.0wt%,Mo:0.5超〜2.0wt%,Ni:1.0超〜3.0wt
%,N:0.012超〜0.050wt%,V:0.05〜1.0 wt%,Nb:
0.05〜1.0 wt%,W:0.05〜1.0wt%,Zr:0.02〜0.5 wt
%,Ta:0.02〜0.5 wt%,Hf:0.02〜0.5 wt%,及びCo:
0.05〜1.5wt%のうちから選ばれるいずれか1種または
2種以上を含み、残部がFeおよび不可避的不純物からな
り、かつ酸化物系非金属介在物の最大粒径が8μm以下
である, 繰り返し応力負荷によるミクロ組織変化の遅延
特性に優れた軸受鋼(第3発明)。 (4) C:0.5〜1.5wt%,Cu:1.0超〜2.5wt%を含有し、
さらに下記I群の成分のうちから選ばれるいずれか1種
または2種以上を含み、さらにまた、下記II群の成分
(ただし、I群で選択されている元素は除く)のうちか
ら選ばれるいずれか1種または2種以上を含み、残部が
Feおよび不可避的不純物からなり、かつ酸化物系非金属
介在物の最大粒径が8μm以下である, 繰り返し応力負
荷によるミクロ組織変化の遅延特性に優れた軸受鋼(第
4発明鋼)。 (I群) Si:0.05〜0.5wt%,Mn:0.05〜2.0wt%,Cr:0.05〜2.5w
t%,Ni:0.05〜1.0 wt%,Mo:0.05〜0.5wt%,B:0.000
5〜0.01wt%,Sb:0.0001〜0.015wt%, Al:0.005〜0.07
wt%及びN:0.0005〜0.012wt%(II群) Si:0.5超〜2.5wt%,Mn:2.0超〜5.0wt%,Cr:2.5超〜
4.0wt%,Mo:0.5超〜2.0wt%,Ni:1.0超〜3.0wt%,N:
0.012超〜0.050wt%,V:0.05〜1.0wt%,Nb:0.05〜1.0
wt%,W:0.05〜1.0 wt%,Zr:0.02〜0.5wt%,Ta:0.02
〜0.5wt%,Hf:0.02〜0.5wt%及びCo:0.05〜1.5wt%
That is, the bearing steel of the present invention requires the following
That is, it has a configuration to the effect. (1) C: 0.5 to 1.5 wt%, Cu: more than 1.0 to 2.5 wt%, the balance
Is composed of Fe and unavoidable impurities, and is an oxide-based non-gold
Maximum grain size of inclusions of 8μm or less, cyclic stress
Bearing steel with excellent microstructure change delay characteristics due to load
(First invention). (2) C: 0.5 to 1.5 wt%, Cu: more than 1.0 to 2.5 wt%,
Further, Si: 0.05 to 0.5 wt%, Mn: 0.05 to 2.0 wt%,
Cr: 0.05-2.5 wt%, Ni: 0.05-1.0 wt%, Mo: 0.05-0.
5 wt%, B: 0.0005 to 0.01 wt%, Sb: 0.0001 to 0.015 wt
%, Al: 0.005 to 0.07 wt% and N: 0.0005 to 0.012 wt%
Including one or more selected from among them,
The balance consists of Fe and unavoidable impurities and is oxide-based
Maximum particle size of non-metallic inclusions is less than 8μm, repeated
Bearings with excellent microstructure change delay characteristics due to stress load
Steel (second invention). (3) C: 0.5 to 1.5 wt%, Cu: more than 1.0 to 2.5 wt%,
Further, Si: more than 0.5 to 2.5 wt%, Mn: more than 2.0 to 5.0 wt%, Cr:
More than 2.5 to 8.0 wt%, Mo: more than 0.5 to 2.0 wt%, Ni: more than 1.0 to 3.0 wt%
%, N: more than 0.012 to 0.050 wt%, V: 0.05 to 1.0 wt%, Nb:
0.05-1.0 wt%, W: 0.05-1.0 wt%, Zr: 0.02-0.5 wt%
%, Ta: 0.02 to 0.5 wt%, Hf: 0.02 to 0.5 wt%, and Co:
Any one selected from 0.05 to 1.5 wt% or
Two or more, the balance being Fe and unavoidable impurities
And the maximum particle size of oxide-based nonmetallic inclusions is 8 μm or less
, Delay of microstructure change due to repeated stress loading
Bearing steel with excellent properties (third invention). (4) C: 0.5 to 1.5 wt%, Cu: more than 1.0 to 2.5 wt%,
furtherComponents of Group I belowAny one selected from
Or including two or more,Ingredients of Group II below
(However, excluding elements selected in Group I)Inside
One or two or more selected from
Oxide-based nonmetals composed of Fe and unavoidable impurities
Inclusion maximum particle size is 8μm or less, cyclic stress negative
Bearing steel with excellent microstructure change delay characteristics due to load (No.
4 invention steel).Record (Group I) Si: 0.05 to 0.5 wt%, Mn: 0.05 to 2.0 wt%, Cr: 0.05 to 2.5 w
t%, Ni: 0.05-1.0 wt%, Mo: 0.05-0.5 wt%, B: 0.000
5 to 0.01 wt%, Sb: 0.0001 to 0.015 wt%, Al: 0.005 to 0.07
wt% and N: 0.0005-0.012wt%(Group II)  Si: more than 0.5 to 2.5 wt%, Mn: more than 2.0 to 5.0 wt%, Cr: more than 2.5
4.0wt%, Mo: more than 0.5 to 2.0 wt%, Ni: more than 1.0 to 3.0 wt%, N:
Over 0.012 to 0.050 wt%, V: 0.05 to 1.0 wt%, Nb: 0.05 to 1.0
wt%, W: 0.05-1.0 wt%, Zr: 0.02-0.5 wt%, Ta: 0.02
0.5 to 0.5 wt%, Hf: 0.02 to 0.5 wt% and Co: 0.05 to 1.5 wt%

【0009】[0009]

【作用】以下に、上記合金設計になる本発明軸受鋼に想
到した背景につき、本発明者らが行った実験結果に基づ
いて説明する。まず、実験に当たり、 SUJ 2 ( C:1.02wt%, Si:0.25wt%, Mn:0.45wt
%, Cr:1.35wt%, N:0.0040wt%, O:0.0012wt%)
と、 SUJ 2 ( C:1.01wt%, Si:0.24wt%, Mn:0.46wt
%, Cr:1.32wt%, N:0.0042wt%, O:0.0015wt%)
と、 多量のCuを添加した2種の材料 (C:0.98wt%, Si:0.25wt%, Mn:0.42wt%, C
r:1.32wt%, O:0.0008wt%, Cu:1.20wt%, N:0.0
042wt%) (C:1.00wt%, Si:0.25wt%, Mn:0.45wt%, C
r:1.33wt%, O:0.0037wt%, Cu:1.23wt%, N:0.0
040wt%) (C:0.96wt%, Si:0.25wt%, Mn:0.44wt%, C
r:1.31wt%, O:0.0009wt%, Cu:1.83wt%, N:0.0
032wt%) (C:0.98wt%, Si:0.22wt%, Mn:0.45wt%, C
r:1.33wt%, O:0.0012wt%, Cu:1.85wt%, N:0.0
038wt%) についての供試鋼材を作製した。ついで、これらの供試
材を焼ならし、球状化焼ならし、焼入れ焼もどしの各処
理を施したのち、それぞれの供試材から12mmφ×22mmの
円筒型の試験片を作製した。
The background that led to the bearing steel of the present invention having the above alloy design will be described below based on the results of experiments conducted by the present inventors. First, in the experiment, SUJ 2 (C: 1.02 wt%, Si: 0.25 wt%, Mn: 0.45 wt%
%, Cr: 1.35wt%, N: 0.0040wt%, O: 0.0012wt%)
And SUJ 2 (C: 1.01wt%, Si: 0.24wt%, Mn: 0.46wt
%, Cr: 1.32wt%, N: 0.0042wt%, O: 0.0015wt%)
And two kinds of materials with a large amount of Cu added (C: 0.98 wt%, Si: 0.25 wt%, Mn: 0.42 wt%, C
r: 1.32 wt%, O: 0.0008 wt%, Cu: 1.20 wt%, N: 0.0
042wt%) (C: 1.00wt%, Si: 0.25wt%, Mn: 0.45wt%, C
r: 1.33 wt%, O: 0.0037 wt%, Cu: 1.23 wt%, N: 0.0
040wt%) (C: 0.96wt%, Si: 0.25wt%, Mn: 0.44wt%, C
r: 1.31 wt%, O: 0.0009 wt%, Cu: 1.83 wt%, N: 0.0
032wt%) (C: 0.98wt%, Si: 0.22wt%, Mn: 0.45wt%, C
r: 1.33 wt%, O: 0.0012 wt%, Cu: 1.85 wt%, N: 0.0
(038 wt%). Next, these test materials were subjected to normalizing, spheroidizing normalizing, and quenching and tempering, and cylindrical test pieces of 12 mmφ × 22 mm were prepared from the respective test materials.

【0010】次に、これらの試験片をラジアルタイプ型
の転動疲労寿命試験機を用い、ヘルツ最大接触応力:60
0kgf/mm2 ,繰り返し応力数 46500 cpmの負荷条件の下で
転動疲労寿命の試験を行った。試験結果は、ワイブル分
布確立紙上にプロットし、非金属介在物の制御によって
影響される材料強度の上昇による転動疲労寿命の向上を
示す数値と見られるB10(10%累積破損確率) と、高負
荷転動時の繰り返し応力負荷によるミクロ組織変化発生
を遅延させることによる転動疲労寿命の向上を示す数値
と見られるB50(50%累積破損確率)とを求めた。
Next, these test pieces were subjected to a rolling contact fatigue life tester of a radial type using a maximum contact stress of 60 Hz.
A rolling fatigue life test was performed under a load condition of 0 kgf / mm 2 and a cyclic stress number of 46,500 cpm. Test results are plotted in Weibull distribution establishment paper, and B 10 that appear to numerical value indicating the improvement in rolling fatigue life due to the increase of the material strength is influenced by the control of the non-metallic inclusions (10% cumulative failure probability), It was determined and B 50 seen a numerical value indicating the improvement in rolling fatigue life by delaying the microstructure change caused by repeated stress load during high-load rolling (50% cumulative failure probability).

【0011】その結果、表1に示すように、介在物制御
をすることなく、単にCuを多量に添加しただけのものに
ついては、前記B10値についての改善は小さいものの、
50値についてはかなり高い数値を示して著しく改善さ
れていることが判る。即ち、軸受平均寿命はSUJ 2 に比
べてB10値で約2倍、B50値で約22倍もの改善効果を示
していた。これに対し、Cuの多量添加とともに非金属介
在物の最大粒径を制御したものでは、高負荷転動中に生
成するミクロ組織変化の遅延特性に対して顕著な改善効
果を示すと共に、さらにB10値に表れているように非金
属介在物を原因とする剥離に対する改善効果が認められ
た。なかでもは、鋼中酸素量が高いにもかかわらず介
在物制御によってB10値は約30倍も優れており、ミクロ
組織変化の遅延と介在物の微細化がこのB10値の向上に
作用していること判る。
[0011] As a result, as shown in Table 1, without the inclusion control, for merely by the addition of Cu in a large amount, although improvement of the B 10 value is small,
The B50 value shows a considerably high value, indicating that the value is significantly improved. That is, the bearing life expectancy showed improvement as about 22 times to about 2 times, B 50 value B 10 value compared to SUJ 2. On the other hand, when the maximum grain size of the non-metallic inclusions was controlled together with the addition of a large amount of Cu, a significant improvement effect was obtained on the delay characteristics of the microstructure change generated during high-load rolling, and furthermore, B As shown in the 10 values, an improvement effect on peeling due to nonmetallic inclusions was observed. Among them, the 10 value B by high despite inclusions control in the steel oxygen content is excellent also about 30 times, finer delay and inclusions microstructure changes acts on the improvement of the B 10 value I understand that you are doing.

