JP3218906B2 - Thermistor element - Google Patents

Thermistor element

Info

Publication number
JP3218906B2
JP3218906B2 JP03826895A JP3826895A JP3218906B2 JP 3218906 B2 JP3218906 B2 JP 3218906B2 JP 03826895 A JP03826895 A JP 03826895A JP 3826895 A JP3826895 A JP 3826895A JP 3218906 B2 JP3218906 B2 JP 3218906B2
Authority
JP
Japan
Prior art keywords
electrode
copper
thermistor element
thermistor
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03826895A
Other languages
Japanese (ja)
Other versions
JPH08236309A (en
Inventor
亘 伊藤
正己 越村
弘明 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP03826895A priority Critical patent/JP3218906B2/en
Publication of JPH08236309A publication Critical patent/JPH08236309A/en
Application granted granted Critical
Publication of JP3218906B2 publication Critical patent/JP3218906B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Non-Adjustable Resistors (AREA)
  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はサーミスタ素子に係り、
特に、サーミスタを使用した温度センサ用のサーミスタ
素子の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermistor element,
In particular, it relates to an improvement of a thermistor element for a temperature sensor using a thermistor.

【0002】[0002]

【従来の技術】従来、温度センサ用のサーミスタ素子と
して、遷移金属酸化物を主成分とする焼結体よりなる負
特性サーミスタ素体の端面に電極を形成してなるものが
ある。このサーミスタ素子の電極形成方法としては、ペ
ースト状の電極形成材料をサーミスタ素体に対してスク
リーン印刷等により塗布し、これを適当な温度で焼成す
るのが一般的である。なお、電極形成材料は、MnNi
系又はMnNiCo系などのサーミスタ素体の構成材料
や、当該サーミスタ素子の用途によって使い分けられて
いるが、一般的には、電極機能を奏する金属粉に、サー
ミスタ素体との接合性を高めるためにガラスフリットや
酸化ビスマス等のビスマス化合物を添加した無機物にペ
ースト化するための有機ビヒクルを混合した電極ペース
トが使用されている。
2. Description of the Related Art Conventionally, as a thermistor element for a temperature sensor, there is a thermistor element formed by forming an electrode on an end face of a negative characteristic thermistor element made of a sintered body containing a transition metal oxide as a main component. As a method of forming an electrode of the thermistor element, it is common to apply a paste-like electrode forming material to a thermistor body by screen printing or the like and bake it at an appropriate temperature. The electrode forming material was MnNi.
Or the MnNiCo-based thermistor element or the like, and depending on the purpose of the thermistor element, is generally used depending on the purpose, the metal powder having an electrode function, in order to enhance the bonding with the thermistor element An electrode paste in which an organic vehicle for forming a paste into an inorganic substance to which a bismuth compound such as glass frit or bismuth oxide is added is used.

【0003】[0003]

【発明が解決しようとする課題】従来の電極形成材料を
用いて電極を形成したサーミスタ素子、特に、MnCo
Fe系材料で構成されるサーミスタ素体を用いたものに
ついては、電極の素体に対する接着強度が十分ではな
く、また、高温度雰囲気中で長時間使用した場合、抵抗
値の経時変化率が大きく、信頼性が低いという問題があ
った。
SUMMARY OF THE INVENTION A thermistor element in which an electrode is formed using a conventional electrode forming material, in particular, MnCo
In the case of using a thermistor element composed of an Fe-based material, the adhesive strength of the electrode to the element element is not sufficient, and when used for a long time in a high-temperature atmosphere, the rate of change of the resistance value with time is large. However, there is a problem that reliability is low.

【0004】本発明は上記従来の問題点を解決し、素体
に対する電極の接着強度が高く、高温度雰囲気中にて長
時間使用した場合においても、抵抗値の経時変化率が小
さく、信頼性の高いサーミスタ素子を提供することを目
的とする。
The present invention solves the above-mentioned conventional problems, has a high adhesive strength of the electrode to the element body, has a small rate of change in resistance with time even when used in a high-temperature atmosphere for a long time, and has a high reliability. It is intended to provide a thermistor element having a high value.

【0005】[0005]

【課題を解決するための手段】本発明のサーミスタ素子
は、遷移金属酸化物を主成分とする焼結体よりなる負特
性サーミスタ素体に、Ag,Au又はPtを主成分とす
る貴金属電極を形成してなるサーミスタ素子において、
電極形成材料が銅及び/又は銅化合物を含有し、銅及び
/又は銅化合物の含有量が電極形成材料中の無機物含有
量の20重量%以下であることを特徴とする。
The thermistor element of the present invention comprises a negative characteristic thermistor element made of a sintered body containing a transition metal oxide as a main component and containing Ag, Au or Pt as a main component.
Thermistor element formed by forming a noble metal electrode
The electrode forming material contains copper and / or a copper compound, and the content of copper and / or the copper compound is 20% by weight or less of the inorganic content in the electrode forming material.

【0006】求項のサーミスタ素子は、請求項1に
記載のサーミスタ素子において、サーミスタ素体は、M
n,Co及びFeの酸化物を主成分とする焼結体よりな
ることを特徴とする。
[0006] The thermistor element Motomeko 2, in the thermistor element <br/> claim 1, the thermistor element is, M
It is characterized by being made of a sintered body mainly composed of oxides of n, Co and Fe.

【0007】以下に本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

【0008】本発明において、電極形成材料中に銅化合
物を含有させる場合、銅化合物原料としては、CuO,
CuO,CuO・FeO3 ,CuAlなど
の銅酸化物や炭酸銅などの粉末を用いることができる。
また、銅を含有させる場合には、Cu粉末或いは銅と貴
金属との合金、例えばAg/Cu粉末などを用いること
ができる。
In the present invention, when a copper compound is contained in the electrode forming material, CuO,
Cu 2 O, may be used a powder of copper oxide or copper carbonate, such as CuO · Fe 2 O3, Cu 2 Al 2 O 4.
When copper is contained, Cu powder or an alloy of copper and a noble metal, for example, Ag / Cu powder can be used.

【0009】本発明に係る電極形成材料は、銅及び/又
は銅化合物を、空気中で焼成可能なAg,Au又はPt
を主成分とする貴金属粉末に、接合強度を得るためのガ
ラスフリットと共に混合し、更に有機ビヒクルを添加し
てペースト状とすることにより容易に調製することがで
きる。
[0009] The electrode forming material according to the present invention is obtained by sintering copper and / or a copper compound in air, Ag, Au or Pt.
Can be easily prepared by mixing a noble metal powder containing as a main component with a glass frit for obtaining bonding strength and further adding an organic vehicle to form a paste.

【0010】この場合、銅及び/又は銅化合物はその割
合が少な過ぎると、銅成分を配合したことによる本発明
の改良効果が十分に得られず、逆に多過ぎて、形成され
る電極中の含有量が20重量%を超えるようになると、
電極表面に銅による酸化物が表出し、電極に対するはん
だ付け性が低下する。このため、銅及び/又は銅化合物
は、電極形成材料の無機物含有量の20重量%以下、好
ましくは1〜10重量%とし、得られる電極中の含有量
が20重量%以下、好ましくは1〜10重量%となるよ
うに配合する。
In this case, if the proportion of copper and / or copper compound is too small, the improvement effect of the present invention obtained by blending the copper component cannot be sufficiently obtained. When the content of exceeds 20% by weight,
Oxide due to copper is exposed on the electrode surface, and solderability to the electrode is reduced. For this reason, copper and / or a copper compound is preferably 20% by weight or less of the inorganic content of the electrode forming material.
Mashiku is 1 to 10 wt%, content of 20 wt% in the resulting electrode or less, preferably you blended so that 1 to 10 wt%.

【0011】なお、電極形成材料中の無機物成分のう
ち、Ag等の貴金属の含有量は60〜95重量%、ガラ
スフリットの含有量は1〜15重量%とするのが好まし
い。
It is preferable that, of the inorganic components in the electrode forming material, the content of a noble metal such as Ag is 60 to 95% by weight, and the content of the glass frit is 1 to 15% by weight.

【0012】一方、本発明のサーミスタ素子において、
サーミスタ素体を構成する遷移金属酸化物を主成分とす
る焼結体の遷移金属酸化物としては、一般に、Mn,C
o及びFeの酸化物を、Mn:Co:Fe=0〜60:
0〜70:0〜70(原子モル%)の割合で含むものが
採用される。
On the other hand, in the thermistor element of the present invention,
As a transition metal oxide of a sintered body mainly composed of a transition metal oxide constituting a thermistor body, Mn, C
O and Fe oxides are represented by Mn: Co: Fe = 0 to 60:
Those containing at a ratio of 0 to 70: 0 to 70 (atomic mol%) are employed.

【0013】本発明のサーミスタ素子は、前記組成の電
極形成材料をMnCoFe系サーミスタ素体の端面にス
クリーン印刷等により塗布した後、空気中にて、700
〜800℃の温度で5〜10分程度焼き付けて電極を形
成することにより、容易に作製される。
The thermistor element of the present invention is obtained by applying an electrode forming material having the above-mentioned composition to an end surface of a MnCoFe-based thermistor body by screen printing or the like, and then applying the same in air to 700 m.
It is easily manufactured by baking at a temperature of about 800 ° C. for about 5 to 10 minutes to form an electrode.

【0014】得られたサーミスタ素子は、電極の接合強
度が高く、しかも、高温度雰囲気中での長時間使用にお
いても抵抗値の経時変化率が小さいことから、温度セン
サ用サーミスタ素子等として、工業的に極めて有用であ
る。
The obtained thermistor element has a high electrode bonding strength and a small rate of change in resistance over time even in a long-time use in a high-temperature atmosphere. Is extremely useful.

【0015】[0015]

【作用】銅及び銅化合物は、サーミスタ素体を構成する
遷移金属酸化物、特にMn,Co,Fe等の元素と化合
物(スピネル系)を容易に形成することができ、また、
貴金属元素、特にAg,Au等と合金化しやすい。この
ため、本発明の構成とすることにより、電極中に含有さ
れる銅成分が電極とサーミスタ素体との界面近傍に遍在
し、化学的結合により電極付着強度を高めると共に、高
温度雰囲気中で長時間使用した場合にも抵抗値経時変化
率を小さいものとして信頼性を高めることができる。
The copper and the copper compound can easily form a transition metal oxide constituting the thermistor body, particularly a compound (spinel type) with elements such as Mn, Co, and Fe.
It is easy to alloy with noble metal elements, especially Ag, Au and the like. For this reason, by adopting the configuration of the present invention, the copper component contained in the electrode is ubiquitous in the vicinity of the interface between the electrode and the thermistor element, thereby increasing the electrode adhesion strength by chemical bonding and increasing the temperature in a high-temperature atmosphere. Therefore, even when the device is used for a long time, the rate of change of the resistance value with time can be reduced to enhance the reliability.

【0016】特に、本発明において、銅成分として銅或
いは銅合金を用いた場合には、貴金属との合金効果が得
易くなると共に、大気焼成により酸化してサーミスタ素
体との界面近傍に複合酸化物を形成し、電極との接合効
果を高めるという作用効果が得られる。
Particularly, in the present invention, when copper or a copper alloy is used as the copper component, an alloy effect with the noble metal is easily obtained, and the composite oxide is oxidized by baking in the air to form a composite oxide near the interface with the thermistor body. The effect of forming an object and enhancing the effect of bonding with the electrode can be obtained.

【0017】また、銅成分として銅化合物を用いた場合
には、サーミスタ素体との界面近傍に複合酸化物を安定
して形成し易く、化学的結合力が大きく、かつ、その接
合力にばらつきが少なくなるという作用効果が得られ
る。
Further, when a copper compound is used as the copper component, a composite oxide is easily formed stably near the interface with the thermistor body, the chemical bonding strength is large, and the bonding strength varies. Is obtained.

【0018】[0018]

【実施例】以下に実施例を挙げて本発明をより具体的に
説明する。
The present invention will be described more specifically with reference to the following examples.

【0019】実施例1 まず、市販のMn,Co,Feの各金属酸化物をMn:
Co:Fe=10:50:40(原子%)の組成比にな
るように配合し、ボールミルで湿式混合した後、スラリ
ーを乾燥した。その後、900℃の温度で仮焼し、この
仮焼粉をボールミルで再び湿式粉砕を行った後、そのス
ラリーを乾燥させた。次いで、ポリビニルアルコールを
バインダーとして添加混合し、所要量分取してブロック
状に加圧成形したものを1200℃で5時間焼成した。
このブロックから厚さ0.25mmのウェハをスライス
し、これに電極を形成した後、0.7mm×0.7mm
のチップ状に切断した。
Example 1 First, commercially available metal oxides of Mn, Co, and Fe were converted to Mn:
Co: Fe = 10: 50: 40 (atomic%) was blended so as to have a composition ratio, and the mixture was wet-mixed with a ball mill, and then the slurry was dried. Thereafter, the powder was calcined at a temperature of 900 ° C., and the calcined powder was again wet-pulverized by a ball mill, and then the slurry was dried. Next, polyvinyl alcohol was added and mixed as a binder, a required amount was fractionated, and a block-shaped pressure-formed product was fired at 1200 ° C. for 5 hours.
After slicing a 0.25 mm thick wafer from this block and forming electrodes on it, 0.7 mm x 0.7 mm
And cut into chips.

【0020】電極形成材料には、Ag粉末と有機ビヒク
ルを混合したAgペースト中にガラスフリットと、電極
形成材料中の無機物含有量に対するCuO含有率が、重
量%で1%(No. 1),2%(No. 2),5%(No.
3),10%(No. 4)となるようにCuO粉末を添加
したものを用いた。また、比較のため、CuO粉末を含
まないもの(No. 5)、或いは、CuOの代りにBi
を重量%で1%(No. 6),5%(No. 7)含有す
るものを用いた。なお、ガラスフリットにはホウ珪酸鉛
系のガラスを用い、その含有量を8重量%とした。
The electrode forming material includes a glass frit in an Ag paste obtained by mixing an Ag powder and an organic vehicle, and an electrode paste.
The CuO content relative to the inorganic content in the forming material was 1% (No. 1), 2% (No. 2), and 5% (No.
3) The one to which CuO powder was added so as to be 10% (No. 4) was used. Also, for comparison, a sample containing no CuO powder (No. 5) or Bi 2 instead of CuO was used.
O 3 1% by weight percent (No. 6), 5% (No. 7) was used containing. Note that lead borosilicate glass was used for the glass frit, and the content was 8% by weight.

【0021】これらの電極形成材料を上記チップに各々
塗布及び乾燥した後、720℃の温度で10分焼き付け
て電極を形成した。
Each of these electrode forming materials was applied to the above chips and dried, and then baked at a temperature of 720 ° C. for 10 minutes to form electrodes.

【0022】このようにして作製された各々のサーミス
タ素子に、はんだ付けによりリード線を接着して電極の
サーミスタ素体に対する接着強度を引張強度試験により
測定し、結果を図1に示した。
A lead wire was bonded to each of the thermistor elements thus manufactured by soldering, and the bonding strength of the electrode to the thermistor element was measured by a tensile strength test. The results are shown in FIG.

【0023】図1の結果から、電極中に銅化合物を含有
する本発明のサーミスタ素子は、従来のビスマス又はビ
スマス化合物を含有するものよりも2倍近く高い接合強
度を持つことが分かる。
From the results shown in FIG. 1, it can be seen that the thermistor element of the present invention containing a copper compound in the electrode has a bonding strength almost twice as high as that of a conventional element containing bismuth or a bismuth compound.

【0024】また、同様の素子にはんだ付けによりリー
ド線を接着し、その上から樹脂モールドを施し、温度セ
ンサ素子を作製した。これらを100℃の高温度雰囲気
中に放置した場合の抵抗値の経時変化率を調べ、結果を
図2〜8に示した。
Further, a lead wire was bonded to the same element by soldering, and a resin mold was applied thereon, thereby producing a temperature sensor element. When these were left in a high-temperature atmosphere of 100 ° C., the rate of change in resistance over time was examined. The results are shown in FIGS.

【0025】図2〜8より、本発明の素子は従来の素子
に比べて、高温度雰囲気中に放置したときの抵抗値経時
変化率が小さく、信頼性に優れていることが分かる。特
に、CuOを5重量%添加したものは、従来のものに比
べると、抵抗値経時変化率が20分の1以下と極めて良
好な結果が得られた。なお、これらの素子は、いずれも
サーミスタ材料本来の抵抗率、B定数などの電気的特性
を示した。
2 to 8, it can be seen that the device of the present invention has a smaller rate of change with time in resistance value when left in a high-temperature atmosphere and is more excellent in reliability than the conventional device. In particular, when CuO was added in an amount of 5% by weight, a very good result was obtained, in which the rate of change of the resistance value with time was 1/20 or less as compared with the conventional one. Note that each of these elements exhibited electrical characteristics such as the resistivity and the B constant inherent to the thermistor material.

【0026】更に、CuOを無機物含有量に対して2重
量%含有する電極形成材料を用いて作製した素子におい
て、素体と電極との界面付近の断面に対して、エネルギ
ー分散型X線分析装置を用いて元素分析を行った結果を
図9に示す。この元素分析は、ある領域内で、ある特定
元素が、重量%でどのくらいの割合で含有されているか
を測定したものである。図9より、電極中の銅成分は、
電極と素体との界面付近に遍在していることが分かる。
Further, in a device manufactured using an electrode forming material containing 2% by weight of CuO with respect to the inorganic content , an energy dispersive X-ray analyzer is used for a cross section near the interface between the element body and the electrode. FIG. 9 shows the results of elemental analysis performed using. This elemental analysis measures the percentage by weight of a specific element contained in a certain region. From FIG. 9, the copper component in the electrode is:
It can be seen that it is ubiquitous near the interface between the electrode and the element.

【0027】実施例2 実施例1において、電極形成材料として、CuOの代り
にCu粉末を表1に示す割合で含有するものを用いたこ
と以外は同様にしてサーミスタ素子を作製し、得られた
サーミスタ素子の電極の接着強度及び100℃の高温度
雰囲気中で1000時間放置した場合の抵抗値の変化率
を調べ、結果を表1に示した。なお、表1には、Cu無
添加のもの(実施例1のNo. 5)の結果も併記した。
Example 2 A thermistor element was prepared and obtained in the same manner as in Example 1, except that a material containing Cu powder in the ratio shown in Table 1 was used instead of CuO as an electrode forming material. The adhesive strength of the electrodes of the thermistor element and the rate of change of the resistance value when left in an atmosphere at a high temperature of 100 ° C. for 1000 hours were examined. The results are shown in Table 1. Table 1 also shows the results for the case where no Cu was added (No. 5 of Example 1).

【0028】[0028]

【表1】 [Table 1]

【0029】実施例3 実施例1において、電極材料として、CuOと更にCu
を表2に示す割合で含有するものを用いたこと以外は同
様にしてサーミスタ素子を作製し、得られたサーミスタ
素子の電極の接着強度及び100℃の高温度雰囲気中で
1000時間放置した場合の抵抗値の変化率を調べ、結
果を表2に示した。なお、表2には、Cu無添加のもの
(実施例1のNo. 5)の結果も併記した。
Example 3 In Example 1, CuO and further Cu were used as electrode materials.
Was prepared in the same manner except that the element containing the thermistor at the ratio shown in Table 2 was used, and the adhesive strength of the electrode of the obtained thermistor element and the case where the electrode was left for 1000 hours in a high-temperature atmosphere of 100 ° C. The rate of change of the resistance value was examined, and the results are shown in Table 2. Table 2 also shows the results for the case where no Cu was added (No. 5 of Example 1).

【0030】[0030]

【表2】 [Table 2]

【0031】表1,2から、電極形成材料中に、Cu或
いは、CuとCuOを配合することによっても、素体に
対する電極の接着強度を高め、高温度雰囲気で使用した
際の抵抗値の経時変化率を小さくすることができること
が明らかである。
From Tables 1 and 2, it can be seen that, by mixing Cu or Cu and CuO into the electrode forming material, the adhesive strength of the electrode to the element body was increased, and the resistance value of the electrode when used in a high-temperature atmosphere was measured over time. It is clear that the rate of change can be reduced.

【0032】[0032]

【発明の効果】以上詳述した通り、本発明のサーミスタ
素子によれば、素体に対する電極の接着強度が高く、高
温度雰囲気中にて長時間使用した場合においても、抵抗
値の経時変化率が小さく、信頼性の高いサーミスタ素子
が提供される。
As described above in detail, according to the thermistor element of the present invention, the adhesive strength of the electrode to the element body is high, and even when the electrode is used in a high-temperature atmosphere for a long time, the rate of change of the resistance value with time. And a highly reliable thermistor element is provided.

【0033】特に、請求項のサーミスタ素子によれ
ば、より一層高特性のサーミスタ素子が提供される。
In particular, according to the thermistor element of the second aspect, a thermistor element having higher characteristics is provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1におけるCuO又はBi含有率
と電極の接着強度との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the CuO or Bi 2 O 3 content and the adhesive strength of an electrode in Example 1.

【図2】CuO含有率1%の場合の抵抗値経時変化率を
示すグラフである。
FIG. 2 is a graph showing the rate of change in resistance over time when the CuO content is 1%.

【図3】CuO含有率2%の場合の抵抗値経時変化率を
示すグラフである。
FIG. 3 is a graph showing the rate of change of resistance with time when the CuO content is 2%.

【図4】CuO含有率5%の場合の抵抗値経時変化率を
示すグラフである。
FIG. 4 is a graph showing the rate of change with time of the resistance value when the CuO content is 5%.

【図5】CuO含有率10%の場合の抵抗値経時変化率
を示すグラフである。
FIG. 5 is a graph showing a change rate of a resistance value with time when the CuO content is 10%.

【図6】CuO及びBi含有なしの場合の抵抗値
経時変化率を示すグラフである。
FIG. 6 is a graph showing the rate of change of resistance with time when CuO and Bi 2 O 3 are not contained.

【図7】Bi含有率1%の場合の抵抗値経時変化
率を示すグラフである。
FIG. 7 is a graph showing a change rate of a resistance value with time when a Bi 2 O 3 content is 1%.

【図8】Bi含有率5%の場合の抵抗値経時変化
率を示すグラフである。
FIG. 8 is a graph showing a time-dependent change in resistance value when the Bi 2 O 3 content is 5%.

【図9】実施例1において、素体と電極との界面付近の
断面に対して、エネルギー分散型X線分析装置を用いて
元素分析を行った結果を示すグラフである。
FIG. 9 is a graph showing a result of performing elemental analysis on a cross section near an interface between an element body and an electrode using an energy dispersive X-ray analyzer in Example 1.

フロントページの続き (72)発明者 中島 弘明 埼玉県秩父郡横瀬町大字横瀬2270番地 三菱マテリアル株式会社電子技術研究所 内 (56)参考文献 特開 平2−143502(JP,A) 特開 平4−334001(JP,A) 特開 昭57−180112(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01C 7/02 - 7/22 Continuation of the front page (72) Inventor Hiroaki Nakajima 2270 Yokoze, Yokoze-cho, Chichibu-gun, Saitama Mitsubishi Materials Electronic Technology Laboratory (56) References JP-A-2-143502 (JP, A) JP-A-4 -334001 (JP, A) JP-A-57-180112 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01C 7/ 02-7/22

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 遷移金属酸化物を主成分とする焼結体よ
りなる負特性サーミスタ素体に、Ag,Au又はPtを
主成分とする貴金属電極を形成してなるサーミスタ素子
において、 電極形成材料が銅及び/又は銅化合物を含有し、 銅及び/又は銅化合物の含有量が電極形成材料中の無機
物含有量の20重量%以下である ことを特徴とするサー
ミスタ素子。
1. A sintered body containing a transition metal oxide as a main component.
The negative characteristic thermistor body, Ag, Au or Pt
Precious metals as main componentsThermistor element formed with electrodes
In, the electrode forming material is copperAnd / or copper compoundsContainsAnd When the content of copper and / or copper compound is inorganic in the electrode forming material
Not more than 20% by weight of the substance content Sir characterized by that
Mister element.
【請求項2】 請求項1に記載のサーミスタ素子におい
て、サーミスタ素体は、Mn,Co及びFeの酸化物を
主成分とする焼結体よりなることを特徴とするサーミス
タ素子。
2. The thermistor element according to claim 1, wherein the thermistor element is made of a sintered body containing oxides of Mn, Co and Fe as main components.
JP03826895A 1995-02-27 1995-02-27 Thermistor element Expired - Lifetime JP3218906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03826895A JP3218906B2 (en) 1995-02-27 1995-02-27 Thermistor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03826895A JP3218906B2 (en) 1995-02-27 1995-02-27 Thermistor element

Publications (2)

Publication Number Publication Date
JPH08236309A JPH08236309A (en) 1996-09-13
JP3218906B2 true JP3218906B2 (en) 2001-10-15

Family

ID=12520580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03826895A Expired - Lifetime JP3218906B2 (en) 1995-02-27 1995-02-27 Thermistor element

Country Status (1)

Country Link
JP (1) JP3218906B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3846378B2 (en) 2002-07-25 2006-11-15 株式会社村田製作所 Manufacturing method of negative characteristic thermistor
CN100395849C (en) * 2004-09-02 2008-06-18 中国科学院新疆理化技术研究所 Ternary system negative temperature coefficient thermosensitive resistance material and its producing method

Also Published As

Publication number Publication date
JPH08236309A (en) 1996-09-13

Similar Documents

Publication Publication Date Title
JP2002246207A (en) Voltage nonlinear resistor and porcelain composition
JP4244466B2 (en) Conductive paste and semiconductor ceramic electronic component using the same
JP6152481B2 (en) Conductive oxide sintered body, conductive member, gas sensor, piezoelectric element, and method of manufacturing piezoelectric element
JP3218906B2 (en) Thermistor element
JPH0955118A (en) Conductive paste and ceramic-layered capacitor
JP4904888B2 (en) Conductive paste and Mn-based semiconductor thermistor
JPH0822714A (en) Conductive paste and semiconductor ceramic component using the same
US5958597A (en) Ceramic electronic part
JP2000228302A (en) Zinc oxide based porcelain laminated member, its manufacture and zinc oxide varistor
JP2550630B2 (en) Copper paste for conductive film formation
JPH03129810A (en) Laminated type ceramic chip capacitor and manufacture thereof
JPH0589718A (en) Conductor paste
JPH0950904A (en) Electrically conductive paste and ntc thermistor using it
JP3336198B2 (en) Multilayer ceramic varistor
JP3650854B2 (en) Glass sealed thermistor for high temperature
WO2020213320A1 (en) Laminated varistor
JP3016560B2 (en) Method for manufacturing voltage non-linear resistor
JPH03263391A (en) Paste for copper thick-film conductor and copper thick-film circuit board
JPH05314811A (en) Ag-pd conductor paste
JP2899607B2 (en) Manufacturing method of chip type thermistor
JP3470285B2 (en) Manufacturing method of multilayer ceramic capacitor
JPH06223616A (en) Conductive paste composition
JPH06223617A (en) Conductive paste composition
JPH0536566A (en) Laminated ceramic component
JPH08222468A (en) Ceramic element and manufacture thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010710

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 12

EXPY Cancellation because of completion of term