JP3226027B2 - Battery electrode and secondary battery using the same - Google Patents

Battery electrode and secondary battery using the same

Info

Publication number
JP3226027B2
JP3226027B2 JP12609498A JP12609498A JP3226027B2 JP 3226027 B2 JP3226027 B2 JP 3226027B2 JP 12609498 A JP12609498 A JP 12609498A JP 12609498 A JP12609498 A JP 12609498A JP 3226027 B2 JP3226027 B2 JP 3226027B2
Authority
JP
Japan
Prior art keywords
electrode
battery
active material
capacity
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12609498A
Other languages
Japanese (ja)
Other versions
JPH11329438A (en
Inventor
学 原田
利彦 西山
志奈子 岡田
正樹 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP12609498A priority Critical patent/JP3226027B2/en
Publication of JPH11329438A publication Critical patent/JPH11329438A/en
Application granted granted Critical
Publication of JP3226027B2 publication Critical patent/JP3226027B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電池用電極および
それを用いた二次電池に関し、特に容量出現率およびサ
イクル特性を改善する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery electrode and a secondary battery using the same, and more particularly, to a method for improving a capacity appearance rate and cycle characteristics.

【0002】[0002]

【従来の技術】二次電池の正極および負極には、電極活
物質と共に、導電性を高めるための導電補助剤が使用さ
れている。従来、正極、負極の導電補助剤として結晶性
のカーボンを用いた水系二次電池では、電極活物質とカ
ーボンの密着性及び塗れ性が低いため容量出現率及びサ
イクル性が低くかった。
2. Description of the Related Art In a positive electrode and a negative electrode of a secondary battery, a conductive auxiliary agent for increasing conductivity is used together with an electrode active material. Conventionally, in an aqueous secondary battery using crystalline carbon as a conductive auxiliary for a positive electrode and a negative electrode, the adhesiveness and wettability between the electrode active material and the carbon are low, so that the capacity appearance rate and the cyclability have been low.

【0003】特開平5−174810号公報には、導電
補助剤としてのカーボン粉末に界面活性剤を吸着させる
ことにより電極の電解液に対する塗れ性(含浸性)を高
め、電池特性を改善する方法が記載されている。
JP-A-5-174810 discloses a method of improving the wettability (impregnation) of an electrode with an electrolytic solution by adsorbing a surfactant to carbon powder as a conductive auxiliary to improve battery characteristics. Has been described.

【0004】しかし、この方法には、次のような問題点
がある。まず第一に、導電補助剤に界面活性剤を吸着さ
せると導電性を示さない界面活性剤の層が絶縁層にな
り、接触抵抗が高くなるために、電池の内部抵抗が高く
なり電池特性が低下する。
However, this method has the following problems. First of all, when a surfactant is adsorbed on a conductive auxiliary, a layer of a surfactant that does not exhibit conductivity becomes an insulating layer, and the contact resistance is increased, so that the internal resistance of the battery is increased and the battery characteristics are improved. descend.

【0005】第2に、電池の動作電圧内で界面活性剤が
電気分解し、電池内部でガスを発生する。このため電池
の封止が難しく、電池の外装が大きくなる。
Second, the surfactant is electrolyzed within the operating voltage of the battery, generating gas inside the battery. Therefore, it is difficult to seal the battery, and the exterior of the battery becomes large.

【0006】第3に、導電補助剤と界面活性剤との混
合、攪拌、乾燥の工程が増えるために製造工程が煩雑に
なる。
Third, the number of steps of mixing, stirring and drying the conductive auxiliary agent and the surfactant increases, which complicates the manufacturing process.

【0007】第4に、溶解した活物質又は高分子活物質
のモノマーと、界面活性剤を吸収させた導電補助剤を混
合すると、界面活性剤が溶媒中に溶出してしまいカーボ
ン/電極活物質界面の密着性、および電解液の含浸性が
低下する。また、電解液中で長時間電解液に曝される
と、界面活性剤は徐々に溶出し、導電補助剤の親水性が
低下する。
Fourth, when a monomer of a dissolved active material or a polymer active material is mixed with a conductive auxiliary agent having absorbed a surfactant, the surfactant is eluted in a solvent, and the carbon / electrode active material is dissolved. The adhesion at the interface and the impregnation of the electrolyte are reduced. Further, when the surfactant is exposed to the electrolytic solution for a long time in the electrolytic solution, the surfactant gradually elutes, and the hydrophilicity of the conductive auxiliary decreases.

【0008】従って、この方法は実用的には未だ十分と
は言えなかった。
Therefore, this method has not been practically sufficient yet.

【0009】[0009]

【発明が解決しようとする課題】本発明は、このような
問題を解決し、電極活物質と導電補助剤の塗れ性を改善
することにより容量出現率が高く、同時にサイクル性に
優れた二次電池を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention solves such a problem and improves the wettability of the electrode active material and the conductive auxiliary agent, thereby increasing the capacity appearance rate and at the same time improving the cycleability of the secondary battery. It is intended to provide a battery.

【0010】[0010]

【課題を解決するための手段】本発明は、導電補助剤と
して非晶性カーボンを含む電池用電極に関する。この場
合、結着剤をさらに有していてもよい。
SUMMARY OF THE INVENTION The present invention relates to a battery electrode containing amorphous carbon as a conductive auxiliary. In this case, a binder may be further included.

【0011】また、前記非晶性カーボンとしては熱処理
温度2500℃以下で得られるカーボンが好ましい。特
に熱処理温度2500℃以下で得られるカーボンファイ
バーが好ましい。
As the amorphous carbon, carbon obtained at a heat treatment temperature of 2500 ° C. or less is preferable. In particular, carbon fibers obtained at a heat treatment temperature of 2500 ° C. or lower are preferred.

【0012】前記電極活物質は、導電性高分子からなる
ことが好ましい。
Preferably, the electrode active material is made of a conductive polymer.

【0013】また本発明は、このような電池用電極を正
極または負極の少なくとも一方に用いた二次電池に関す
る。特に、正極に用いることが好ましい。電解液として
は、水系電解液、固体電解質またはゲル電解質を用いる
ことができる。
The present invention also relates to a secondary battery using such a battery electrode as at least one of a positive electrode and a negative electrode. In particular, it is preferable to use the positive electrode. As the electrolyte, an aqueous electrolyte, a solid electrolyte or a gel electrolyte can be used.

【0014】[0014]

【0015】[0015]

【0016】[0016]

【0017】[0017]

【発明の実施の形態】本発明の電池の電極は、電極活物
質、導電補助剤および必要に応じて結着剤等で構成され
る電極であって、導電補助剤として非晶性カーボンを用
いるものである。このような電極は、導電補助剤と、電
極活物質、および必要に応じて結着剤等を例えば集電体
シート上に成膜して形成される。
BEST MODE FOR CARRYING OUT THE INVENTION The electrode of the battery according to the present invention is an electrode composed of an electrode active material, a conductive auxiliary and, if necessary, a binder, etc., wherein amorphous carbon is used as the conductive auxiliary. Things. Such an electrode is formed by forming a conductive auxiliary agent, an electrode active material, and, if necessary, a binder and the like on a current collector sheet, for example.

【0018】本発明では、このように導電補助剤として
非晶性のカーボンを用いると電極活物質との塗れ性が向
上するので、カーボン表面に均一に電極活物質を塗布ま
たは形成することができる。このため、電極活物質層の
比表面積が大きくなると共に、非晶性カーボンを用いた
電極は親水性が高く、電極内部への水系電解液の含浸性
が向上するために、容量出現率が向上する。また、導電
補助剤である非晶性カーボンと電極活物質との密着性が
向上するので、充放電を繰り返しても、電極活物質と導
電補助剤が剥離せず、電子伝導性が保てるのでサイクル
性が向上する。本発明の二次電池において、非晶性のカ
ーボンを導電補助剤として用いた電極を正極または負極
のどちらに用いても、あるいはその両方に用いてもよい
が、特に正極に用いることにより、優れたサイクル性と
高い容量出現率の両方を同時に満足することができるの
で好ましい。
In the present invention, when amorphous carbon is used as the conductive auxiliary, the wettability with the electrode active material is improved, so that the electrode active material can be uniformly applied or formed on the carbon surface. . For this reason, the specific surface area of the electrode active material layer is increased, and the electrode using amorphous carbon has high hydrophilicity, and the impregnation of the aqueous electrolyte into the electrode is improved. I do. In addition, since the adhesion between amorphous carbon, which is a conductive auxiliary agent, and the electrode active material is improved, the electrode active material and the conductive auxiliary agent are not separated even after repeated charging and discharging, and the electron conductivity can be maintained. The performance is improved. In the secondary battery of the present invention, an electrode using amorphous carbon as a conductive auxiliary may be used for either the positive electrode or the negative electrode, or both may be used. It is preferable because both the cycle property and the high capacity appearance rate can be satisfied at the same time.

【0019】本発明において用いられる非晶性カーボン
は、2500℃以下の温度で熱処理して得られるカーボ
ンである。即ち、このように低い温度で処理されて得ら
れるカーボンは非晶性が優勢となり、表面に水酸基、カ
ルボキシル基、アミノ基やカルボニル基などの解離基や
極性基を多く有するので、親水性を示す。
The amorphous carbon used in the present invention is obtained by heat treatment at a temperature of 2500 ° C. or less. That is, the carbon obtained by treatment at such a low temperature has a predominance of non-crystallinity, and has a hydroxyl group, a carboxyl group, a large number of dissociating groups such as amino groups and carbonyl groups and polar groups on its surface, and thus shows hydrophilicity .

【0020】このような非晶性カーボンとしては、ガラ
ス状カーボン(難黒鉛カーボン)、等方性高密度カーボ
ン、低温処理カーボン等の微粒子状のカーボン、PAN
系カーボンファイバー、ピッチ系カーボンファイバー、
気相成長系カーボンファイバー等のカーボンファイバー
等であって、2500℃以下の温度で熱処理して得られ
るもの、特に好ましくは、600〜1500℃で熱処理
して得られたものを挙げることができる。
Examples of such amorphous carbon include glassy carbon (hard graphite graphite), isotropic high-density carbon, fine-particle carbon such as low-temperature-treated carbon, and PAN.
-Based carbon fiber, pitch-based carbon fiber,
Carbon fibers such as vapor-grown carbon fibers and the like obtained by heat treatment at a temperature of 2500 ° C. or less, particularly preferably those obtained by heat treatment at 600 to 1500 ° C. can be mentioned.

【0021】また、微粒子状のカーボンより、少量の添
加量で高い導電率が得られるのでカーボンファイバーの
方が好ましい。カーボンファイバーを用いるときは、直
径0.1〜10μmのものを、長さ0.5〜100μm
に切断して用いることが好ましい。
[0021] Carbon fibers are more preferable than carbon in the form of fine particles because high conductivity can be obtained with a small amount of carbon added. When using carbon fiber, the diameter is 0.1 to 10 μm, the length is 0.5 to 100 μm
It is preferable to use it after cutting.

【0022】本発明に用いられる電極活物質は、導電性
高分子を用いることが好ましく、正極用としては、プロ
トンのドープ、脱ドープのみの反応を有する性質のもの
が用いられ、ポリアニリン誘導体、ポリキノン類誘導体
等を用いることができる。この中でも、酸化還元電位の
高いポリアニリンおよびポリアミノアントラキノン等が
好ましい。
As the electrode active material used in the present invention, it is preferable to use a conductive polymer. For the positive electrode, a material having a reaction of only doping and undoping of protons is used, and a polyaniline derivative, polyquinone Derivatives and the like can be used. Among them, polyaniline and polyaminoanthraquinone having a high oxidation-reduction potential are preferable.

【0023】負極用としては、プロトンのドープ、脱ド
ープのみの反応を有する性質のものが用いられ、ポリピ
リジン誘導体、ポリピリミジン誘導体、ポリキノン類誘
導体等を用いることができる。この中でも、酸化還元電
位の低いポリピリジン等が好ましい。
For the negative electrode, those having the property of reacting only by doping and undoping of protons are used, and polypyridine derivatives, polypyrimidine derivatives, polyquinone derivatives and the like can be used. Among them, polypyridine having a low oxidation-reduction potential is preferred.

【0024】これらの電極活物質は必要に応じて、ドー
ピングして用いることが好ましい。尚、ポリアニリンは
式(I)、ポリピリジンは式(II)で示される高分子
化合物である。
It is preferable that these electrode active materials are doped as necessary. Here, polyaniline is a polymer compound represented by the formula (I), and polypyridine is a polymer compound represented by the formula (II).

【0025】[0025]

【化1】 Embedded image

【0026】[0026]

【化2】 電極の形成方法としては、通常用いられる方法を用いる
ことができるが、例えば、非晶性カーボンおよび電極活
物質を混練りした上で集電体シート上に成膜して形成す
る方法を用いることができる。
Embedded image As a method for forming an electrode, a method generally used can be used. For example, a method in which amorphous carbon and an electrode active material are kneaded and then formed into a film on a current collector sheet is used. Can be.

【0027】また、電極活物質が導電性高分子であって
有機溶媒可溶の場合は、電極活物質を有機溶媒に溶解
し、これに非晶性カーボンを添加してスラリーとしてか
ら集電体シート上に成膜する方法を用いることができ
る。
When the electrode active material is a conductive polymer and is soluble in an organic solvent, the electrode active material is dissolved in an organic solvent, and amorphous carbon is added thereto to form a slurry. A method of forming a film on a sheet can be used.

【0028】また、非晶性カーボンの存在下で電極活物
質である導電性高分子の重合を行い、これを集電体シー
ト上に成膜するようにしてもよい。この場合は、非晶性
カーボンを用いることにより、導電性高分子のモノマー
との塗れ性、さらに重合した導電性高分子体との塗れ性
がよいために高いサイクル性と、高い容量出現率が得ら
れるのである。
In addition, a conductive polymer as an electrode active material may be polymerized in the presence of amorphous carbon, and this may be formed on a current collector sheet. In this case, by using amorphous carbon, the coatability with the monomer of the conductive polymer and the coatability with the polymerized conductive polymer are good, so that a high cycle property and a high capacity appearance rate are obtained. You get it.

【0029】これらいずれの方法においても、必要に応
じてフッ化ビニリデン、ポリテトラフルオロエチレン等
の結着剤を用いて、集電体シートへの接着性と形状保持
性を向上させることができる。
In any of these methods, a binder such as vinylidene fluoride or polytetrafluoroethylene can be used as necessary to improve the adhesiveness to the current collector sheet and the shape retention.

【0030】また、集電体シートとしては公知のものを
使用できるが、例えば、グラフォイル、カーボンシート
等を挙げることができる。
As the current collector sheet, known ones can be used, and examples thereof include graphoil and carbon sheets.

【0031】本発明の二次電池は、このような非晶性の
カーボンを導電補助剤として用いた電極を少なくとも一
方の電極に用いれば他方は公知の電極を用いることがで
きる。例えば、熱処理温度の高いカーボンを導電補助剤
としても用いた電極等を用いることができる。
In the secondary battery of the present invention, a known electrode can be used for at least one of the electrodes using such amorphous carbon as a conductive auxiliary agent. For example, an electrode or the like using carbon having a high heat treatment temperature as a conductive auxiliary agent can be used.

【0032】また、本発明の二次電池において用いる電
解液としては、水系の電解液、固体電解質、またはゲル
電解質を用いることができる。水系の電解液を用いると
きは常法に従ってセパレーターを用いる。
As the electrolyte used in the secondary battery of the present invention, an aqueous electrolyte, a solid electrolyte, or a gel electrolyte can be used. When an aqueous electrolyte is used, a separator is used according to a conventional method.

【0033】[0033]

【実施例】以下に実施例を示して本発明をさらに詳細に
説明する。
The present invention will be described in more detail with reference to the following examples.

【0034】[実施例1]正極活物質材料としてポリア
ニリンと導電補助剤として低温処理気相成長系カーボン
ファイバー(熱処理温度1300℃)を重量比4:1
(ポリアニリン:カーボンファイバー)となるように秤
量し、これに結着剤としてバインダー樹脂ポリフッ化ビ
ニリデン(平均分子量:1100)を、ポリアニリンと
導電補助剤の合計に対し重量比で15wt%の量を加
え、さらに可塑剤としてブチルフタリルブチルグリコー
ルを加えてスラリーを調整した。
[Example 1] Polyaniline as a cathode active material and low-temperature-treated vapor-grown carbon fiber (heat treatment temperature of 1300 ° C) as a conductive auxiliary agent at a weight ratio of 4: 1.
(Polyaniline: carbon fiber), and a binder resin polyvinylidene fluoride (average molecular weight: 1100) as a binder and an amount of 15 wt% by weight based on the total of polyaniline and the conductive auxiliary agent were added thereto. Further, butylphthalylbutylglycol was added as a plasticizer to prepare a slurry.

【0035】このスラリーをホモジナイザーで十分に攪
拌し、ドクターブレードを用いて集電体シート上に成膜
した。成膜後、120℃で1時間乾燥した。電極膜厚は
100μmであった。その後、それぞれを所定の形状に
切断し、正極電極を得た。
This slurry was sufficiently stirred with a homogenizer, and a film was formed on a current collector sheet using a doctor blade. After the film formation, it was dried at 120 ° C. for 1 hour. The electrode film thickness was 100 μm. Thereafter, each was cut into a predetermined shape to obtain a positive electrode.

【0036】次に負極活物質としてポリピリジンと導電
補助剤として高温処理気相成長カーボンファイバー(熱
処理温度2800℃)を重量比1:1に秤量し、蟻酸を
室温で加えてスラリー状にした。このスラリーをドクタ
ーブレードを用いて集電体シート上に成膜した。成膜
後、120℃で1時間乾燥した。電極膜厚は100μm
であった。その後、それぞれを所定の形状に切断し、負
極電極を得た。
Next, polypyridine as a negative electrode active material and high-temperature-treated vapor-grown carbon fiber (heat treatment temperature: 2800 ° C.) as a conductive auxiliary were weighed at a weight ratio of 1: 1, and formic acid was added at room temperature to form a slurry. This slurry was formed on a current collector sheet using a doctor blade. After the film formation, it was dried at 120 ° C. for 1 hour. The electrode thickness is 100 μm
Met. Thereafter, each was cut into a predetermined shape to obtain a negative electrode.

【0037】正極、負極に、電解液として6M、PVS
A(ポリビニルスルホン酸)水溶液を真空含浸させた
後、図1に示すように、集電体シート1上に形成した正
極4、負極2を、同じ電解液を含浸したセパレータ3を
介して対向配置し、二次電池を完成した。
The positive electrode and the negative electrode are made of 6M as electrolyte and PVS
After vacuum impregnation with an aqueous solution of A (polyvinyl sulfonic acid), as shown in FIG. 1, the positive electrode 4 and the negative electrode 2 formed on the current collector sheet 1 are opposed to each other via the separator 3 impregnated with the same electrolytic solution. Thus, a secondary battery was completed.

【0038】完成した二次電池を0.1mAの定電流充
電(0.1C)を行い、0.1mAの定電流放電(0.
1C)を行った。このときの理論容量はポリアニリンの
失活限界を考慮して147mAh/g(正極活物質重量
当たり)とした。その結果、1.0V〜0.7Vまでの
容量は1.0mAh(正極活物質重量当たり100mA
h/g)であり、容量出現率は68%と高い値が得られ
た。また、サイクル特性においても、初期容量の80%
になるまでのサイクル回数は6500回であった。この
結果を表1、放電容量と電池電圧の関係(容量出現率)
を図2、充放電回数と容量の関係(サイクル特性)を図
3に示す。
The completed secondary battery is charged at a constant current of 0.1 mA (0.1 C) and discharged at a constant current of 0.1 mA (0.
1C). The theoretical capacity at this time was 147 mAh / g (per weight of the positive electrode active material) in consideration of the deactivation limit of polyaniline. As a result, the capacity from 1.0 V to 0.7 V was 1.0 mAh (100 mA per positive electrode active material weight).
h / g), and the capacity appearance ratio was as high as 68%. Also, the cycle characteristics are 80% of the initial capacity.
The number of cycles required to reach 6500. Table 1 shows the results, and the relationship between discharge capacity and battery voltage (capacity appearance rate).
FIG. 2 shows the relationship between the number of times of charge and discharge and the capacity (cycle characteristics).

【0039】尚、本実施例では電極活物質としてポリピ
リジン、ポリアニリン、電解液として6M、PVSA水
溶液を用いたが、これらに限定されるものではない。電
解質は固体電解質やゲル電解質でも良い。バインダー樹
脂としてポリフッ化ビニリデンを用いたが電解液に腐食
されない限り、これに限定されるものではない。
In this example, polypyridine and polyaniline were used as the electrode active material, and a 6M aqueous solution of PVSA was used as the electrolytic solution. However, the present invention is not limited to these. The electrolyte may be a solid electrolyte or a gel electrolyte. Polyvinylidene fluoride was used as the binder resin, but is not limited to this as long as it is not corroded by the electrolytic solution.

【0040】[比較例1]この比較例では負極、正極両
方の電極中の導電補助剤として、実施例1の負極側に用
いた高温処理気相成長カーボンファイバーを使用した。
Comparative Example 1 In this comparative example, the high-temperature-treated vapor-grown carbon fiber used in the negative electrode of Example 1 was used as a conductive auxiliary in both the negative electrode and the positive electrode.

【0041】即ち、正極の導電補助剤として高温処理気
相成長カーボンファイバーを用いた以外は実施例1と同
様にして正極を作製し、負極は実施例1とまったく同様
に作製して二次電池を完成させた。負極、正極の膜厚は
100μmであった。
That is, a positive electrode was prepared in the same manner as in Example 1 except that a high-temperature-processed vapor-grown carbon fiber was used as a conductive auxiliary for the positive electrode. Was completed. The thickness of the negative electrode and the positive electrode was 100 μm.

【0042】このポリマー二次電池を実施例1と同様に
評価した結果、1.0V〜0.7Vまでの容量は0.7
mAh(正極活物質重量当たり70mAh/g)であ
り、容量出現率は47.6%であった。また、サイクル
特性においても、初期容量の80%になるまでのサイク
ル回数は4000回であった。この結果を表1、放電容
量と電池電圧の関係(容量出現率)を図2、充放電回数
と容量の関係(サイクル特性)を図3に示す。
As a result of evaluating this polymer secondary battery in the same manner as in Example 1, the capacity from 1.0 V to 0.7 V was 0.7
mAh (70 mAh / g per weight of the positive electrode active material), and the capacity appearance ratio was 47.6%. Also, in the cycle characteristics, the number of cycles until reaching 80% of the initial capacity was 4000 times. The results are shown in Table 1, the relationship between the discharge capacity and the battery voltage (capacity appearance rate) is shown in FIG. 2, and the relationship between the number of times of charge and discharge and the capacity (cycle characteristics) is shown in FIG.

【0043】[実施例2]この実施例では、正極側の電
極活物質として可溶性活物質を用いた例を説明する。
[Embodiment 2] In this embodiment, an example in which a soluble active material is used as an electrode active material on the positive electrode side will be described.

【0044】正極活物質材料として未ドープポリアニリ
ンを用いた。まず、脱ドープポリアニリンをNMP(N
−メチルピロリドン)に溶かして20wt%に調整し
た。調整した未ドープポリアニリン溶液に導電補助剤と
して実施例1で用いたものと同じ低温処理気相成長系カ
ーボンファイバーを重量比4:1(ポリアニリン:カー
ボンファイバー)で添加し、スラリー状にした。
Undoped polyaniline was used as a positive electrode active material. First, undoped polyaniline was converted to NMP (N
-Methylpyrrolidone) and adjusted to 20 wt%. To the adjusted undoped polyaniline solution, the same low-temperature-processed vapor growth type carbon fiber as used in Example 1 as a conductive auxiliary was added at a weight ratio of 4: 1 (polyaniline: carbon fiber) to form a slurry.

【0045】このスラリーをホモジナイザーで十分に攪
拌し、ドクターブレードを用いて集電体シート上に成膜
した。成膜後、120℃で1時間乾燥した。膜厚は10
0μmであった。この電極を6M、ポリビニルスルホン
酸水溶液中で70℃、6時間浸漬することによりドーピ
ングを行った。ドーピング終了後、水、メタノールの順
で洗浄し、室温で減圧乾燥した。乾燥後の電極膜厚は1
05μmであった。その後、それぞれを所定の形状に切
断し、正極電極とした。
This slurry was sufficiently stirred with a homogenizer, and a film was formed on a current collector sheet using a doctor blade. After the film formation, it was dried at 120 ° C. for 1 hour. The film thickness is 10
It was 0 μm. This electrode was immersed in a 6M aqueous solution of polyvinyl sulfonic acid at 70 ° C. for 6 hours to perform doping. After the completion of the doping, the resultant was washed with water and methanol in that order, and dried at room temperature under reduced pressure. The electrode film thickness after drying is 1
It was 05 μm. Thereafter, each was cut into a predetermined shape to obtain a positive electrode.

【0046】一方、負極側は実施例1と同様にして電極
を作製した後、実施例1と同様にして二次電池を完成し
た。
On the other hand, an electrode was prepared on the negative electrode side in the same manner as in Example 1, and then a secondary battery was completed in the same manner as in Example 1.

【0047】完成した二次電池を実施例1と同様にして
評価した結果、1.0V〜0.7Vまでの容量は1.2
mAh(正極活物質重量当たり120mAh/g)であ
り、容量出現率は80%と非常に高い値が得られた。ま
た、サイクル特性においても、初期容量の80%になる
までのサイクル回数は7500回であった。この結果を
表1、放電容量と電池電圧の関係(容量出現率)を図
2、充放電回数と容量の関係(サイクル特性)を図4に
示す。
The completed secondary battery was evaluated in the same manner as in Example 1. As a result, the capacity from 1.0 V to 0.7 V was 1.2
mAh (120 mAh / g per weight of the positive electrode active material), and a very high value of 80% was obtained. In the cycle characteristics, the number of cycles until reaching 80% of the initial capacity was 7,500 times. Table 1 shows the results, FIG. 2 shows the relationship between the discharge capacity and the battery voltage (capacity appearance rate), and FIG. 4 shows the relationship between the number of times of charge and discharge and the capacity (cycle characteristics).

【0048】この実施例では正極活物質とカーボンの密
着性がさらに向上しており、このように更に高い容量出
現率とサイクル性が得られたものと考えられる。
In this example, the adhesion between the positive electrode active material and the carbon was further improved, and it is considered that a higher capacity appearance rate and cycleability were thus obtained.

【0049】尚、本実施例では電極活物質としてポリピ
リジン、未ドープポリアニリン、電解液として6M、P
VSA水溶液を用いたが、これらに限定されるものでは
ない。又、電解質は固体電解質やゲル電解質でも良い。
In this example, polypyridine and undoped polyaniline were used as the electrode active material, and 6M and P were used as the electrolyte.
Although a VSA aqueous solution was used, it is not limited to these. Further, the electrolyte may be a solid electrolyte or a gel electrolyte.

【0050】[比較例2]この比較例では、正極の導電
補助剤として高温処理気相成長カーボンファイバーを用
いた以外は実施例2と同様にして正極を作製し、負極は
実施例2とまったく同様に作製して二次電池を完成させ
た。負極、正極の膜厚は100μmであった。
Comparative Example 2 In this comparative example, a positive electrode was produced in the same manner as in Example 2 except that a high-temperature-treated vapor-grown carbon fiber was used as a conductive auxiliary for the positive electrode. The secondary battery was manufactured in the same manner to complete the secondary battery. The thickness of the negative electrode and the positive electrode was 100 μm.

【0051】このポリマー二次電池を実施例1と同様に
評価した結果、1.0V〜0.7Vまでの容量は0.8
mAh(正極活物質重量当たり80mAh/g)であ
り、容量出現率は54.4%であった。また、サイクル
特性においても、初期容量の80%になるまでのサイク
ル回数は5000回であった。この結果を表1、放電容
量と電池電圧の関係(容量出現率)を図2、充放電回数
と容量の関係(サイクル特性)を図4に示す。
As a result of evaluating this polymer secondary battery in the same manner as in Example 1, the capacity from 1.0 V to 0.7 V was 0.8
mAh (80 mAh / g per weight of the positive electrode active material), and the capacity appearance rate was 54.4%. Regarding the cycle characteristics, the number of cycles until reaching 80% of the initial capacity was 5000 times. Table 1 shows the results, FIG. 2 shows the relationship between the discharge capacity and the battery voltage (capacity appearance rate), and FIG. 4 shows the relationship between the number of times of charge and discharge and the capacity (cycle characteristics).

【0052】[実施例3]この実施例では、正極側の電
極活物質である導電性高分子を非晶性カーボン上で重合
させた複合材料を用いた例について説明する。
Embodiment 3 In this embodiment, an example using a composite material obtained by polymerizing a conductive polymer, which is an electrode active material on the positive electrode side, on amorphous carbon will be described.

【0053】正極の複合材の作製方法として、特開昭6
1−266435及び特開昭64−22984号公報に
記載されている方法に従って、500mlのフラスコ中
に蒸留水200gと塩酸10mlを入れ、これにアニリ
ン9.3gを溶解させ、更に、これに硫酸9.8gを加
えて攪拌した。このアニリン溶液60gを200ml溶
液ビーカーに入れた。別に、ペルオキシ硫酸アンモニウ
ム5.9gを蒸留水53g溶解させた酸化剤溶液を上記
アニリン溶液に冷却しながら加え、攪拌した。反応混合
物中に実施例1で用いたものと同じ低温処理気相成長系
カーボンファイバーを添加した。数分後、反応混合物は
変色し始め、時間の経過と共に黒緑色の沈殿物が生成
し、1時間後、ビーカー内は重合体で満たされた。3時
間後、吸引濾過後、蒸留水にて数回洗浄後、アセトンに
て洗浄し、室温で6時間真空乾燥した。乾燥したものを
正極の複合材とした。
As a method for producing a composite material for a positive electrode, Japanese Patent Application Laid-Open No.
According to the method described in 1-266435 and JP-A-64-22984, 200 g of distilled water and 10 ml of hydrochloric acid were placed in a 500 ml flask, 9.3 g of aniline was dissolved therein, and further, sulfuric acid was added thereto. 0.8 g was added and stirred. 60 g of this aniline solution was placed in a 200 ml solution beaker. Separately, an oxidizing agent solution in which 5.9 g of ammonium peroxysulfate was dissolved in 53 g of distilled water was added to the aniline solution with cooling, followed by stirring. The same low-temperature-processed vapor growth type carbon fiber as used in Example 1 was added to the reaction mixture. After a few minutes, the reaction mixture began to change color and a black-green precipitate formed over time, and after one hour the beaker was filled with polymer. After 3 hours, suction filtration, washing with distilled water several times, washing with acetone, and vacuum drying at room temperature for 6 hours. The dried product was used as the composite material of the positive electrode.

【0054】上記の正極材にバインダー樹脂ポリフッ化
ビニリデン(平均分子量:1100)を重量比で15w
t%加え、可塑剤としてブチルフタリルブチルグリコー
ルを加えて調整した。
A binder resin polyvinylidene fluoride (average molecular weight: 1100) was added to the above positive electrode material in a weight ratio of 15 watts.
t% and butylphthalylbutylglycol as a plasticizer.

【0055】このスラリーをホモジナイザーで十分に攪
拌し、ドクターブレードを用いて集電体シート上に成膜
した。成膜後、120℃で1時間乾燥した。電極膜厚は
100μmであった。その後、それぞれを所定の形状に
切断し、正極電極を得た。
This slurry was sufficiently stirred with a homogenizer, and a film was formed on a current collector sheet using a doctor blade. After the film formation, it was dried at 120 ° C. for 1 hour. The electrode film thickness was 100 μm. Thereafter, each was cut into a predetermined shape to obtain a positive electrode.

【0056】負極側を実施例1と同様にして電極を作製
した後、実施例1と同様にして二次電池を完成した。
After an electrode was produced on the negative electrode side in the same manner as in Example 1, a secondary battery was completed in the same manner as in Example 1.

【0057】完成した二次電池を実施例1と同様にして
評価した結果、1.0V〜0.7Vまでの容量は1.3
mAh(正極活物質重量当たり130mAh/g)であ
り、容量出現率は88%と非常に高い値が得られた。ま
た、サイクル特性においても、初期容量の80%になる
までのサイクル回数は10000回であった。この結果
を表1、放電容量と電池電圧の関係(容量出現率)を図
2、充放電回数と容量の関係(サイクル特性)を図5に
示す。この実施例では正極活物質とカーボンの密着性が
さらに向上しており、このように更に高い容量出現率と
サイクル性が得られたものと考えられる。
The completed secondary battery was evaluated in the same manner as in Example 1. As a result, the capacity from 1.0 V to 0.7 V was 1.3.
mAh (130 mAh / g per weight of the positive electrode active material), and the capacity appearance ratio was as high as 88%. Regarding the cycle characteristics, the number of cycles until reaching 80% of the initial capacity was 10,000. Table 1 shows the results, FIG. 2 shows the relationship between the discharge capacity and the battery voltage (capacity appearance rate), and FIG. 5 shows the relationship between the number of times of charge and discharge and the capacity (cycle characteristics). In this example, the adhesion between the positive electrode active material and carbon was further improved, and it is considered that such a higher capacity appearance rate and cycleability were obtained.

【0058】尚、本実施例では電極活物質としてポリピ
リジン、ポリアニリン、電解液として6M、PVSA水
溶液を用いたが、これらに限定されるものではない。
又、電解質は固体電解質やゲル電解質でも良い。バイン
ダー樹脂としてポリフッ化ビニリデンを用いたが電解液
に腐食されない限り、これに限定されるものではない。
[比較例3]この比較例では、正極の導電補助剤として
高温処理気相成長カーボンファイバーを用いた以外は実
施例3と同様にして正極を作製し、負極は実施例3とま
ったく同様に作製して二次電池を完成させた。負極、正
極の膜厚はそれぞれ100μm、105μmであった。
In this example, polypyridine and polyaniline were used as the electrode active material, and a 6M aqueous solution of PVSA was used as the electrolytic solution. However, the present invention is not limited to these.
Further, the electrolyte may be a solid electrolyte or a gel electrolyte. Polyvinylidene fluoride was used as the binder resin, but is not limited to this as long as it is not corroded by the electrolytic solution.
Comparative Example 3 In this comparative example, a positive electrode was produced in the same manner as in Example 3 except that a high-temperature-treated vapor-grown carbon fiber was used as a conductive auxiliary for the positive electrode, and a negative electrode was produced in exactly the same manner as in Example 3. Thus, a secondary battery was completed. The thicknesses of the negative electrode and the positive electrode were 100 μm and 105 μm, respectively.

【0059】このポリマー二次電池を実施例1と同様に
評価した結果、1.0V〜0.7Vまでの容量は0.9
mAh(正極活物質重量当たり90mAh/g)であ
り、容量出現率は61.2%であった。また、サイクル
特性においても、初期容量の80%になるまでのサイク
ル回数は7000回であった。この結果を表1、放電容
量と電池電圧の関係(容量出現率)を図2、充放電回数
と容量の関係(サイクル特性)を図5に示す。
As a result of evaluating this polymer secondary battery in the same manner as in Example 1, the capacity from 1.0 V to 0.7 V was 0.9%.
mAh (90 mAh / g per weight of the positive electrode active material), and the capacity appearance rate was 61.2%. Regarding the cycle characteristics, the number of cycles until reaching 80% of the initial capacity was 7000 times. Table 1 shows the results, FIG. 2 shows the relationship between the discharge capacity and the battery voltage (capacity appearance rate), and FIG. 5 shows the relationship between the number of times of charge and discharge and the capacity (cycle characteristics).

【0060】[0060]

【表1】 [Table 1]

【0061】[0061]

【発明の効果】本発明によれば、電極活物質と導電補助
剤の塗れ性を改善することにより容量出現率が高く、同
時にサイクル性に優れた二次電池を提供することができ
る。
According to the present invention, by improving the wettability of the electrode active material and the conductive auxiliary, it is possible to provide a secondary battery having a high capacity appearance rate and at the same time having excellent cycle characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の二次電池の構造の1例である。FIG. 1 is an example of a structure of a secondary battery of the present invention.

【図2】実施例および比較例の放電容量と電池電圧の関
係(容量出現率)を示すグラフである。
FIG. 2 is a graph showing a relationship (capacity appearance rate) between a discharge capacity and a battery voltage in Examples and Comparative Examples.

【図3】実施例1および比較例1の二次電池の充放電回
数と容量の関係(サイクル特性)を示すグラフである。
FIG. 3 is a graph showing a relationship (cycle characteristic) between the number of times of charge and discharge and the capacity of the secondary batteries of Example 1 and Comparative Example 1.

【図4】実施例2および比較例2の二次電池の充放電回
数と容量の関係(サイクル特性)を示すグラフである。
FIG. 4 is a graph showing a relationship (cycle characteristic) between the number of times of charge and discharge and the capacity of the secondary batteries of Example 2 and Comparative Example 2.

【図5】実施例3および比較例3の二次電池の充放電回
数と容量の関係(サイクル特性)を示すグラフである。
FIG. 5 is a graph showing the relationship (cycle characteristics) between the number of times of charge and discharge and the capacity of the secondary batteries of Example 3 and Comparative Example 3.

【符号の説明】[Explanation of symbols]

1 集電体シート 2 負極 3 セパレーター 4 正極 DESCRIPTION OF SYMBOLS 1 Current collector sheet 2 Negative electrode 3 Separator 4 Positive electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤原 正樹 東京都港区芝五丁目7番1号 日本電気 株式会社内 (56)参考文献 特開 平4−190561(JP,A) 特開 昭61−233970(JP,A) 特開 平7−6753(JP,A) 特開 平9−289012(JP,A) 特開 平8−339798(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/62 H01M 4/02 H01M 4/60 H01M 10/40 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masaki Fujiwara 5-7-1, Shiba, Minato-ku, Tokyo Within NEC Corporation (56) References JP-A-4-190561 (JP, A) JP-A-61 -233970 (JP, A) JP-A-7-6753 (JP, A) JP-A-9-289012 (JP, A) JP-A 8-339798 (JP, A) (58) Fields investigated (Int. . 7, DB name) H01M 4/62 H01M 4/02 H01M 4/60 H01M 10/40

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 導電補助剤として非晶性であって表面が
親水性であるカーボンを含む電池用電極。
1. An electrode for a battery containing amorphous carbon and a hydrophilic surface as a conductive auxiliary agent.
【請求項2】 結着剤をさらに有する請求項1記載の電
池用電極。
2. The battery electrode according to claim 1, further comprising a binder.
【請求項3】 前記非晶性カーボンが熱処理温度250
0℃以下で得られるカーボンである請求項1または2記
載の電池用電極。
3. The heat treatment temperature of the amorphous carbon is 250.
3. The battery electrode according to claim 1, which is carbon obtained at 0 ° C. or lower.
【請求項4】 前記非晶性カーボンが熱処理温度250
0℃以下で得られるカーボンファイバーである請求項1
または2記載の電池用電極。
4. The method according to claim 1, wherein the amorphous carbon has a heat treatment temperature of 250.
2. A carbon fiber obtained at 0 ° C. or lower.
Or the battery electrode according to 2.
【請求項5】 前記電極活物質が導電性高分子からなる
請求項1〜4のいずれかに記載の電池用電極。
5. The battery electrode according to claim 1, wherein the electrode active material comprises a conductive polymer.
【請求項6】 請求項1〜5のいずれかに記載の電池用
電極を正極または負極の少なくとも一方に用いた二次電
池。
6. A secondary battery using the battery electrode according to claim 1 for at least one of a positive electrode and a negative electrode.
【請求項7】 請求項1〜5のいずれかに記載の電池用
電極を正極に用いた二次電池。
7. A secondary battery using the battery electrode according to claim 1 as a positive electrode.
【請求項8】 電解液が水系電解液、固体電解質または
ゲル電解質である請求項6または7記載の二次電池。
8. The secondary battery according to claim 6, wherein the electrolyte is an aqueous electrolyte, a solid electrolyte, or a gel electrolyte.
JP12609498A 1998-05-08 1998-05-08 Battery electrode and secondary battery using the same Expired - Lifetime JP3226027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12609498A JP3226027B2 (en) 1998-05-08 1998-05-08 Battery electrode and secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12609498A JP3226027B2 (en) 1998-05-08 1998-05-08 Battery electrode and secondary battery using the same

Publications (2)

Publication Number Publication Date
JPH11329438A JPH11329438A (en) 1999-11-30
JP3226027B2 true JP3226027B2 (en) 2001-11-05

Family

ID=14926466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12609498A Expired - Lifetime JP3226027B2 (en) 1998-05-08 1998-05-08 Battery electrode and secondary battery using the same

Country Status (1)

Country Link
JP (1) JP3226027B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004186075A (en) * 2002-12-05 2004-07-02 Mikuni Color Ltd Electrode for secondary battery and secondary battery using this
JP6241911B2 (en) 2012-11-13 2017-12-06 日東電工株式会社 Active material particles, positive electrode for electricity storage device, electricity storage device, and method for producing active material particles
US11811088B2 (en) 2019-09-19 2023-11-07 Kabushiki Kaisha Toshiba Separator, electrode group, secondary battery, battery pack, vehicle, and stationary power supply

Also Published As

Publication number Publication date
JPH11329438A (en) 1999-11-30

Similar Documents

Publication Publication Date Title
EP0949702B1 (en) Secondary battery power source
US6294292B1 (en) Secondary power source
JP3257516B2 (en) Laminated electrolyte and battery using the same
JP3168962B2 (en) Battery
JP2007012596A (en) Electrode for lead-acid battery, lead-acid battery and manufacturing method of lead-acid battery
JP2002528849A5 (en)
JPH09115506A (en) Anode for rechargeable lithium electrochemical battery and manufacture thereof
US6274268B1 (en) Polymer secondary battery and method of making same
JPS63314762A (en) Organic electrolyte cell using aluminum-lithium alloy as negative electrode
CN111430665A (en) Positive plate and preparation method and application thereof
JPH03129679A (en) Polyaniline battery and manufacture of polyaniline powder using in this battery
JP3111945B2 (en) Polymer secondary battery
JP3226027B2 (en) Battery electrode and secondary battery using the same
JP2000123825A (en) High polymer electrode
JPH1021963A (en) Battery and manufacture thereof
JP4039862B2 (en) Method for producing electrode material
JP2968097B2 (en) Organic electrolyte battery
JP2003282062A (en) Energy storage device and manufacturing method of compound composition for energy storage device
JP2002134103A (en) Method of producing electrode for polymer lithium secondary battery
US20230130827A1 (en) Positive electrode slurry for lithium secondary battery, preparation method for same, positive electrode for lithium secondary battery, and lithium secondary battery
WO2001029916A1 (en) A method for preparing a carbon anode for lithium ion batteries
JP2588405B2 (en) Organic electrolyte battery using high concentration mixed solute
JPH11120991A (en) Manufacture of battery positive electrode sheet
CN116959890A (en) Zinc ion capacitor, preparation method thereof and vehicle
JP2619842B2 (en) Organic electrolyte battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090831

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090831

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 12

EXPY Cancellation because of completion of term