【0012】[0012]

【表1】 [Table 1]

【0013】図2は、上記実験結果をまとめたものであ
って、非金属介在物粒径に起因する軸受寿命とミクロ組
織変化に起因する寿命との関係を示す模式図である。こ
の図に明らかなように、従来のように累積破損確率10%
のB10値で示される軸受寿命(以下、これを「B10転動
疲労寿命」という)は、Cuを多量に添加することだけで
は大きな効果は期待し得ないが、非金属介在物制御をも
併せて行ったものの方が顕著な改善効果を示している。
一方、累積破損確率50%のB50値で示される軸受寿命
(以下、これを「B50高負荷転動疲労寿命」という)で
みると、非金属介在物制御とは関係なくCu多量添加のみ
によっても改善の効果が極めて顕著なものとなり、ミク
ロ組織変化生成環境の下での軸受寿命を著しく向上させ
るのに有効なことが判る。
FIG. 2 summarizes the above experimental results and is a schematic diagram showing the relationship between the life of a bearing caused by the particle size of nonmetallic inclusions and the life caused by a change in microstructure. As is clear from this figure, the cumulative failure probability is 10%
The bearing life represented by B 10 value (hereinafter referred to as "B 10 rolling contact fatigue life"), although large effect can not be expected only by the addition of Cu in a large amount, the nonmetallic inclusions control In addition, the effect of the improvement is more remarkable.
On the other hand, bearing life indicated by the cumulative failure probability of 50% B 50 value
(Hereinafter referred to as "B 50 high load rolling contact fatigue life") when viewed in the effect of improved only by Cu addition of a large amount regardless of the non-metallic inclusions control becomes very prominent, microstructure changes generated It turns out that it is effective in remarkably improving the bearing life under the environment.

【0014】そこで、本発明においては、主として繰り
返し応力負荷によるミクロ組織変化遅延特性の改善を図
るという観点から、以下に説明するような成分組成の範
囲を決定した。
Therefore, in the present invention, the range of the component composition as described below is determined mainly from the viewpoint of improving the microstructure change delay characteristic due to repeated stress load.

【0015】C: 0.5〜1.5 wt% Cは、基地に固溶してマルテンサイトの強化に有効に作
用する元素であり、焼入れ焼もどし後の強度確保とそれ
による転動疲労寿命を向上させるために含有させる。そ
の含有量が0.5 wt%未満ではこうした効果が得られな
い。一方、 1.5wt%超では被削性, 鍛造性が低下するの
で、 0.5〜1.5 wt%の範囲に限定する。
C: 0.5-1.5 wt% C is an element which forms a solid solution in the matrix and effectively acts to strengthen martensite. To ensure strength after quenching and tempering and to improve the rolling fatigue life due to it. To be contained. If the content is less than 0.5 wt%, such effects cannot be obtained. On the other hand, if the content exceeds 1.5 wt%, machinability and forgeability deteriorate, so the content is limited to the range of 0.5 to 1.5 wt%.

【0016】Si:0.05〜0.5 wt%, 0.5 超〜2.5 wt%以
下 Siは、鋼の溶製時の脱酸剤として用いられる他、基地に
固溶して焼もどし軟化抵抗の増大により焼入れ, 焼もど
し後の強度を高めて転動疲労寿命を向上させる元素とし
て有効である。こうした目的の下に添加されるSiの含有
量は、0.05〜0.5 wt%の範囲内とする。また、このSi
は、0.5 wt%超添加すると、繰り返し応力負荷の下での
ミクロ組織変化の遅延をもたらして転動疲労寿命を向上
させる効果がある。しかし、その含有量が 2.5wt%を超
えるとその効果が飽和する一方で、加工性や靱性を低下
させるので、ミクロ組織変化遅延特性のより一層の向上
のためには、 0.5超〜2.5wt%を添加することが有効で
ある。
Si: 0.05-0.5 wt%, more than 0.5-2.5 wt% or less Si is used as a deoxidizing agent when steel is melted, and is also dissolved in a matrix and tempered due to an increase in tempering resistance. It is effective as an element for increasing the strength after tempering and improving the rolling fatigue life. The content of Si added for such a purpose is in the range of 0.05 to 0.5 wt%. Also, this Si
When added over 0.5 wt%, the effect of delaying the microstructure change under repeated stress load is brought about and the effect of improving the rolling fatigue life is obtained. However, if the content exceeds 2.5 wt%, the effect is saturated, but the workability and toughness are reduced. Therefore, in order to further improve the microstructure change delay property, more than 0.5 to 2.5 wt% Is effective.

【0017】Mn:0.05〜2.0 wt%, 2.0 超〜5.0 wt% Mnは、鋼の溶製時に脱酸剤として作用し、鋼の低酸素化
に有効な元素である。また、鋼の焼入れ性を向上させる
ことにより基地マルテンサイトの靱性, 硬度を向上さ
せ、転動疲労寿命の向上に有効に作用する。こうした目
的のためには、0.05〜2.0 wt%の添加があれば十分であ
る。しかし、このMnを、 2.0wt%を超えて添加した場合
には、Cuと同様に転動時の繰返し応力の負荷によるミク
ロ組織変化を著しく遅延させる効果を有し、転動疲労寿
命を改善する。しかしながら、5.0 wt%を超える添加で
は、多量の残留γが発生して強度ならびに寸法安定性が
低下するため、この目的のためには、 2.0超〜5.0 wt%
の範囲で添加する。
Mn: 0.05 to 2.0 wt%, more than 2.0 to 5.0 wt% Mn acts as a deoxidizing agent during melting of steel and is an effective element for reducing oxygen in steel. In addition, by improving the hardenability of steel, the toughness and hardness of the base martensite are improved, which effectively works to improve the rolling fatigue life. For these purposes, the addition of 0.05-2.0 wt% is sufficient. However, when this Mn is added in excess of 2.0 wt%, it has the effect of significantly delaying the microstructure change due to the application of repeated stress during rolling, as with Cu, and improves the rolling fatigue life. . However, if the addition exceeds 5.0 wt%, a large amount of residual γ is generated and the strength and dimensional stability are reduced. For this purpose, more than 2.0 to 5.0 wt%
Add within the range.

【0018】Cr:0.05〜2.5wt%,2.5 超〜4.0wt% Crは、焼入れ性の向上と安定な炭化物の形成を通じて、
強度の向上ならびに耐摩耗性を向上させ、ひいては転動
疲労寿命を向上させる成分である。この効果を得る目的
で添加するときには、0.05〜2.5wt%の範囲内とする。
また、このCrは、2.5wt%を超えて多量に添加した場合
には、繰返し応力負荷によるミクロ組織変化を遅延せし
めて、この面での転動疲労寿命を向上させるのに有効で
ある。そして、この目的のためのCr添加の効果は、4.0w
t%を超えると飽和するのみならず、却って焼入れ時の
固溶C量の低下を招いて強度が低下する。従って、この
目的のために添加するときは、2.5超〜4.0wt%としなけ
ればならない。
Cr: 0.05 to 2.5 wt%, more than 2.5 to 4.0 wt% Cr is formed by improving hardenability and forming stable carbides.
It is a component that improves strength and abrasion resistance, and thereby improves rolling fatigue life. When added for the purpose of obtaining this effect, the content is in the range of 0.05 to 2.5 wt%.
Also, when this Cr is added in a large amount exceeding 2.5 wt%, it is effective to delay the microstructural change due to the repeated stress load and to improve the rolling fatigue life on this surface. And the effect of Cr addition for this purpose is 4.0 w
If the content exceeds t%, not only saturation occurs, but also the strength of solid solution C decreases at the time of quenching. Therefore, when added for this purpose, it must be greater than 2.5 to 4.0 wt%.

【0019】Ni:0.05〜1.0 wt%, 1.0 超〜3.0 wt% Niは、焼入れ性の増大により焼入れ焼もどし後の強度を
高め靱性を向上させるとともに、転動疲労寿命を向上さ
せるので、この目的のため添加するときには0.05〜1.0
wt%の範囲内とする。さらに、このNiは、 1.0wt%を超
えて添加した場合には、転動時のミクロ組織変化を遅ら
せ、それにより転動疲労寿命を向上させる。しかしなが
ら、この場合でも3wt%を超えて添加すると、多量の残
留γを析出して強度の低下ならびに寸法安定性を害する
ことになる他、コストアップになるため、この作用効果
を期待する場合には、1.0 超〜3.0 wt%の範囲内で添加
することが必要である。
Ni: 0.05-1.0 wt%, more than 1.0-3.0 wt% Ni increases the hardenability, increases the strength after quenching and tempering, improves the toughness, and improves the rolling fatigue life. 0.05-1.0 when adding
It should be within the range of wt%. Furthermore, when this Ni is added in excess of 1.0 wt%, the microstructure change during rolling is delayed, thereby improving the rolling fatigue life. However, even in this case, if it is added in excess of 3 wt%, a large amount of residual γ is precipitated, which lowers the strength and impairs the dimensional stability and increases the cost. , More than 1.0 to 3.0 wt%.

【0020】Mo:0.05〜0.5 wt%, 0.5 超〜2.0 wt% Moは、残留炭化物の安定化により耐摩耗性を向上させる
元素である。とくに0.05〜0.5 wt%を添加すると、焼入
れ性を増大して焼入れ焼もどし後の強度向上に寄与する
と共に、安定炭化物の析出により、耐摩耗性と転動疲労
寿命とを向上させる。さらにこのMoは、0.5 wt%超とい
う多量を添加すると、転動時のミクロ組織変化を遅らせ
る効果が著しくなり、この面での転動疲労寿命を向上さ
せる。しかし、その量が 1.5wt%を超えると、被削性,
鍛造性を低下させ、コストアップの原因ともなるため、
この目的のためには 0.5超〜2.0 wt%の範囲内で添加す
ることが必要である。
Mo: 0.05-0.5 wt%, more than 0.5-2.0 wt% Mo is an element that improves wear resistance by stabilizing residual carbides. Particularly, when 0.05 to 0.5 wt% is added, hardenability is increased to contribute to improvement in strength after quenching and tempering, and precipitation of stable carbides improves wear resistance and rolling fatigue life. Further, when Mo is added in a large amount of more than 0.5 wt%, the effect of delaying the microstructure change during rolling becomes remarkable, and the rolling fatigue life in this aspect is improved. However, when the amount exceeds 1.5 wt%, machinability,
As it lowers forgeability and causes cost increase,
For this purpose, it is necessary to add in the range of more than 0.5 to 2.0 wt%.

【0021】Cu: 1.0超〜2.5 wt% Cuは、一般には焼入れの増大により焼入れ焼もどし後の
強度を高め、転動疲労寿命を向上させる元素である。た
だし、本発明においてこのCuは、もっと重要な役割を有
し、とくにその添加量が1.0 %を超えるような多量添加
になると、上述した繰り返し応力負荷によるミクロ組織
変化を遅らすことによって、転動転動疲労寿命を著しく
向上させることになる。ただし、その量が 2.5wt%を超
えるとこの添加効果が飽和するとともに、却って被削性
や鍛造性の低下を招くことになるため、1.0 超〜2.5 wt
%の範囲で添加することが必要である。
Cu: more than 1.0 to 2.5 wt% Cu is an element that generally increases the strength after quenching and tempering by increasing the quenching and improves the rolling fatigue life. However, in the present invention, Cu plays a more important role, and particularly when the addition amount is large, such that the addition amount exceeds 1.0%, the above-mentioned microstructure change due to the repetitive stress load is delayed, so that the rolling contact The fatigue life will be significantly improved. However, if the amount exceeds 2.5 wt%, the effect of addition becomes saturated, and on the contrary, the machinability and the forgeability are reduced.
% Must be added.

【0022】B:0.0005〜0.01wt% Bは、焼入れ性の増大により焼入れ焼もどし後の強度を
高め、転動疲労寿命を向上させるので、0.0005wt%以上
を添加する。しかしながら、0.01wt%を超えて添加する
と加工性を劣化させるので、0.0005〜0.01wt%の範囲に
限定する。
B: 0.0005 to 0.01 wt% B is added in an amount of 0.0005 wt% or more because B increases the strength after quenching and tempering due to the increase in hardenability and improves the rolling fatigue life. However, if added in excess of 0.01 wt%, the workability is degraded, so the range is limited to 0.0005 to 0.01 wt%.

【0023】Sb:0.0001〜0.015 wt% このSbは、焼入れ性の増大により焼入れ焼もどし後の強
度を高めて、転動疲労寿命を向上させる他、鋼材表層部
のCと雰囲気ガスとの反応を抑制して脱炭層の発生を阻
止することによって、熱処理生産性向上にも寄与する。
このような作用効果を得る目的のためには0.0001wt%以
上の添加を必要とし、一方、0.015 wt%を超えて添加し
てもその効果は飽和することに加え、却って熱間加工性
や靱性の劣化を招くようになる。従って、Sbは0.0001
0.015 wt%の範囲で含有させることとした。
Sb: 0.0001 to 0.015 wt% This Sb enhances the strength after quenching and tempering by increasing the hardenability to improve the rolling fatigue life, and also suppresses the reaction between C in the surface layer of the steel material and the atmosphere gas. By suppressing the generation of a decarburized layer by suppressing it, it also contributes to an improvement in heat treatment productivity.
For the purpose of obtaining such an effect, the addition of 0.0001 wt% or more is required. On the other hand, if it exceeds 0.015 wt%, the effect is saturated, and in addition, hot workability and toughness are rather increased. Is caused to deteriorate. Therefore, Sb is 0.0001 ~
It was determined to be contained in the range of 0.015 wt%.

【0024】Al:0.005 〜0.07wt% Alは、鋼の溶製時の脱酸剤として用いられると共に、鋼
中Nと結合して結晶粒を微細化し、鋼の靱性向上にも寄
与する元素であり、そのためには0.005 wt%の添加が必
要である。しかも転動疲労寿命の向上にも寄与する。こ
のような作用効果を得る目的で添加するAlは,0.005 〜
0.07wt%の範囲内が好適である。
Al: 0.005 to 0.07 wt% Al is used as a deoxidizing agent at the time of smelting steel, and is an element that combines with N in steel to refine crystal grains and contribute to improvement in toughness of steel. Yes, it requires 0.005 wt% addition. In addition, it contributes to the improvement of the rolling fatigue life. The amount of Al added to achieve these effects is 0.005 to
A range of 0.07 wt% is preferred.

【0025】N:0.0005〜0.012 wt%, 0.012 超〜0.05
wt% Nは、窒化物形成元素と結合して結晶粒を微細化すると
共に、基地に固溶して焼入れ焼もどし後の強度を高め、
転動疲労寿命を向上させる。この目的のためには0.0005
〜0.012 wt%の範囲内で添加する。また、このNは、0.
012 wt%を超えて添加した場合には、繰り返し応力によ
るミクロ組織変化を遅らせることにより転動疲労寿命を
向上させる。ただし、その量が0.05wt%を超えると、加
工性が低下するため、この目的のためには0.012 超〜0.
05wt%を添加する。
N: 0.0005 to 0.012 wt%, more than 0.012 to 0.05
wt% N combines with the nitride-forming element to refine the crystal grains, and dissolves in the matrix to increase the strength after quenching and tempering.
Improves rolling fatigue life. 0.0005 for this purpose
It is added within the range of ~ 0.012 wt%. This N is 0.
When added in excess of 012 wt%, rolling fatigue life is improved by delaying microstructural changes due to repeated stress. However, if the amount exceeds 0.05 wt%, the workability is reduced, and for this purpose, it exceeds 0.012 to 0.
Add 05 wt%.

【0026】P≦0.025 wt% Pは、鋼の靱性ならびに転動疲労寿命を低下させること
から可能なかぎり低いことが望ましく、その許容上限は
0.025 wt%である。
P ≦ 0.025 wt% P is desirably as low as possible from the viewpoint of lowering the toughness and rolling fatigue life of steel.
0.025 wt%.

【0027】S≦0.025 wt% Sは、Mnと結合してMnSを形成し、被削性を向上させ
る。しかし、多量に含有させると転動疲労寿命を低下さ
せることから、0.025 wt%を上限としなければならな
い。
S ≦ 0.025 wt% S combines with Mn to form MnS and improves machinability. However, if contained in a large amount, the rolling fatigue life is reduced, so the upper limit must be 0.025 wt%.

【0028】以上、繰り返し応力負荷によるミクロ組織
変化を遅延させることによる転動疲労寿命を改善すると
共に、強度の上昇を通じて転動疲労寿命を改善するため
の主要成分(CuおよびSi, Mn, Cr, Mo, Ni, Al, Sb,
B, N)およびC,P,Sの限定理由について説明した
が、本発明ではさらに、V, Nb, W, Zr, Ta, Hfおよび
Coのうちから選ばれるいずれか1種または2種以上を添
加することにより、高負荷時の転動疲労寿命を改善させ
るようにしてもよい。
As described above, the main components (Cu and Si, Mn, Cr, and Cr) for improving the rolling fatigue life by delaying the microstructure change due to the repeated stress load and improving the rolling fatigue life by increasing the strength. Mo, Ni, Al, Sb,
B, N) and the reasons for limiting C, P, and S have been described. In the present invention, V, Nb, W, Zr, Ta, Hf and
The rolling fatigue life under a high load may be improved by adding one or more selected from Co.

【0029】上記各元素の好適添加範囲と添加の目的、
上限値、下限値限定の理由につき、表2にまとめて示
す。
The preferred addition range and purpose of each of the above elements,
Table 2 summarizes the reasons for limiting the upper and lower limits.

【表2】 [Table 2]

【0030】なお、本発明においては、被削性を改善す
るために、S,Se, Te, REM, Pb,Bi, Ca, Ti, Mg, P,
Sn, As等を添加しても、上述した本発明の目的である繰
り返し応力負荷によるミクロ組織変化による遅延特性を
阻害することはなく、容易に被削性を改善することがで
きるので、必要に応じて添加してもよい。
In the present invention, in order to improve machinability, S, Se, Te, REM, Pb, Bi, Ca, Ti, Mg, P,
Even if Sn, As, etc. are added, the above-mentioned object of the present invention does not hinder the retardation characteristics due to the change in microstructure due to the repeated stress load, and the machinability can be easily improved. You may add according to it.

【0031】次に、本発明においては、上記成分組成の
限定に加え、鋼中の酸化物系非金属介在物の形態(大き
さ)制御を行うことよって、主として上述したB10転動
疲労寿命の一層の向上を図ることにした。
Next, in the present invention, in addition to the limitation of the chemical composition, it'll be done in the form (size) control of oxide-based nonmetallic inclusions in the steel mainly above B 10 rolling fatigue life Has been decided to be further improved.

【0032】そこでまず、発明者らは、酸化物系非金属
介在物量ならびに成分組成が異なる2種の材料:即ち、
高炭素クロム軸受鋼(JIS-SUJ2)(A)と、上記適合範囲
内組成の軸受鋼(B)とを用いて、鋼中の酸化物系非金
属介在物最大径とB10転動疲労寿命との関係を調査し
た。その結果、図3に示すように、鋼中の酸化物系非金
属介在物量あるいは組成に関係なく、該非金属介在物の
最大径が8μmを越えると、B10転動疲労寿命は目立っ
て低下することが判り、このことから、本発明軸受鋼と
しては、最大粒径が8μm以下になるようにすることが
必要である。
Therefore, first, the present inventors have proposed two materials having different amounts of oxide-based nonmetallic inclusions and different component compositions:
High carbon chromium bearing steel (JIS-SUJ2) (A) , by using a bearing steel having the composition within the above adaptation range (B), the oxide-based nonmetallic inclusions maximum diameter and B 10 rolling fatigue life of the steel The relationship with was investigated. As a result, as shown in FIG. 3, regardless of the oxide-based nonmetallic inclusions amount or composition of the steel, the maximum diameter of the non-metallic inclusions exceeds 8 [mu] m, B 10 rolling contact fatigue life decreases noticeably From this, it can be seen that it is necessary for the bearing steel of the present invention to have a maximum particle size of 8 μm or less.

【0033】[0033]

【実施例】表3, 表4, 表5に示す成分組成の鋼を常法
にて溶製し、得られた鋼材につき1240℃で30h の拡散焼
鈍の後に65mmφの棒鋼に圧延した。次いで、焼ならし−
球状化焼なまし−焼入れ−焼もどしの順で熱処理を行
い、ラッピング仕上げにより12mmφ×22mmの円筒型転動
疲労寿命試験片を作製した。非金属介在物の試験は、 4
00倍で 800視野の酸化物系非金属介在物を測定し、各視
野での介在物最大径をGumbel確率紙上にまとめ、50000
mm2 相当の極値を算出し、鋼中に存在する酸化物系非金
属介在物最大粒径とした。また、転動疲労寿命試験は、
ラジアルタイプの転動疲労寿命試験機を用いて、ヘルツ
最大接触応力:600 kgf/mm2 , 繰り返し応力数約46500
cpm の条件で行った。試験結果は、ワイブル分布に従う
ものとして確率紙上にまとめ、鋼材No.1 (従来鋼である
JIS- SuJ2) の平均寿命 (累積破損確率:10%および50
%における、剥離発生までの総負荷回数) を1として、
その他の鋼種のものを対比して評価したものである。そ
の評価結果を、表3、表4、表5にそれぞれ併せて示し
た。
EXAMPLES Steels having the component compositions shown in Tables 3, 4 and 5 were smelted by a conventional method, and the obtained steel was subjected to diffusion annealing at 1240 ° C. for 30 hours and then rolled into a 65 mmφ steel bar. Then, normalizing-
Heat treatment was performed in the order of spheroidizing annealing-quenching-tempering, and a cylindrical rolling fatigue life test specimen of 12 mmφ × 22 mm was prepared by lapping. The test for non-metallic inclusions is 4
Measure oxide-based nonmetallic inclusions in 800 visual fields at 00x and summarize the maximum diameter of inclusions in each visual field on Gumbel probability paper, 50,000
An extreme value equivalent to mm 2 was calculated and defined as the maximum particle size of oxide-based nonmetallic inclusions present in steel. In addition, the rolling fatigue life test
Hertz maximum contact stress: 600 kgf / mm 2 , repetitive stress number about 46500
It went under the condition of cpm. The test results are summarized on probability paper as following the Weibull distribution, and steel No. 1 (conventional steel
Average life of JIS-SuJ2) (cumulative failure probability: 10% and 50%)
%, The total number of loads until the peeling occurs) is 1,
The evaluation was made by comparing other steel types. The evaluation results are also shown in Tables 3, 4, and 5.

【0034】[0034]

【表3】 [Table 3]

【0035】[0035]

【表4】 [Table 4]

【0036】[0036]

【表5】 [Table 5]

【0037】表3, 4, 5に示す結果から明らかなよう
に、鋼中C量が本発明範囲外である鋼材No.5, 鋼中Cu量
が本発明範囲外である鋼材No.6のB50転動疲労寿命は、
同じか従来鋼(鋼材No.1)よりもむしろ悪い。また、介
在物最大径が8μm を超えるNo.4では、B10転動疲労寿
命が悪いという結果となった。これに対し、本発明鋼(
第1発明)である鋼材No.7のB10, B50値は、いずれも
従来鋼(鋼材No.1) に比較して約3 〜4 倍も優れてい
る。すなわち、軸受鋼へのCuの添加がミクロ組織変化を
著しく遅延し、介在物最大径の制御によって、軸受のあ
らゆる転動疲労寿命の向上に対して有効に作用したこと
が窺える。
As is clear from the results shown in Tables 3, 4, and 5, steel No. 5 having a C content in steel outside the range of the present invention and steel No. 6 having a Cu content in steel outside the range of the present invention were used. B 50 rolling contact fatigue life,
Same or worse than conventional steel (steel No. 1). The maximum diameter inclusions in No.4 exceeds 8 [mu] m, B 10 rolling fatigue life resulted poor. In contrast, the steel of the present invention (
Is B 10, B 50 value of the steel No.7 is the first invention), both of which better about 3-4 times that of the conventional steel (steel No.1). In other words, it can be seen that the addition of Cu to the bearing steel significantly delayed the microstructure change, and effectively controlled the maximum rolling contact fatigue life of the bearing by controlling the maximum diameter of the inclusions.

【0038】なかでも、Si, Mn, Cr, Mo, W, V, Nb, Z
r, Ta, Hf, Co, N の単独添加およびそれらの複合添加
例(第3発明鋼)No. 21〜34の場合には、上記平均寿命
(B50転動疲労寿命)は、より一層向上することが確か
められた。
Among them, Si, Mn, Cr, Mo, W, V, Nb, Z
r, Ta, Hf, Co, if added alone and combined addition examples of such N (Third invention steels) No. 21-34, said life expectancy (B 50 rolling fatigue life) is further improved It was confirmed that it did.

【0039】また、介在物粒径制御にあわせ強度上昇に
よる寿命改善成分を単独または複合して添加してなる第
2, 本発明例(No.8〜20) は、B10転動疲労寿命につい
て高い改善効果を示した。さらに、全ての寿命改善成分
を選択的に添加してなる第4発明例の場合、軸受寿命改
善傾向は一層顕著となった。
Further, the second obtained by adding the improved lifetime components by increasing strength suit inclusion particle diameter control alone or combined with, the present invention embodiment (No.8~20), for B 10 rolling contact fatigue life High improvement effect was shown. Further, in the case of the fourth invention example in which all the life improving components were selectively added, the tendency of the bearing life improvement became more remarkable.

【0040】[0040]

【発明の効果】以上説明したとおり、本発明によれば、
基本的には1.0 超〜2.5 wt%のCu含有軸受鋼とすること
により、繰り返し応力負荷に伴うミクロ組織変化の遅延
をもたらすことによる転動疲労寿命の向上を達成して、
この面において高寿命の軸受用の鋼を提供することがで
きる。しかも、非金属介在物の粒径制御を通じて材料強
度を高めることによって、この面における転動疲労寿命
の向上をも実現できる。なお、本発明にかかる軸受鋼の
開発によって、転がり軸受の小型化ならびに軸受使用温
度のより以上の上昇が可能となる。
As described above, according to the present invention,
Basically, by using a Cu-containing bearing steel of more than 1.0 to 2.5 wt%, the rolling fatigue life can be improved by delaying the microstructure change due to repeated stress loading,
In this aspect, a long-life steel for bearings can be provided. In addition, by increasing the material strength by controlling the particle size of the non-metallic inclusions, it is possible to improve the rolling fatigue life on this surface. The development of the bearing steel according to the present invention makes it possible to reduce the size of the rolling bearing and further increase the operating temperature of the bearing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a),(b)は、繰り返し応力負荷の下に、
発生するミクロ組織変化のようすを示す金属組織の顕微
鏡写真。
1 (a) and 1 (b) are views under a repeated stress load.
5 is a micrograph of a metal structure showing a change in the microstructure that occurs.

【図2】介在物に起因する軸受寿命とミクロ組織変化に
起因する軸受寿命とに及ぼすCuの影響を示す説明図。
FIG. 2 is an explanatory diagram showing the influence of Cu on the bearing life caused by inclusions and the bearing life caused by microstructure change.

【図3】非金属介在物最大径と軸受転動疲労寿命との関
係を示すグラフ。
FIG. 3 is a graph showing the relationship between the maximum diameter of nonmetallic inclusions and the rolling contact fatigue life.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 天野 虔一 千葉県千葉市中央区川崎町1番地 川崎 製鉄株式会社 技術研究本部内 (56)参考文献 特開 昭63−143239(JP,A) 特開 平3−122255(JP,A) 特開 平6−264187(JP,A) 特開 平7−278741(JP,A) 特開 平6−256906(JP,A) 特開 平6−264186(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kenichi Amano 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Engineering Co., Ltd. (56) References JP-A-63-143239 (JP, A) JP-A-3-122255 (JP, A) JP-A-6-264187 (JP, A) JP-A-7-278741 (JP, A) JP-A-6-256906 (JP, A) JP-A-6-264186 ( JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C22C 38/00-38/60

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】C: 0.5〜1.5 wt%, Cu:1.0 超〜2.5 wt
%を含み、残部がFeおよび不可避的不純物からなり、か
つ酸化物系非金属介在物の最大粒径が8μm以下であ
る, 繰り返し応力負荷によるミクロ組織変化の遅延特性
に優れた軸受鋼。
C: 0.5 to 1.5 wt%, Cu: more than 1.0 to 2.5 wt%
%, With the balance consisting of Fe and unavoidable impurities, and having a maximum particle size of oxide-based nonmetallic inclusions of 8 μm or less, and having excellent characteristics of delaying microstructure change due to repeated stress loading.
【請求項2】C: 0.5〜1.5 wt%, Cu:1.0 超〜2.
5 wt%を含有し、さらに、Si:0.05〜0.5 wt%, M
n:0.05〜2.0 wt%,Cr:0.05〜2.5 wt%, Ni:0.05
〜1.0 wt%,Mo:0.05〜0.5 wt%, B:0.0005〜0.0
1wt%,Sb:0.0001〜0.015 wt% Al:0.005 〜0.07wt
%,及びN:0.0005〜0.012 wt%のうちから選ばれるい
ずれか1種または2種以上を含み、残部がFeおよび不可
避的不純物からなり、かつ酸化物系非金属介在物の最大
粒径が8μm以下である, 繰り返し応力負荷によるミク
ロ組織変化の遅延特性に優れた軸受鋼。
2. C: 0.5 to 1.5 wt%, Cu: more than 1.0 to 2.
5 wt%, Si: 0.05-0.5 wt%, M
n: 0.05-2.0 wt%, Cr: 0.05-2.5 wt%, Ni: 0.05
~ 1.0 wt%, Mo: 0.05 ~ 0.5 wt%, B: 0.0005 ~ 0.0
1 wt%, Sb: 0.0001 to 0.015 wt% Al: 0.005 to 0.07 wt
% And N: at least one selected from 0.0005 to 0.012 wt%, the balance being Fe and unavoidable impurities, and the maximum particle size of the oxide-based nonmetallic inclusions is 8 μm The following is a bearing steel with excellent microstructure change delay characteristics due to repeated stress loading.
【請求項3】C: 0.5〜1.5 wt%, Cu:1.0 超〜2.5
wt%を含有し、さらにSi:0.5 超〜2.5 wt%, Mn:2.0
超〜5.0 wt%,Cr:2.5 超〜8.0 wt%, Mo:0.5 超〜2.0
wt%,Ni:1.0 超〜3.0 wt%, N:0.012 超〜0.050 wt
%,V:0.05〜1.0 wt%, Nb:0.05〜1.0 wt%,W:0.
05〜1.0 wt%, Zr:0.02〜0.5 wt%,Ta:0.02〜0.5 w
t%, Hf:0.02〜0.5 wt%,及びCo:0.05〜1.5 wt%の
うちから選ばれるいずれか1種または2種以上を含み、
残部がFeおよび不可避的不純物からなり、かつ酸化物系
非金属介在物の最大粒径が8μm以下である, 繰り返し
応力負荷によるミクロ組織変化の遅延特性に優れた軸受
鋼。
3. C: 0.5 to 1.5 wt%, Cu: more than 1.0 to 2.5
wt%, Si: more than 0.5 to 2.5 wt%, Mn: 2.0
More than 5.0 wt%, Cr: More than 2.5 to 8.0 wt%, Mo: More than 0.5 to 2.0
wt%, Ni: more than 1.0 to 3.0 wt%, N: more than 0.012 to 0.050 wt
%, V: 0.05-1.0 wt%, Nb: 0.05-1.0 wt%, W: 0.
05-1.0 wt%, Zr: 0.02-0.5 wt%, Ta: 0.02-0.5 w
t%, Hf: 0.02 to 0.5 wt%, and Co: 0.05 to 1.5 wt%.
Bearing steel with the balance being Fe and unavoidable impurities, and having a maximum particle size of oxide-based nonmetallic inclusions of 8 μm or less, and having excellent characteristics of delaying microstructure change due to repeated stress loading.
【請求項4】C:0.5〜1.5wt%,Cu:1.0超〜2.5wt%を
含有し、さらに下記(I群)の成分のうちから選ばれる
いずれか1種または2種以上を含み、さらにまた、下記
(II群)の成分(ただし、I群で選択されている元素は
除く)のうちから選ばれるいずれか1種または2種以上
を含み、残部がFeおよび不可避的不純物からなり、かつ
酸化物系非金属介在物の最大粒径が8μm以下である,
繰り返し応力負荷によるミクロ組織変化の遅延特性に優
れた軸受鋼。 (I群) Si:0.05〜0.5wt%,Mn:0.05〜2.0wt%,Cr:0.05〜2.5w
t%,Ni:0.05〜1.0wt%,Mo:0.05〜0.5wt%,B:0.0005
〜0.01wt%,Sb:0.0001〜0.015wt%, Al:0.005〜0.07w
t%及びN:0.0005〜0.012wt%(II群) Si:0.5超〜2.5wt%,Mn:2.0超〜5.0wt%,Cr:2.5超〜
4.0wt%,Mo:0.5超〜2.0wt%,Ni:1.0超〜3.0wt%,N:
0.012超〜0.050wt%,V:0.05〜1.0wt%,Nb:0.05〜1.0
wt%,W:0.05〜1.0 wt%,Zr:0.02〜0.5wt%,Ta:0.02
〜0.5wt%,Hf:0.02〜0.5wt%及びCo:0.05〜1.5 wt%
4. C: 0.5 to 1.5 wt%, Cu: more than 1.0 to 2.5 wt%
Contains, and furtherIngredients of the following (Group I)Selected from
Including any one or two or more,following
(Group II) components (however, the elements selected in Group I
except)Any one or more selected from
And the balance consists of Fe and inevitable impurities, and
The maximum particle size of oxide-based nonmetallic inclusions is 8 μm or less,
Excellent in microstructure change delay characteristics due to repeated stress loading
Bearing steel.Record (Group I)  Si: 0.05 to 0.5 wt%, Mn: 0.05 to 2.0 wt%, Cr: 0.05 to 2.5 w
t%, Ni: 0.05 to 1.0 wt%, Mo: 0.05 to 0.5 wt%, B: 0.0005
~ 0.01wt%, Sb: 0.0001 ~ 0.015wt%, Al: 0.005 ~ 0.07w
t% and N: 0.0005-0.012wt%(Group II)  Si: more than 0.5 to 2.5 wt%, Mn: more than 2.0 to 5.0 wt%, Cr: more than 2.5
4.0wt%, Mo: more than 0.5 to 2.0 wt%, Ni: more than 1.0 to 3.0 wt%, N:
Over 0.012 to 0.050 wt%, V: 0.05 to 1.0 wt%, Nb: 0.05 to 1.0
wt%, W: 0.05-1.0 wt%, Zr: 0.02-0.5 wt%, Ta: 0.02
0.5 to 0.5 wt%, Hf: 0.02 to 0.5 wt% and Co: 0.05 to 1.5 wt%
JP09554993A 1993-03-30 1993-03-30 Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading Expired - Fee Related JP3233725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09554993A JP3233725B2 (en) 1993-03-30 1993-03-30 Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09554993A JP3233725B2 (en) 1993-03-30 1993-03-30 Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading

Publications (2)

Publication Number Publication Date
JPH06287693A JPH06287693A (en) 1994-10-11
JP3233725B2 true JP3233725B2 (en) 2001-11-26

Family

ID=14140662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09554993A Expired - Fee Related JP3233725B2 (en) 1993-03-30 1993-03-30 Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading

Country Status (1)

Country Link
JP (1) JP3233725B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2801635A4 (en) * 2012-01-05 2015-08-26 Jfe Steel Corp High carbon hot-rolled steel sheet with excellent hardenability and minimal in-plane anisotropy, and method for producing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3779078B2 (en) * 1998-11-10 2006-05-24 Jfeスチール株式会社 Bearing steel with excellent rolling fatigue life

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2801635A4 (en) * 2012-01-05 2015-08-26 Jfe Steel Corp High carbon hot-rolled steel sheet with excellent hardenability and minimal in-plane anisotropy, and method for producing same
US10323293B2 (en) 2012-01-05 2019-06-18 Jfe Steel Corporation High-carbon hot rolled steel sheet with excellent hardenability and small in-plane anistropy and method for manufacturing the same

Also Published As

Publication number Publication date
JPH06287693A (en) 1994-10-11

Similar Documents

Publication Publication Date Title
JP3233725B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3411088B2 (en) Bearings with excellent microstructure change delay characteristics due to repeated stress loading
JP3379789B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3243326B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3233727B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3383348B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3383350B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3383352B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3233718B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3383351B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3233729B2 (en) Bearing steel with excellent microstructure change delay characteristics due to cyclic stress loading and heat treatment productivity
JP3379788B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3233719B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3233726B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructural change due to repeated stress loading
JP3383349B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3379781B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3411087B2 (en) Bearings with excellent microstructure change delay characteristics due to repeated stress loading
JP3379780B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3243322B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JPH06271982A (en) Bearing steel excellent in property of retarding change in microstructure due to repeated stress load
JP3383353B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3379782B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3379783B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JPH06287710A (en) Bearing steel excellent in heat treatment productivity as well as in property of retarding microstructural change due to repeated stress load
JPH06279932A (en) Bearing steel excellent in property of retarding change in microstructure due to repetitive stress load and heat treatment productivity

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees