JP3222992B2 - Photovoltaic element - Google Patents

Photovoltaic element

Info

Publication number
JP3222992B2
JP3222992B2 JP17636693A JP17636693A JP3222992B2 JP 3222992 B2 JP3222992 B2 JP 3222992B2 JP 17636693 A JP17636693 A JP 17636693A JP 17636693 A JP17636693 A JP 17636693A JP 3222992 B2 JP3222992 B2 JP 3222992B2
Authority
JP
Japan
Prior art keywords
conductor
light
thin film
semiconductor
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17636693A
Other languages
Japanese (ja)
Other versions
JPH0738127A (en
Inventor
景一 佐野
聡 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP17636693A priority Critical patent/JP3222992B2/en
Publication of JPH0738127A publication Critical patent/JPH0738127A/en
Application granted granted Critical
Publication of JP3222992B2 publication Critical patent/JP3222992B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は光起電力素子に関し、
特にたとえば太陽電池や光センサなどに用いられる、光
起電力素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photovoltaic device,
In particular, the present invention relates to a photovoltaic element used for, for example, a solar cell or an optical sensor.

【0002】[0002]

【従来の技術】従来の光起電力素子の構造としては、P
型半導体/N型半導体構造,P型半導体/真性半導体/
N型半導体構造,透明電極/絶縁体/半導体構造等が用
いられていた。これらはいずれも、光発電のための光吸
収層は半導体であった。
2. Description of the Related Art A conventional photovoltaic element has a structure of P
Semiconductor / N-type semiconductor structure, P-type semiconductor / intrinsic semiconductor /
N-type semiconductor structures, transparent electrodes / insulators / semiconductor structures, etc., have been used. In all of these, the light absorbing layer for photovoltaic power generation was a semiconductor.

【0003】[0003]

【発明が解決しようとする課題】しかし、半導体は導電
体に比べて導電率が低いため、従来では光入射側に透明
電極または集電極を設ける必要があり、入射光の利用効
率を低下させたり素子構造を複雑にしていた。それゆえ
に、この発明の主たる目的は、簡単な構造で光電変換効
率を向上できる、光起電力素子を提供することである。
However, since the conductivity of a semiconductor is lower than that of a conductor, it is conventionally necessary to provide a transparent electrode or a collecting electrode on the light incident side, and the utilization efficiency of incident light is reduced. The device structure was complicated. Therefore, a main object of the present invention is to provide a photovoltaic element that can improve photoelectric conversion efficiency with a simple structure.

【0004】[0004]

【課題を解決するための手段】第1の発明は、光入射側
より、主に光吸収を呈する第1導電体、酸化物または窒
化物を含む絶縁体および第2導電体を積層して形成さ
、前記第1導電体の表面が光反射率を低減するような
凹凸形状に形成される、光起電力素子である。第2の発
明は、光入射側より、主に光吸収を呈する第1導電体、
半導体および第2導電体を積層して形成され、前記第1
導電体の表面が光反射率を低減するような凹凸形状に形
成される、光起電力素子である。
According to a first aspect of the present invention, a first conductor which mainly absorbs light, an insulator containing oxide or nitride, and a second conductor are laminated from the light incident side. Wherein the surface of the first conductor reduces light reflectance.
This is a photovoltaic element formed in an uneven shape . The second invention is a first conductor mainly exhibiting light absorption from the light incident side,
The first and second conductors are formed by laminating a semiconductor and a second conductor .
The surface of the conductor is shaped into an uneven shape to reduce light reflectance
It is a photovoltaic element formed.

【0005】[0005]

【作用】入射光は、光入射側の第1導電体で吸収され、
電子が励起される。光吸収の半分以上は第1導電体で行
われる。光を吸収するプロセスには、たとえば第1導電
体の自由電子のプラズマ振動による吸収や、自由電子や
内核電子の電子励起等が利用される。そして、第1導電
体中で励起された電子は、光から受け取った運動量,絶
縁体(または半導体)内部の電界,またはトンネル効果
等によって第2導電体に移動する。絶縁体(または半導
体)のバンドギャップと膜厚とは、電子の移動が起きや
すい値に設定される。また、第1導電体の仕事関数が、
第2導電体の仕事関数より大きいと、絶縁体(または半
導体)の内部には電子の移動を助ける方向に電界が生じ
るので、より効果的である。そして、第2導電体に到達
した電子は、電荷中性を満たすために、外部負荷を通っ
て第1導電体に戻る。すなわち光起電力が生じる。
The incident light is absorbed by the first conductor on the light incident side,
The electrons are excited. More than half of the light absorption is performed by the first conductor. In the process of absorbing light, for example, absorption of free electrons of the first conductor by plasma oscillation, electronic excitation of free electrons and inner core electrons, and the like are used. The electrons excited in the first conductor move to the second conductor due to momentum received from light, an electric field inside the insulator (or semiconductor), a tunnel effect, or the like. The band gap and the film thickness of the insulator (or the semiconductor) are set to values at which electrons easily move. The work function of the first conductor is
When the work function is larger than the work function of the second conductor, an electric field is generated inside the insulator (or semiconductor) in a direction that facilitates electron transfer, which is more effective. Then, the electrons that have reached the second conductor return to the first conductor through an external load to satisfy charge neutrality. That is, photovoltaic power is generated.

【0006】[0006]

【発明の効果】この発明によれば、光吸収層として、半
導体より導電率が高い導電体を用いることで、光入射側
に特に透明電極や集電極を設ける必要がなくなる。した
がって、簡単な構造で光電変換効率が高い光起電力素子
が得られる。この発明の上述の目的,その他の目的,特
徴および利点は、図面を参照して行う以下の実施例の詳
細な説明から一層明らかとなろう。
According to the present invention, by using a conductor having higher conductivity than a semiconductor as the light absorbing layer, it is not necessary to particularly provide a transparent electrode or a collecting electrode on the light incident side. Therefore, a photovoltaic element having a high photoelectric conversion efficiency with a simple structure can be obtained. The above and other objects, features and advantages of the present invention will become more apparent from the following detailed description of embodiments with reference to the drawings.

【0007】[0007]

【実施例】図1を参照して、この実施例の光起電力素子
10はガラス基板12を含む。ガラス基板12上には、
たとえば膜厚500Åのニッケルからなる薄膜導電体1
4,たとえば膜厚50Åの炭化シリコンからなる薄膜半
導体16,およびたとえば膜厚20000ÅのAlから
なる薄膜導電体18が、たとえば真空蒸着やスパッタリ
ング等によって順に積層形成される。入射光は、矢印A
に示すように、ガラス基板12側から与えられ、光起電
力は、薄膜導電体18上に形成される端子20と薄膜導
電体14上に形成される端子22とを通じて取り出され
る。
Referring to FIG. 1, a photovoltaic element 10 of this embodiment includes a glass substrate 12. On the glass substrate 12,
For example, a thin film conductor 1 made of nickel having a thickness of 500 °
4. A thin film semiconductor 16 made of silicon carbide having a thickness of, for example, 50 ° and a thin film conductor 18 made of Al having a thickness of, for example, 20,000 ° are sequentially laminated by, for example, vacuum deposition or sputtering. Incident light is indicated by arrow A
As shown in FIG. 5, the photoelectromotive force applied from the glass substrate 12 side is extracted through a terminal 20 formed on the thin-film conductor 18 and a terminal 22 formed on the thin-film conductor 14.

【0008】このように構成される光起電力素子10に
おいて、入射光は薄膜導電体14で吸収され、電子が励
起される。光吸収の半分以上は薄膜導電体14で行われ
る。光を吸収するプロセスには、たとえば薄膜導電体1
4の電子のプラズマ振動による吸収や、自由電子や内核
電子の電子励起等が利用される。薄膜導電体14中で励
起された電子は、光から受け取った運動量,薄膜半導体
16内部の電界,またはトンネル効果等によって薄膜導
電体18に移動する。薄膜半導体16のバンドギャップ
と膜厚とは、電子の移動が起きやすい値に設計される。
後述するように膜厚は、100Å程度が最適となる。ま
た、薄膜導電体14の仕事関数が、薄膜導電体18の仕
事関数より大きいと、薄膜半導体16の内部には電子の
移動を助ける方向に電界が生じるので、より効果的であ
る。そして、薄膜導電体18に到達した電子は、端子2
0,外部負荷(図示せず)および端子22を通って、薄
膜導電体14に戻る。すなわち光起電力が生じる。
[0008] In the photovoltaic element 10 configured as described above, incident light is absorbed by the thin film conductor 14 and electrons are excited. More than half of the light absorption is performed by the thin film conductor 14. The process of absorbing light includes, for example, a thin-film conductor 1
For example, absorption of electrons of No. 4 by plasma oscillation, and electronic excitation of free electrons and inner core electrons are used. The electrons excited in the thin-film conductor 14 move to the thin-film conductor 18 due to momentum received from light, an electric field inside the thin-film semiconductor 16, or a tunnel effect. The band gap and the film thickness of the thin film semiconductor 16 are designed to have values at which electrons easily move.
As described later, the optimum film thickness is about 100 °. When the work function of the thin film conductor 14 is larger than the work function of the thin film conductor 18, an electric field is generated inside the thin film semiconductor 16 in a direction that facilitates the movement of electrons, which is more effective. Then, the electrons that have reached the thin-film conductor 18 are
0, through the external load (not shown) and the terminal 22, returning to the thin film conductor 14. That is, photovoltaic power is generated.

【0009】この光起電力素子10によれば、波長40
0nmの入射光に対する光電変換効率は、炭化シリコン
からなる薄膜半導体16の膜厚によって図2のように変
化し、膜厚が100Å程度のときに最適であった。この
とき、光電変換効率も10%以上と高い値が得られた。
この薄膜半導体16の膜厚が、10Åよりも小さいとき
または200Åを超えたとき、光起電力は生じなかっ
た。したがって、薄膜半導体16の膜厚は、10Å以上
200Å以下に設定され得る。
According to the photovoltaic element 10, the wavelength 40
The photoelectric conversion efficiency with respect to the incident light of 0 nm changes as shown in FIG. 2 depending on the film thickness of the thin film semiconductor 16 made of silicon carbide, and was optimal when the film thickness was about 100 °. At this time, the photoelectric conversion efficiency was as high as 10% or more.
When the thickness of the thin film semiconductor 16 was smaller than 10 ° or exceeded 200 °, no photovoltaic power was generated. Therefore, the film thickness of the thin film semiconductor 16 can be set to 10 ° or more and 200 ° or less.

【0010】また、この実施例によれば、ガラス基板/
薄膜導電体/薄膜半導体/薄膜導電体という単純な構造
の光起電力素子10が得られる。形成プロセスも、たと
えばスパッタリング等を用いてインライン化でき、簡単
になる。なお、薄膜導電体14および18の材質は、上
述のようなニッケルやAlに限らず、光を吸収する導電
体であれば足りる。また、光反射率を低減するような無
反射コートを、薄膜導電体14の光入射側表面や薄膜導
電体14と薄膜半導体16との界面に形成してもよい。
さらに、薄膜導電体14の表面を、光反射率を低減する
ような凹凸形状に形成してもよい。
According to this embodiment, the glass substrate /
The photovoltaic element 10 having a simple structure of thin film conductor / thin film semiconductor / thin film conductor is obtained. The forming process can also be made inline by using, for example, sputtering or the like, and is simplified. Note that the material of the thin film conductors 14 and 18 is not limited to nickel and Al as described above, and any conductor that absorbs light is sufficient. Further, a non-reflection coating for reducing the light reflectance may be formed on the light incident side surface of the thin film conductor 14 or at the interface between the thin film conductor 14 and the thin film semiconductor 16.
Further, the surface of the thin-film conductor 14 may be formed in a concavo-convex shape so as to reduce the light reflectance.

【0011】図3を参照して、他の実施例の光起電力素
子30は、ガラス基板32を含む。ガラス基板32上に
は、たとえば膜厚2ミクロンの酸化錫からなる薄膜3
4,たとえば膜厚30ÅのPtからなる薄膜導電体3
6,たとえば膜厚50Åの非晶質窒化シリコンからなる
薄膜絶縁体38,およびたとえば膜厚10000ÅのA
lからなる薄膜導電体40が、たとえば熱CVD,スパ
ッタリング等によって順に積層形成される。薄膜34
は、光反射率を低減させるために、深さ0.05〜1ミ
クロン程度の凹凸を有するテクスチャ構造に形成され
る。したがって、薄膜導電体36の一方主面は凹凸形状
に形成される。また、薄膜絶縁体38の膜厚は、10Å
以上200Å以下に設定され得る。入射光は、矢印Bに
示すように、ガラス基板32側から与えられ、光起電力
は、薄膜導電体40上に形成される端子42と薄膜導電
体36上に形成される端子44とを通じて取り出され
る。
Referring to FIG. 3, a photovoltaic element 30 of another embodiment includes a glass substrate 32. On the glass substrate 32, a thin film 3 of tin oxide having a thickness of, for example, 2 μm is formed.
4, a thin-film conductor 3 made of Pt having a thickness of, for example, 30 °
6, a thin film insulator 38 of amorphous silicon nitride having a thickness of, for example, 50 °
The thin film conductors 40 made of l are sequentially laminated by, for example, thermal CVD, sputtering or the like. Thin film 34
Is formed in a texture structure having irregularities with a depth of about 0.05 to 1 micron in order to reduce the light reflectance. Therefore, one main surface of the thin film conductor 36 is formed in an uneven shape. The thickness of the thin film insulator 38 is 10 °
It can be set to more than 200 °. The incident light is given from the glass substrate 32 side as shown by the arrow B, and the photovoltaic power is extracted through a terminal 42 formed on the thin film conductor 40 and a terminal 44 formed on the thin film conductor 36. It is.

【0012】この実施例によれば、ガラス基板32と薄
膜導電体36との間にテクスチャ構造を持つ薄膜34を
挿入することによって、ガラス基板32と薄膜34との
間の光反射率を低減して光の利用効率を高めることがで
きる。また、この実施例では、薄膜34は高い導電性を
持つ必要がないので、キャリア数が少なく光透過率の高
い酸化錫を薄膜34に用いることができる。したがっ
て、薄膜34による光吸収ロスがない。
According to this embodiment, the light reflectance between the glass substrate 32 and the thin film 34 is reduced by inserting the thin film 34 having a texture structure between the glass substrate 32 and the thin film conductor 36. Light usage efficiency can be improved. In this embodiment, since the thin film 34 does not need to have high conductivity, tin oxide having a small number of carriers and high light transmittance can be used for the thin film 34. Therefore, there is no light absorption loss due to the thin film 34.

【0013】図4を参照して、他の実施例の光起電力素
子50は、ステンレスなどからなる金属基板52を含
む。金属基板52上には、たとえば膜厚100Åの非晶
質酸化シリコンからなる薄膜絶縁体54,およびたとえ
ば膜厚700Åのタングステンからなる薄膜導電体56
が、たとえば真空蒸着やスパッタリング等で順に積層形
成される。薄膜絶縁体54の膜厚は、10Å以上200
Å以下に設定され得る。入射光は、矢印Cに示すよう
に、ステンレス基板52側から与えられ、光起電力は、
薄膜導電体56上に形成される端子58と金属基板52
上に形成される端子60とを通じて取り出される。すな
わち、この実施例の場合も、光起電力素子10の構成要
素であるステンレス基板52および薄膜導電体56を取
り出し電極として利用できる。
Referring to FIG. 4, a photovoltaic element 50 of another embodiment includes a metal substrate 52 made of stainless steel or the like. On metal substrate 52, a thin-film insulator 54 made of, for example, amorphous silicon oxide having a thickness of 100 ° and a thin-film conductor 56 made of, for example, tungsten having a thickness of 700 ° are formed.
Are sequentially laminated by, for example, vacuum evaporation or sputtering. The film thickness of the thin-film insulator 54 is 10 ° or more and 200
得 る Can be set to: The incident light is given from the stainless steel substrate 52 side as shown by arrow C, and the photovoltaic power is
Terminal 58 formed on thin-film conductor 56 and metal substrate 52
It is taken out through the terminal 60 formed above. That is, also in the case of this embodiment, the stainless steel substrate 52 and the thin-film conductor 56, which are the components of the photovoltaic element 10, can be used as extraction electrodes.

【0014】この実施例のように、基板として金属基板
52を用いると構造はさらに単純になる。なお、光の反
射によるロスを少なくするために、金属基板52を凹凸
加工してもよい。これらの実施例の光起電力素子を、太
陽電池に用いれば、安価,大面積化に適し、高効率化が
可能となる。また、光センサとして用いれば、安価,大
面積化に適し、超高速応答が可能となる。
When the metal substrate 52 is used as the substrate as in this embodiment, the structure is further simplified. In addition, in order to reduce the loss due to the reflection of light, the metal substrate 52 may be subjected to uneven processing. If the photovoltaic elements of these embodiments are used in a solar cell, it is suitable for inexpensive, large-area, and high-efficiency. Also, when used as an optical sensor, it is suitable for inexpensive, large-area, and ultra-high-speed response.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施例を示す断面図である。FIG. 1 is a sectional view showing an embodiment of the present invention.

【図2】図1実施例における薄膜半導体(炭化シリコ
ン)の膜厚に対する光電変換効率特性を示すグラフであ
る。
FIG. 2 is a graph showing photoelectric conversion efficiency characteristics with respect to the thickness of a thin film semiconductor (silicon carbide) in the embodiment of FIG.

【図3】この発明の他の実施例を示す断面図である。FIG. 3 is a sectional view showing another embodiment of the present invention.

【図4】この発明のその他の実施例を示す断面図であ
る。
FIG. 4 is a cross-sectional view showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10,30,50 …光起電力素子 12,32 …ガラス基板 14,18,36,40,56 …薄膜導電体 16 …薄膜半導体 20,22,42,44,58,60 …端子 34 …薄膜 38,54 …薄膜絶縁体 52 …金属基板 10, 30, 50 photovoltaic elements 12, 32 glass substrates 14, 18, 36, 40, 56 thin film conductors 16 thin film semiconductors 20, 22, 42, 44, 58, 60 terminals 34 thin films 38 , 54 ... thin film insulator 52 ... metal substrate

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−222678(JP,A) 特開 昭57−13777(JP,A) 特開 平1−214078(JP,A) 特開 昭61−2374(JP,A) 特開 昭55−26623(JP,A) 特開 昭53−110393(JP,A) 特開 昭58−96780(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 31/00 - 31/119 H01L 49/00 - 49/02 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-62-222678 (JP, A) JP-A-57-13777 (JP, A) JP-A 1-214078 (JP, A) JP-A 61-222 2374 (JP, A) JP-A-55-26623 (JP, A) JP-A-53-110393 (JP, A) JP-A-58-96780 (JP, A) (58) Fields investigated (Int. 7 , DB name) H01L 31/00-31/119 H01L 49/00-49/02

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】光入射側より、主に光吸収を呈する第1導
電体、酸化物または窒化物を含む絶縁体および第2導電
体を積層して形成され、前記第1導電体の表面が光反射
率を低減するような凹凸形状に形成される、光起電力素
子。
1. A light emitting device comprising: a first conductor which mainly absorbs light; an insulator containing an oxide or a nitride; and a second conductor which are laminated from the light incident side , wherein the surface of the first conductor is formed. Light reflection
A photovoltaic element formed in a concavo-convex shape that reduces the efficiency.
【請求項2】光入射側より、主に光吸収を呈する第1導
電体、半導体および第2導電体を積層して形成され、前
記第1導電体の表面が光反射率を低減するような凹凸形
状に形成される、光起電力素子。
A first conductor, a semiconductor, and a second conductor which mainly absorb light from the light incident side are formed by lamination ;
The surface of the first conductor has an irregular shape such that the light reflectance is reduced.
A photovoltaic element formed in a shape .
【請求項3】前記絶縁体の膜厚が10Å以上200Å以
下に設定される、請求項1記載の光起電力素子。
3. The photovoltaic device according to claim 1, wherein said insulator has a thickness of not less than 10 ° and not more than 200 °.
【請求項4】前記半導体の膜厚が10Å以上200Å以
下に設定される、請求項2記載の光起電力素子。
4. The photovoltaic device according to claim 2, wherein said semiconductor has a thickness of not less than 10 ° and not more than 200 °.
【請求項5】光吸収の半分以上は前記第1導電体で行わ
れる、請求項1または2記載の光起電力素子。
5. The photovoltaic device according to claim 1, wherein at least half of light absorption is performed by said first conductor.
【請求項6】前記第1導電体の仕事関数が前記第2導電
体の仕事関数よりも大きい、請求項1または2記載の光
起電力素子。
6. The photovoltaic device according to claim 1, wherein a work function of the first conductor is larger than a work function of the second conductor.
JP17636693A 1993-07-16 1993-07-16 Photovoltaic element Expired - Lifetime JP3222992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17636693A JP3222992B2 (en) 1993-07-16 1993-07-16 Photovoltaic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17636693A JP3222992B2 (en) 1993-07-16 1993-07-16 Photovoltaic element

Publications (2)

Publication Number Publication Date
JPH0738127A JPH0738127A (en) 1995-02-07
JP3222992B2 true JP3222992B2 (en) 2001-10-29

Family

ID=16012369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17636693A Expired - Lifetime JP3222992B2 (en) 1993-07-16 1993-07-16 Photovoltaic element

Country Status (1)

Country Link
JP (1) JP3222992B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0974216A (en) * 1995-09-07 1997-03-18 Nippon Shokubai Co Ltd Organic solar battery

Also Published As

Publication number Publication date
JPH0738127A (en) 1995-02-07

Similar Documents

Publication Publication Date Title
US6187150B1 (en) Method for manufacturing thin film photovoltaic device
JP3203078B2 (en) Photovoltaic element
CA1091361A (en) Semiconductor device having an amorphous silicon active region
JP3349308B2 (en) Photovoltaic element
RU2435251C2 (en) Front electrode with layer of thin metal film and high-work function buffer layer for use in photovoltaic device and production method thereof
JP6722117B2 (en) Passivation of light receiving surface of solar cell using crystalline silicon
GB2034973A (en) Solar cell with multi-layer insulation
KR20070119702A (en) Solar cell
JPS59104185A (en) Photovoltaic semiconductor device spaced with reflector
EP2380203A1 (en) Solar cell
JP3469729B2 (en) Solar cell element
US4922218A (en) Photovoltaic device
JP3222992B2 (en) Photovoltaic element
JP2002319688A (en) Laminated solar battery
JP3133494B2 (en) Photovoltaic element
US20140251421A1 (en) Solar cell and method of manufacturing the same
US20110308584A1 (en) Surface treatment of transparent conductive material films for improvement of photovoltaic devices
JP2889728B2 (en) Photovoltaic device
JPH1041531A (en) Solar battery and its manufacture
JP3157948B2 (en) Solar cell and method of manufacturing the same
CN112466977B (en) Silicon heterojunction battery and manufacturing method thereof
JPH05145095A (en) Photovoltaic element
JPS6152992B2 (en)
JP2826227B2 (en) Photoelectric conversion element
JP3358164B2 (en) Method for manufacturing photovoltaic device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010807

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070817

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090817

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 12

EXPY Cancellation because of completion of term