JP3225556B2 - Manufacturing method of optical disk stamper - Google Patents

Manufacturing method of optical disk stamper

Info

Publication number
JP3225556B2
JP3225556B2 JP27613691A JP27613691A JP3225556B2 JP 3225556 B2 JP3225556 B2 JP 3225556B2 JP 27613691 A JP27613691 A JP 27613691A JP 27613691 A JP27613691 A JP 27613691A JP 3225556 B2 JP3225556 B2 JP 3225556B2
Authority
JP
Japan
Prior art keywords
etching
stamper
master
plasma
optical disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27613691A
Other languages
Japanese (ja)
Other versions
JPH0589534A (en
Inventor
健志 大森
敦司 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP27613691A priority Critical patent/JP3225556B2/en
Publication of JPH0589534A publication Critical patent/JPH0589534A/en
Application granted granted Critical
Publication of JP3225556B2 publication Critical patent/JP3225556B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2017/00Carriers for sound or information
    • B29L2017/001Carriers of records containing fine grooves or impressions, e.g. disc records for needle playback, cylinder records
    • B29L2017/003Records or discs

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は光ディスクスタンパーの
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an optical disk stamper.

【0002】[0002]

【従来の技術】従来の光ディスク用スタンパーの製造方
法は次の通りである。即ち、ガラス等からなる原盤を精
密研磨した後に、精密洗浄、表面処理を施し、このガラ
ス原盤上にポジ型フォトレジスト層を形成し、レーザ光
をディスク内周から外周に一定速度で照射して所定の情
報記録パターンを露光し、このレジスト層を現像して微
細な情報記録パターンを形成する。この情報記録パター
ンを有する基材原盤上に例えばニッケルをスパッタして
導電膜(電極)を形成し、その後電鋳して、情報記録パ
ターンが転写されたニッケルのスタンパーが製造され
る。
2. Description of the Related Art A conventional method of manufacturing a stamper for an optical disk is as follows. That is, after precision polishing of a master made of glass or the like, precision cleaning and surface treatment are performed, a positive photoresist layer is formed on this glass master, and a laser beam is irradiated from the inner circumference to the outer circumference of the disk at a constant speed. A predetermined information recording pattern is exposed, and the resist layer is developed to form a fine information recording pattern. A conductive film (electrode) is formed by sputtering, for example, nickel on the substrate master having the information recording pattern, and then electroformed to manufacture a nickel stamper to which the information recording pattern has been transferred.

【0003】[0003]

【発明が解決しようとする課題】前記の方法では、ガラ
ス原盤とレジスト層との密着性が不十分であるため、電
鋳、例えばニッケル電鋳する際にしばしばスタンパーが
ポジ型フォトレジストとガラス原盤の間で剥がれてしま
うことがある。このため電鋳液がその間に侵入したり、
裏面研磨の際に研磨剤が侵入したりすることによるスタ
ンパー表面の汚染、或いは電鋳の際に電鋳層とガラス原
盤の間に浮きが生じるため、電鋳厚みの精度の悪化等様
々な問題が生じる。
In the above-mentioned method, since the adhesion between the glass master and the resist layer is insufficient, the stamper often becomes a positive type photoresist and the glass master during electroforming, for example, nickel electroforming. It may come off between the two. For this reason, the electroforming liquid invades during that,
Various problems such as contamination of the stamper surface due to intrusion of abrasives during backside polishing, or floating between the electroformed layer and the glass master during electroforming, resulting in poor precision of the electroformed thickness. Occurs.

【0004】また、ガラス原盤全体を特別に処理するこ
とにより、表面粗度を大きくさせてレジスト層との密着
性を向上させることが出来るが、ガラス原盤表面粗度の
悪化はレジスト表面の荒れ、ひいてはスタンパー表面の
荒れ、更にこのスタンパーから製造される基板表面の荒
れにつながり、基板のノイズレベルの増大が生じる。
Further, by specially treating the entire glass master, it is possible to increase the surface roughness and improve the adhesion to the resist layer. As a result, the surface of the stamper is roughened, and furthermore, the surface of the substrate manufactured from this stamper is roughened, and the noise level of the substrate is increased.

【0005】本発明は上記従来技術の実状に鑑みてなさ
れたもので、その目的とするところは、表面の荒れが小
さい良質のスタンパーを歩留まり良く安定して得られる
製造方法を提供することである。
The present invention has been made in view of the above-mentioned prior art, and an object of the present invention is to provide a manufacturing method capable of stably obtaining a high quality stamper having a small surface roughness with good yield. .

【0006】[0006]

【課題を解決するための手段】本発明者らは、光ディス
クスタンパーの製造に際して、基材原盤上のポジ型フォ
トレジスト面に導電膜を形成する前に、同表面の一部を
エッチングにより基材原盤を露出させ、その後基材原盤
表面の表面粗度を大きくさせたものを用いると、結果的
に表面の荒れが少ない良質のスタンパーを歩留まり良く
安定して得ることができることを見出し、本発明を完成
するに至った。
Means for Solving the Problems In manufacturing an optical disk stamper, the present inventors have etched a part of the surface of a positive type photoresist by etching before forming a conductive film on the surface of the positive type photoresist on the master substrate. By exposing the master and then using a substrate having a large surface roughness of the base master surface, it has been found that a high quality stamper with less surface roughness can be obtained stably with good yield, and the present invention It was completed.

【0007】即ち、本発明は、基材原盤にポジ型フォト
レジストを塗布し、露光、現像して記録部を生じさせた
後、導電膜を形成し、電鋳、裏面研磨により光ディスク
スタンパーを製造する方法において、現像後に基材原盤
表面上に存する記録部以外の領域を、導電膜形成前にエ
ッチングにより処理することを特徴とする光ディスクス
タンパーの製造方法である。
That is, according to the present invention, an optical disc stamper is manufactured by applying a positive photoresist to a base material master, exposing and developing to form a recording portion, forming a conductive film, electroforming and polishing the back surface. In this method, an area other than the recording portion existing on the surface of the base substrate after development is processed by etching before forming the conductive film.

【0008】以下、本発明を更に詳細に説明する。Hereinafter, the present invention will be described in more detail.

【0009】本発明は、前記したエッチング処理以外
は、通常の方法を用いることができる。例えば、基材原
盤としてはガラス、セラミックス、シリコン等通常原盤
として使用されているものならば特に制限なく使用可能
である。
In the present invention, a usual method can be used except for the above-mentioned etching treatment. For example, the base material master can be used without any particular limitation as long as it is a glass, ceramics, silicon or the like usually used as a master.

【0010】本発明の特徴であるエッチング処理は次の
ようにして実施することができる。即ち、本発明でのエ
ッチング処理は、基材原盤にポジ型フォトレジストを塗
布し、露光、現像した後であって、導電膜を形成前に行
う。その際のエッチング処理としては、酸素プラズマ、
水素プラズマ、テトラフルオロメタンプラズマなどで行
うものである。好ましくは、エッチングを酸素プラズマ
で行った後、水素プラズマ又はテトラフルオロメタンプ
ラズマで行うことである。
The etching process, which is a feature of the present invention, can be performed as follows. That is, the etching treatment in the present invention is performed after a positive photoresist is applied to a base material master, exposed and developed, and before a conductive film is formed. As the etching process at that time, oxygen plasma,
This is performed using hydrogen plasma, tetrafluoromethane plasma, or the like. Preferably, the etching is performed with oxygen plasma and then with hydrogen plasma or tetrafluoromethane plasma.

【0011】このような方法で行うと初めに酸素プラズ
マがポジ型フォトレジストを選択的にエッチングしてし
まうことから、ポジ型フォトレジスト厚み、又は厚みバ
ラツキに係わらず、基材表面に一定かつ均一なエッチン
グを施すことができ、表面粗度をより均一にすることが
でき好ましい。
In this method, since the oxygen plasma selectively etches the positive photoresist at first, a uniform and uniform surface of the substrate is obtained irrespective of the thickness of the positive photoresist or its thickness variation. Etching can be performed, and the surface roughness can be made more uniform.

【0012】又、本発明でエッチングを行う基材原盤表
面の場所は、記録部以外の領域である。具体的には、一
般に同心円状に形成される記録部分のより外周側及び/
又はより内周側の部分であり、この部分の表面粗度を記
録部分より粗くすることが特徴である。表面粗度として
は0.005〜0.01μm(Rmax)が望ましい。
また、その際の処理方法としては、まず、基材表面の情
報記録パターン部のみをカバーで覆う。カバーの素材と
してはガラス、セラミック、シリコン、アルミニウムな
どの金属等が可能である。
Further, the location of the surface of the master substrate to be etched in the present invention is an area other than the recording section. Specifically, the outer peripheral side of the recording portion which is generally formed concentrically and / or
Alternatively, it is a part on the inner peripheral side, which is characterized in that the surface roughness of this part is made rougher than that of the recording part. The surface roughness is desirably 0.005 to 0.01 μm (R max ).
As a processing method at that time, first, only the information recording pattern portion on the surface of the base material is covered with a cover. As a material of the cover, a metal such as glass, ceramic, silicon, and aluminum can be used.

【0013】エッチングに酸素プラズマのみを用いた場
合、酸素はガラス等の無機物に対しエッチング力が弱い
ため、100〜1000ワットで10分〜60分エッチ
ングを行うことが望ましい。エッチングに水素プラズ
マ、テトラフルオロメタンプラズマなどを用いた場合、
水素、テトラフルオロメタンなどはガラス等の無機物に
対しエッチング力が強いため、100〜1000ワット
で5分〜10分エッチングを行うことが望ましい。
When only oxygen plasma is used for etching, it is desirable to perform etching at 100 to 1,000 watts for 10 to 60 minutes because oxygen has a weak etching power with respect to inorganic substances such as glass. When hydrogen plasma, tetrafluoromethane plasma, etc. are used for etching,
Since hydrogen, tetrafluoromethane, and the like have a strong etching power with respect to inorganic substances such as glass, it is desirable to perform etching at 100 to 1,000 watts for 5 minutes to 10 minutes.

【0014】また、エッチングに酸素プラズマを用い、
ガラス等の基材表面のポジ型フォトレジストを取り除い
た後に水素プラズマ、テトラフルオロメタンプラズマな
どを用い、基材表面をエッチングする場合、酸素はレジ
スト等の有機物に対しエッチング力が強く、水素、テト
ラフルオロメタンなどはガラス等の無機物に対しエッチ
ング力が強いため、各々100〜1000ワットで5分
〜10分エッチングを行うことが望ましい。
Further, oxygen plasma is used for etching,
When removing the positive photoresist on the surface of a substrate such as glass and then etching the substrate surface using hydrogen plasma, tetrafluoromethane plasma, etc., oxygen has a strong etching power for organic substances such as resist, and hydrogen and tetra Since fluoromethane and the like have a strong etching power with respect to inorganic substances such as glass, it is desirable to perform etching at 100 to 1000 watts for 5 to 10 minutes.

【0015】[0015]

【発明の効果】以上の通り本発明によれば、基材原盤の
記録部以外の領域を導電膜形成前にエッチング処理する
ことにより、この後に形成される導電膜と基材原盤との
密着性を向上させ、これを電鋳することによってスタン
パーの表面を荒らすこと無く、良質のスタンパーを歩留
まり良く安定して得ることができる。
As described above, according to the present invention, the area other than the recording portion of the base material master is etched before the formation of the conductive film, so that the adhesion between the conductive film formed thereafter and the base material master is improved. By performing electroforming on the stamper, a high quality stamper can be stably obtained with good yield without roughening the surface of the stamper.

【0016】[0016]

【実施例】以下、実施例により本発明を更に詳細に説明
するが、本発明はこれらに限定されるものではない。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the present invention is limited thereto.

【0017】実施例1 図1は本実施例の各工程をa)からg)へと段階的に示
した図である。まず、表面が精密に研磨された外径20
0φmm、厚み6mmtのガラス原盤1の全面を、ヘキ
サメチルジシラザンで表面処理を施した後、ポジ型フォ
トレジスト(シップレイ社製、商品名「AZ−135
0」)2を約150nmの厚さで塗布した。これを90
℃、30分間加熱後、中心より半径30mm〜60mm
まで露光を施し、アルカリ現像液(シップレイ社製、マ
イクロポジットディベロッパー)にてスピン現像を行
い、レジスト表面に記録部分を作成した。次いでこの記
録部分にカバー3を被せ、イオンエッチング装置にて酸
素プラズマで記録部分の内周、外周部のエッチングを下
記の条件で行い、表面粗度を変化させた。図1中、6の
点線はエッチングによって表面粗度が大きくなった部分
を示す。 ベース圧力 : 1×10−3Pa以下 ガス圧力 : 5.0 Pa エッチングパワー : 300W エッチング時間 : 15分 回転数 : 10rpm また、各種条件でエッチングを行った後の表面粗度の結
果について表1に示す。尚、表面粗度はタリステップ
(ランクテーラホプソンン社製)で測定した。
Embodiment 1 FIG. 1 is a diagram showing each step of this embodiment step by step from a) to g). First, the outer diameter 20 whose surface is precisely polished
After the entire surface of the glass master 1 having a diameter of 0 mm and a thickness of 6 mmt is subjected to surface treatment with hexamethyldisilazane, a positive photoresist (trade name "AZ-135" manufactured by Shipley Co., Ltd.)
0 ") 2 was applied to a thickness of about 150 nm. This is 90
℃, after heating for 30 minutes, radius 30mm-60mm from the center
Then, spin development was performed with an alkali developing solution (Shipley Corp., Microposit Developer) to form a recorded portion on the resist surface. Next, the recording portion was covered with a cover 3, and the inner and outer peripheral portions of the recording portion were etched with oxygen plasma using an ion etching apparatus under the following conditions to change the surface roughness. In FIG. 1, a dotted line 6 indicates a portion where the surface roughness is increased by etching. Base pressure: 1 × 10 −3 Pa or less Gas pressure: 5.0 Pa Etching power: 300 W Etching time: 15 minutes Rotation speed: 10 rpm In addition, Table 1 shows the results of surface roughness after etching under various conditions. Show. In addition, the surface roughness was measured by Taristep (manufactured by Rank Taylor Hopson Co., Ltd.).

【0018】[0018]

【表1】 次いで、酸素プラズマでエッチングした試料のカバー3
を取り去り、100℃、1時間加熱の後、スパッタ法に
よりニッケル導電膜4を約100nm付着させた。次い
で下記に示すニッケルメッキ槽条件及びメッキ条件にて
厚みが295〜300μmとなるように電鋳を行ったと
ころ、ガラス原盤とニッケル電鋳層5との剥がれによる
歩留まりを90%以上にすることができた。 メッキ槽条件 スルファミンサンニッケル濃度 :
450g/l ホウ酸 : 30g/l 塩化ニッケル : 5g/l メッキ条件 pH :
4.0 電流密度 : 10A/dm 液温度 : 55℃ 実施例2 まず、表面が精密に研磨された外径200φmm、厚み
6mmtのガラス原盤の全面にヘキサメチルジシラザン
で表面処理を施した後、ポジ型フォトレジスト(シップ
レイ社製、商品名「AZ−1350」)を約150nm
の厚さで塗布した。90℃、30分間加熱の後、中心よ
り半径30mm〜60mmまで露光を施し、アルッカリ
現像液(シップレイ社製、マイクロポジットディベロッ
パー)にてスピン現像を行い、レジスト表面に記録部分
を作成した。次いでこの記録部分にカバーを被せ、イオ
ンエッチング装置にて酸素プラズマ、次いで、テトラフ
ルオロメタンプラズマでガラス記録部分の内周、外周部
のエッチングを下記の条件で行い、表面粗度を変化させ
た。 ベース圧力 : 1×10−3Pa以下 ガス圧力 : 5.0 Pa エッチングパワー : 300W(酸素) : 300W(テトラフルオロメタン) エッチング時間 : 5分(酸素) : 5分(テトラフルオロメタン) 回転数 : 10rpm また、各種条件でエッチングを行った後の表面粗度の結
果について表2に示す。
[Table 1] Next, the cover 3 of the sample etched by oxygen plasma
Was removed, and after heating at 100 ° C. for 1 hour, a nickel conductive film 4 was deposited to a thickness of about 100 nm by a sputtering method. Next, electroforming was performed so that the thickness was 295 to 300 μm under the following nickel plating bath conditions and plating conditions, and the yield due to the separation between the glass master and the nickel electroformed layer 5 could be 90% or more. did it. Plating bath conditions Sulfaminsan nickel concentration:
450 g / l Boric acid: 30 g / l Nickel chloride: 5 g / l Plating conditions pH:
4.0 Current density: 10 A / dm 2 Liquid temperature: 55 ° C. Example 2 First, after a surface treatment with hexamethyldisilazane was performed on the entire surface of a precisely ground ground glass master having an outer diameter of 200 mm and a thickness of 6 mmt. , A positive photoresist (trade name “AZ-1350” manufactured by Shipley Co., Ltd.) of about 150 nm
Was applied. After heating at 90 ° C. for 30 minutes, the film was exposed to a radius of 30 mm to 60 mm from the center, and spin-developed with an Arkari developer (Shipley, Microposit Developer) to form a recorded portion on the resist surface. Next, the recording portion was covered with a cover, and the inner and outer peripheries of the glass recording portion were etched with an ion etching apparatus using oxygen plasma and then tetrafluoromethane plasma under the following conditions to change the surface roughness. Base pressure: 1 × 10 −3 Pa or less Gas pressure: 5.0 Pa Etching power: 300 W (oxygen): 300 W (tetrafluoromethane) Etching time: 5 minutes (oxygen): 5 minutes (tetrafluoromethane) Rotation speed: Table 2 shows the results of the surface roughness after etching under various conditions.

【0019】[0019]

【表2】 次いで酸素プラズマ、続いてテトラフルオロメタンプラ
ズマでエッチングした試料のカバーを取り去り、100
℃、1時間加熱の後、スパッタ法によりニッケル導電膜
を約100nm付着させた。その後、実施例1と同一の
ニッケルメッキ槽条件及びメッキ条件にて厚みが295
〜300μmとなるように電鋳を行ったところ、ガラス
原盤とニッケル電鋳層との剥がれによる歩留まりを99
%以上にすることができた。
[Table 2] The cover of the sample, which was then etched with oxygen plasma and then with tetrafluoromethane plasma, was removed and 100
After heating at 1 ° C. for 1 hour, a nickel conductive film was deposited to a thickness of about 100 nm by sputtering. Thereafter, the thickness was set to 295 under the same nickel plating bath conditions and plating conditions as in Example 1.
When the electroforming was performed to a thickness of about 300 μm, the yield due to the separation between the glass master and the nickel electroformed layer was reduced to 99 μm.
%.

【0020】比較例 図2は従来の方法での各工程をa)からf)へと段階的
に示した図である。まず、表面が精密に研磨された外径
200φmm、厚み6mmtのガラス原盤1の全面にヘ
キサメチルジシラザンで表面処理を施した後、ポジ型フ
ォトレジスト(シップレイ社製、商品名「AZ−135
0」)2を約150nmの厚さで塗布した。90℃、3
0分間加熱後、中心より半径30mm〜60mmまで露
光を施し、アルッカリ現像液(シップレイ社製:マイク
ロポジットディベロッパー)にてスピン現像を行い、レ
ジスト表面に記録部分を作成した。次いで100℃、1
時間加熱の後、スパッタ法によりニッケル導電膜を約1
00nm付着させた。その後、実施例1と同一のニッケ
ルメッキ槽条件及びメッキ条件にて厚みが295〜30
0μmとなるように電鋳を行ったところ、ガラス原盤と
ニッケル電鋳層4との剥がれによる歩留まりは55%で
あった。
Comparative Example FIG. 2 is a diagram showing each step in the conventional method step by step from a) to f). First, after a surface treatment with hexamethyldisilazane is applied to the entire surface of a glass master 1 having an outer diameter of 200 φmm and a thickness of 6 mmt whose surface has been precisely polished, a positive type photoresist (manufactured by Shipley Co., trade name “AZ-135”)
0 ") 2 was applied to a thickness of about 150 nm. 90 ° C, 3
After heating for 0 minute, the film was exposed to a radius of 30 mm to 60 mm from the center, and spin-developed with an Arkari developer (Shipley: Microposit Developer) to form a recorded portion on the resist surface. Then at 100 ° C, 1
After heating for about one hour, the nickel conductive film is
00 nm. Thereafter, the thickness was 295 to 30 under the same nickel plating bath conditions and plating conditions as in Example 1.
When electroforming was performed so as to have a thickness of 0 μm, the yield due to the separation between the glass master and the nickel electroformed layer 4 was 55%.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例によるスタンパーの製造工程を
示す図である。
FIG. 1 is a diagram illustrating a manufacturing process of a stamper according to an embodiment of the present invention.

【図2】従来のスタンパーの製造工程を示す図である。FIG. 2 is a view showing a conventional stamper manufacturing process.

【符号の説明】[Explanation of symbols]

1 : ガラス原盤 2 : ポジ型フォトレジスト 3 : エッチング防止用カバー 4 : ニッケル導電膜 5 : ニッケルスタンパー 6 : エッチングにより表面粗度が大きくなった部分 1: Glass master 2: Positive photoresist 3: Etching prevention cover 4: Nickel conductive film 5: Nickel stamper 6: Part where surface roughness is increased by etching

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基材原盤にポジ型フォトレジストを塗布
し、露光、現像して記録部を生じさせた後、その表面に
導電膜を形成し、電鋳、裏面研磨により光ディスクスタ
ンパーを製造する方法において、現像後に基材原盤表面
上に存する記録部以外の領域を、導電膜形成前に、酸素
プラズマでエッチングを行った後、水素プラズマ又はテ
トラフルオロメタンプラズマでエッチングを行うことに
より、前記領域の基材原盤を露出させることを特徴とす
る光ディスクスタンパーの製造方法。
An optical disk stamper is manufactured by applying a positive type photoresist to a base material master, exposing and developing to form a recording portion, forming a conductive film on the surface thereof, electroforming and polishing the back surface. In the method, a region other than the recording portion existing on the surface of the base material master after development is treated with oxygen before forming the conductive film.
After etching with plasma, hydrogen plasma or TE
Etching with trafluoromethane plasma
A method of manufacturing an optical disk stamper , wherein the base material master in the region is exposed.
JP27613691A 1991-09-30 1991-09-30 Manufacturing method of optical disk stamper Expired - Fee Related JP3225556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27613691A JP3225556B2 (en) 1991-09-30 1991-09-30 Manufacturing method of optical disk stamper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27613691A JP3225556B2 (en) 1991-09-30 1991-09-30 Manufacturing method of optical disk stamper

Publications (2)

Publication Number Publication Date
JPH0589534A JPH0589534A (en) 1993-04-09
JP3225556B2 true JP3225556B2 (en) 2001-11-05

Family

ID=17565283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27613691A Expired - Fee Related JP3225556B2 (en) 1991-09-30 1991-09-30 Manufacturing method of optical disk stamper

Country Status (1)

Country Link
JP (1) JP3225556B2 (en)

Also Published As

Publication number Publication date
JPH0589534A (en) 1993-04-09

Similar Documents

Publication Publication Date Title
JPS6126952A (en) Production of information carrier
JP2010017865A (en) Method for manufacturing mold for nanoimprinting
JP3225556B2 (en) Manufacturing method of optical disk stamper
JPH09138981A (en) Production of stamper for optical disk
JP2005038477A (en) Method for manufacturing stamper for magnetic recording medium and apparatus for manufacturing stamper for magnetic recording medium
JP2735569B2 (en) Manufacturing method of optical disc master
JPH09111499A (en) Method for forming pattern on ultrahard steel sheet material
JPH02149952A (en) Production of stamper
JP2005166105A (en) Manufacturing method of master disk for transferring irregular pattern and stamper for manufacturing information recording medium
JP3221627B2 (en) Manufacturing method of stamper for optical disk
JP4122802B2 (en) Stamper manufacturing method, master processing equipment
JP3078368B2 (en) Manufacturing method of mold for forming fine uneven pattern
JP2000040270A (en) Production of optical disk substrate
JP2003067983A (en) Stamper and its manufacturing method
JP3207560B2 (en) Polishing method for backside of stamper for optical disc.
JPS61275839A (en) Formation of photoresist film
JPH02298289A (en) Manufacture of nickel stamper for optical disk
JPH04351731A (en) Production of stamper
JP2004234732A (en) Stamper for optical disk substrate, and its manufacturing method
JPS62223838A (en) Production of stamper for optical memory
JPH06111384A (en) Method for reproducing stamper for optical disk
JP2001220692A (en) Method for manufacturing stamper and method for manufacturing optical recording medium
JPS61214247A (en) Production of stamper for recording medium
JPS61214159A (en) Production of metallic mold for recording medium
JPH06349115A (en) Production of stamper

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees