JP3233248B2 - Thin film for strain gauge and its manufacturing method - Google Patents

Thin film for strain gauge and its manufacturing method

Info

Publication number
JP3233248B2
JP3233248B2 JP12415794A JP12415794A JP3233248B2 JP 3233248 B2 JP3233248 B2 JP 3233248B2 JP 12415794 A JP12415794 A JP 12415794A JP 12415794 A JP12415794 A JP 12415794A JP 3233248 B2 JP3233248 B2 JP 3233248B2
Authority
JP
Japan
Prior art keywords
thin film
chromium
nitrogen
strain gauge
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12415794A
Other languages
Japanese (ja)
Other versions
JPH07306002A (en
Inventor
直樹 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP12415794A priority Critical patent/JP3233248B2/en
Publication of JPH07306002A publication Critical patent/JPH07306002A/en
Application granted granted Critical
Publication of JP3233248B2 publication Critical patent/JP3233248B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】[0001]

【産業上の利用分野】本発明は、歪ゲージ用薄膜および
その製造法に関する。更に詳しくは、歪による電気抵抗
変化を利用した歪ゲージ用薄膜およびその製造法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a strain gauge thin film and a method for manufacturing the same. More particularly, the present invention relates to a thin film for a strain gauge using electrical resistance change due to strain and a manufacturing method thereof.

【0002】[0002]

【従来の技術】圧力センサ、加速度センサ等の各種力学
的センサには、歪による電気抵抗変化を利用するための
歪ゲージ用薄膜が用いられている。かかる歪ゲージ用薄
膜は、クロム系などの合金材料または半導体材料から形
成されたものがそれぞれ知られている。
2. Description of the Related Art Thin films for strain gauges are used in various mechanical sensors such as pressure sensors and acceleration sensors in order to utilize changes in electrical resistance due to strain. Such thin films for strain gauges are known to be formed from alloy materials such as chromium-based materials or from semiconductor materials.

【0003】しかしながら、クロム系合金材料の内、ニ
ッケル-クロム系合金材料の場合には、歪感度を示すゲ
ージ率が小さい(K=1.6〜2.1程度)という問題があり、
またクロム-酸素系合金材料の場合には、合金としては
高いゲージ率を示すものの、その値は5.3〜9.5程度にと
どまっている(特開平2-76201号公報、同2-152201号公
報)。更に、半導体材料を用いた場合には、温度変化の
影響を受け易いという欠点がみられる。
[0003] However, among chromium-based alloy materials, nickel-chromium-based alloy materials have a problem that the gauge factor indicating strain sensitivity is small (K = about 1.6 to 2.1).
In the case of the chromium-oxygen alloy material, although it exhibits a high gauge factor as an alloy, the value remains at about 5.3 to 9.5 (Japanese Patent Application Laid-Open Nos. 2-76201 and 2-152201). Furthermore, the use of semiconductor materials has the disadvantage of being susceptible to changes in temperature.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、クロ
ム系合金材料を用いた歪ゲージ用薄膜であって、高いゲ
ージ率を示すものを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a strain gauge thin film using a chromium-based alloy material and exhibiting a high gauge factor.

【0005】[0005]

【課題を解決するための手段】かかる本発明の目的は、
窒素含有率が約0.1〜5原子%のクロム-窒素合金薄膜より
なる歪ゲージ用薄膜によって達成され、この薄膜中には
約0.5原子%以下の酸素の混入が許容される。
DISCLOSURE OF THE INVENTION The object of the present invention is to:
This is achieved by a strain gauge thin film consisting of a chromium-nitrogen alloy thin film having a nitrogen content of about 0.1 to 5 atomic percent, and oxygen contamination of about 0.5 atomic percent or less is allowed in this thin film.

【0006】窒素含有率が約0.1〜5原子%、好ましくは
約0.2〜2原子%のクロム-窒素合金薄膜は、蒸着法などに
よっても製造することもできるが、好ましくはクロムを
ターゲットに用い、アルゴン-窒素混合ガス中で高周波
スパッタリングすることにより製造される。高周波スパ
ッタリングは、例えば図1に示されるような成膜装置を
用いて行われる。
A chromium-nitrogen alloy thin film having a nitrogen content of about 0.1 to 5 atomic %, preferably about 0.2 to 2 atomic % can be produced by a vapor deposition method. Manufactured by RF sputtering in an argon-nitrogen mixture. High-frequency sputtering is performed using, for example, a film forming apparatus as shown in FIG.

【0007】この成膜装置の成膜チャンバー1の内部に
は、クロムターゲット(純度99.9%)2およびこれと対向
位置の基板3が取り付けられており、ガラス、アルミ
ナ、ポリイミド樹脂等の絶縁物あるいは鋼、アルミニウ
ム、チタン、シリコン等の導体または半導体の表面に絶
縁性薄膜を形成させたもの等からなる基板の背面は、赤
外線ランプ4等によって約80〜200℃の温度に加熱さ
れ、その際膜厚および温度の均一性を図るため、基板は
成膜操作中回転させておくことが好ましい。
A chromium target (purity 99.9%) 2 and a substrate 3 opposed to this are mounted inside a film forming chamber 1 of this film forming apparatus. The back surface of a substrate made of a conductor or semiconductor such as steel, aluminum, titanium, silicon, etc. with an insulating thin film formed on its surface is heated to a temperature of about 80 to 200° C. by an infrared lamp 4 or the like. The substrate is preferably rotated during the deposition operation for thickness and temperature uniformity.

【0008】高周波スパッタリング雰囲気を形成させる
アルゴンガスおよび窒素ガスは、それぞれボンベ5およ
び6よりマスフロ-コントローラ7,8により流量を調節
した上で、成膜チャンバー1内に供給される。混合ガス
の流量比は、例えばアルゴンガス流量20ml/分に対して
窒素ガスが約0.1〜2ml/分、好ましくは約0.5〜2ml/分、
更に好ましくは約0.6〜1.4ml/分の割合で用いられ、こ
の流量比を調節することで形成される薄膜の窒素含有率
をコントロールすることができ、それによって薄膜抵抗
の温度依存性を調整することができる。
Argon gas and nitrogen gas for forming a high-frequency sputtering atmosphere are supplied from cylinders 5 and 6 into film-forming chamber 1 after their flow rates are adjusted by mass flow controllers 7 and 8, respectively. The flow rate ratio of the mixed gas is, for example, about 0.1 to 2 ml/min, preferably about 0.5 to 2 ml/min for nitrogen gas to 20 ml/min for argon gas.
More preferably, it is used at a rate of about 0.6 to 1.4 ml/min. By adjusting this flow rate, the nitrogen content of the thin film formed can be controlled, thereby adjusting the temperature dependence of the thin film resistance. be able to.

【0009】混合ガスの供給に先立って、成膜チャンバ
ー1内は真空ポンプ10によって約10-3Pa以下に減圧排気
される。また、成膜を開始する直前に、不純物の混入を
防止するためのターゲット表面および基板表面のスパッ
タエッチングも行われる。
[0009] Prior to supplying the mixed gas, the inside of the film forming chamber 1 is evacuated to about 10 -3 Pa or less by a vacuum pump 10 . In addition, the target surface and the substrate surface are also sputter-etched to prevent contamination of impurities immediately before starting the film formation.

【0010】成膜は、圧力約1×10-1〜6×10-1Paの条件
下で、高周波電源9から発生させる約200〜1500W、好ま
しくは約500〜1500Wの有効電力で、クロムターゲット2
を高周波スパッタリングすることによって行われる。こ
のときの成膜速度は有効電力によって異なり、例えば有
効電力500Wの場合には約10nm/分程度であり、基板上に
は約50〜1000nm、好ましくは約200〜400nmの膜厚で薄膜
が形成される。
[0010] The film formation is carried out under the condition of a pressure of about 1 x 10 -1 to 6 x 10 -1 Pa and an effective power of about 200 to 1500 W, preferably about 500 to 1500 W, generated from the high frequency power source 9. 2
is carried out by high-frequency sputtering. The film formation rate at this time varies depending on the effective power, for example, when the effective power is 500 W, it is about 10 nm/min. be done.

【0011】このようにしてクロム-窒素合金薄膜を形
成させた基板上には、この薄膜に接続された電極が公知
の任意の方法によって付設され、歪ゲージを構成させ
る。
[0011] On the substrate on which the chromium-nitrogen alloy thin film is thus formed, an electrode connected to this thin film is attached by any known method to form a strain gauge.

【0012】[0012]

【発明の効果】クロム-窒素合金薄膜よりなる歪ゲージ
用薄膜は、ゲージ率が約15〜16程度と高く、また抵抗温
度係数は広範囲にわたって調節可能である。特に、抵抗
温度係数が0に近い場合には、温度変化の影響を受け難
いため、歪ゲージ用材料として望ましい特性を有してい
るといえる。
A strain gauge thin film made of a chromium-nitrogen alloy thin film has a high gauge factor of about 15 to 16, and its temperature coefficient of resistance can be adjusted over a wide range. In particular, when the temperature coefficient of resistance is close to 0, it can be said that the material has desirable properties as a strain gauge material because it is less susceptible to temperature changes.

【0013】[0013]

【実施例】図1に示される成膜装置を用いて、前述の如
き方法でのスパッタリング薄膜の製造が行われた。基板
には、有機溶剤およびアルカリ洗剤で洗浄されたホウけ
い酸ガラスプレート(厚さ1mm)が130℃に加熱して用いら
れ、混合ガス導入前に成膜チャンバー内は8×10-4Paに
減圧排気された。成膜は、種々の流量比の混合ガスを供
給しながら、圧力2.5×10-1〜3.0×10-1Pa、有効電力50
0Wの条件下で約40分間行われ、膜厚約400nmのクロム-窒
素合金薄膜を基板上に形成させた。
EXAMPLE Using the film forming apparatus shown in FIG. 1, a sputtering thin film was produced by the method described above. A borosilicate glass plate (thickness 1 mm) washed with an organic solvent and an alkaline detergent was used as the substrate and heated to 130°C. Evacuated. Film formation was performed at a pressure of 2.5 × 10 -1 to 3.0 × 10 -1 Pa and an effective power of 50 while supplying mixed gases with various flow ratios.
A chromium-nitrogen alloy thin film with a thickness of about 400 nm was formed on the substrate under the condition of 0 W for about 40 minutes.

【0014】基板上に形成させたクロム-窒素合金薄膜
は、レジストを用いたフォトリソグラフ法とエッチング
法を適用することにより、ゲージパターンを形成させ、
その後金を高周波スパッタリングして電極を付設させ、
試験片を作成した。図2に示される試験片11において、
12は基板であり、13はゲージ部、また14,14´は電極で
ある。
A gauge pattern is formed on the chromium-nitrogen alloy thin film formed on the substrate by applying a photolithography method using a resist and an etching method.
After that, gold is RF-sputtered to attach electrodes,
A test piece was prepared. In the test piece 11 shown in FIG.
12 is a substrate, 13 is a gauge portion, and 14 and 14' are electrodes.

【0015】この試験片を用いて、ゲージ率および抵抗
温度係数(TCR)の測定が行われた。ゲージ率の測定は、
図3に示されるような4点曲げの方法を用い、歪と抵抗
変化量との関係からゲージ率を求めた。ここで、11は試
験片であり、15,16は4点曲げ台、17は変位検出器、18
は抵抗計である。
Using this test piece, the gauge factor and temperature coefficient of resistance (TCR) were measured. The gauge factor measurement is
Using the four-point bending method as shown in FIG. 3, the gauge factor was obtained from the relationship between the strain and the amount of change in resistance. Here, 11 is a test piece, 15 and 16 are four-point bending tables, 17 is a displacement detector, and 18
is an ohmmeter.

【0016】また、抵抗温度係数は、-40,0,25,75お
よび130℃の各温度での抵抗を測定し、抵抗変化量から
算出した。更に、薄膜の組成は、光電子分光分析法によ
り測定した。
[0016] The temperature coefficient of resistance was calculated from the amount of resistance change measured by measuring the resistance at each temperature of -40, 0, 25, 75 and 130°C. In addition, the composition of the thin films was determined by photoelectron spectroscopy.

【0017】以上の各項目の測定結果は、次の表に示さ
れる。 ガス流量(ml/分) No. Ar N2 ゲージ率 TCR(ppm/k) 窒素含有率(原子%) 1 20 0.5 15.3 616 0.1 2 〃 0.8 16.0 159 0.2 3 〃 1.0 16.3 22 0.8 4 〃 1.2 15.8 -283 2 5 〃 1.4 13.75 -379 3 6 〃 1.6 11.25 -170 4 7 〃 2.0 8.5 105 5 8 〃 3.0 2.3 360 - 9 〃 - 15.2 1800 -
The measurement results for each of the above items are shown in the following table. Gas flow rate (ml/min) No. Ar N 2 Gauge factor TCR (ppm/k) Nitrogen content (atomic %) 1 20 0.5 15.3 616 0.1 2 〃 0.8 16.0 159 0.2 3 〃 1.0 16.3 22 0.8 4 〃 1.2 15.8 - 283 2 5 〃 1.4 13.75 -379 3 6 〃 1.6 11.25 -170 4 7 〃 2.0 8.5 105 5 8 〃 3.0 2.3 360 - 9 〃 - 15.2 1800 -

【図面の簡単な説明】[Brief description of the drawing]

【図1】本発明方法に用いられる成膜装置の概要図であ
る。
FIG. 1 is a schematic diagram of a film forming apparatus used in the method of the present invention;

【図2】ゲージ率および抵抗温度係数の測定に用いられ
る試験片の概要図である。
FIG. 2 is a schematic diagram of a test specimen used for measurement of gauge factor and temperature coefficient of resistance;

【図3】ゲージ率測定方法の概要図である。FIG. 3 is a schematic diagram of a gauge factor measuring method;

【符号の説明】 1 成膜チャンバー 2 クロムターゲット 3 基板 5 アルゴンガスボンベ 6 窒素ガスボンベ 9 高周波電源[Description of symbols] 1 deposition chamber 2 Chromium target 3 substrate 5 Argon gas cylinder 6 Nitrogen gas cylinder 9 High frequency power supply

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H01C 17/12 H01L 29/84 A H01L 29/84 G01B 7/18 G ──────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 窒素含有率が約0.1〜5原子%のクロム-窒
素合金薄膜よりなる歪ゲージ用薄膜。
1. A strain gauge thin film comprising a chromium-nitrogen alloy thin film having a nitrogen content of about 0.1 to 5 atomic %.
【請求項2】 クロムをターゲットに用い、アルゴン-
窒素混合ガス雰囲気中で高周波スパッタリングすること
を特徴とする、窒素含有率が約0.1〜5原子%のクロム-窒
素合金薄膜の製造法。
[Claim 2] Using chromium as a target and argon-
A method for producing a chromium-nitrogen alloy thin film having a nitrogen content of about 0.1 to 5 atomic percent, characterized by high-frequency sputtering in a nitrogen mixed gas atmosphere.
JP12415794A 1994-05-13 1994-05-13 Thin film for strain gauge and its manufacturing method Expired - Fee Related JP3233248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12415794A JP3233248B2 (en) 1994-05-13 1994-05-13 Thin film for strain gauge and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12415794A JP3233248B2 (en) 1994-05-13 1994-05-13 Thin film for strain gauge and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH07306002A JPH07306002A (en) 1995-11-21
JP3233248B2 true JP3233248B2 (en) 2001-11-26

Family

ID=14878357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12415794A Expired - Fee Related JP3233248B2 (en) 1994-05-13 1994-05-13 Thin film for strain gauge and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3233248B2 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3642449B2 (en) * 1997-03-21 2005-04-27 財団法人電気磁気材料研究所 Cr-N-based strain resistance film, manufacturing method thereof, and strain sensor
JP3292099B2 (en) * 1997-07-31 2002-06-17 松下電工株式会社 Thin film element and method of manufacturing the same
JP2002141201A (en) * 2000-11-02 2002-05-17 Koa Corp Thin-film resistor and its manufacturing method
JP6793103B2 (en) 2017-09-29 2020-12-02 ミネベアミツミ株式会社 Strain gauge
JP2019066313A (en) * 2017-09-29 2019-04-25 ミネベアミツミ株式会社 Strain gauge
JP2019066453A (en) * 2017-09-29 2019-04-25 ミネベアミツミ株式会社 Strain gauge
JP2019066454A (en) * 2017-09-29 2019-04-25 ミネベアミツミ株式会社 Strain gauge and sensor module
JP2019066312A (en) * 2017-09-29 2019-04-25 ミネベアミツミ株式会社 Strain gauge
JP2019078726A (en) 2017-10-27 2019-05-23 ミネベアミツミ株式会社 Strain gauge and sensor module
JP2019082426A (en) * 2017-10-31 2019-05-30 ミネベアミツミ株式会社 Strain gauge
JP2019082424A (en) * 2017-10-31 2019-05-30 ミネベアミツミ株式会社 Strain gauge
JP2019082425A (en) 2017-10-31 2019-05-30 ミネベアミツミ株式会社 Strain gauge
JP2019090724A (en) * 2017-11-15 2019-06-13 ミネベアミツミ株式会社 Strain gauge
JP2019090722A (en) * 2017-11-15 2019-06-13 ミネベアミツミ株式会社 Strain gauge
JP2019090723A (en) 2017-11-15 2019-06-13 ミネベアミツミ株式会社 Strain gauge
JP2019090721A (en) * 2017-11-15 2019-06-13 ミネベアミツミ株式会社 Strain gauge
JP2019095338A (en) * 2017-11-24 2019-06-20 ミネベアミツミ株式会社 Strain gauge and sensor module
JP2019113411A (en) 2017-12-22 2019-07-11 ミネベアミツミ株式会社 Strain gauge and sensor module
JP2019120555A (en) * 2017-12-28 2019-07-22 ミネベアミツミ株式会社 Strain gauge, sensor module
JP2019128183A (en) * 2018-01-22 2019-08-01 ミネベアミツミ株式会社 Sensor module
JP2019132790A (en) * 2018-02-02 2019-08-08 ミネベアミツミ株式会社 Strain gauge
JP2019132791A (en) * 2018-02-02 2019-08-08 ミネベアミツミ株式会社 Strain gauge
JP2019174387A (en) 2018-03-29 2019-10-10 ミネベアミツミ株式会社 Strain gauge
JP2019184284A (en) * 2018-04-03 2019-10-24 ミネベアミツミ株式会社 Strain gauge
JP2019184344A (en) * 2018-04-05 2019-10-24 ミネベアミツミ株式会社 Strain gauge and manufacturing method therefor
JP2019219312A (en) * 2018-06-21 2019-12-26 ミネベアミツミ株式会社 Strain gauge
JP2019219313A (en) * 2018-06-21 2019-12-26 ミネベアミツミ株式会社 Sensor module
JP2020008527A (en) * 2018-07-12 2020-01-16 ミネベアミツミ株式会社 Strain gauge, sensor module, and bearing mechanism
JP7008618B2 (en) * 2018-08-28 2022-01-25 ミネベアミツミ株式会社 Battery pack
CN112955724B (en) * 2018-10-23 2022-10-14 美蓓亚三美株式会社 Accelerator pedal, steering system, vehicle door, and vehicle door opening/closing system
JP2020129013A (en) * 2020-06-05 2020-08-27 ミネベアミツミ株式会社 Strain gauge
JP2022072604A (en) * 2020-10-30 2022-05-17 日東電工株式会社 Laminated film, manufacturing method therefor, and strain sensor
JP2022072603A (en) * 2020-10-30 2022-05-17 日東電工株式会社 Strain sensor module

Also Published As

Publication number Publication date
JPH07306002A (en) 1995-11-21

Similar Documents

Publication Publication Date Title
JP3233248B2 (en) Thin film for strain gauge and its manufacturing method
JP4436064B2 (en) Thermistor material and manufacturing method thereof
LeClair et al. Titanium nitride thin films obtained by a modified physical vapor deposition process
WO2001072652A1 (en) Method of forming niobium doped tin oxide coatings on glass and coated glass formed thereby
US7416702B2 (en) Hydrogen sensor and process for production thereof
JPS5955001A (en) Resistor
US6365014B2 (en) Cathode targets of silicon and transition metal
JP2579470B2 (en) Method of manufacturing nitride thin film resistor
JP3391115B2 (en) Method for producing chromium-oxygen alloy thin film
Yoshimura et al. Room-temperature hydrogen sensor based on Pd-capped Mg2Ni thin film
Strauss et al. Gas pressures influence on the optical and mechanical properties of Ta2O5 films produced by reactive low voltage ion plating (RLVIP)
Jung et al. Fiber optic hydrogen sensor
Schneeweiβ et al. Ultra-high vacuum measurements of the internal stress of PVD titanium films as a function of thickness and its dependence on substrate temperature
Kubový et al. The influence of residual gas pressure on the stress in aluminium films
Mendez et al. Preparation of cubic boron nitride films by plasma-enhanced chemical vapour deposition of BF3, N2 and H2 gas mixtures
JP2526883B2 (en) Thin film titanium nitride-based material
US20020125130A1 (en) Cathode targets of silicon and transition metal
US4205299A (en) Thin film resistor
JPH0276201A (en) Thin film resistor for strain gauge
JP2001110606A (en) Resistance bulb for thermometer unaffected by magnetic field under very low temperature
JPH05156439A (en) Production of transparent conductive film and measuring instrument
Biederman et al. Physical properties of metal/a C: H composite films
JPH09196879A (en) Tin oxide thin film sensor for sensing hydrogen and its manufacture
Chua et al. Microstructural and surface properties of cobalt containing amorphous carbon thin film deposited by a filtered cathodic vacuum arc
CS276279B6 (en) thin resistance layer on nickel-chromium base and method of production thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080921

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090921

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees