JP3214978B2 - Purification equipment for groundwater contaminated with organochlorine compounds - Google Patents

Purification equipment for groundwater contaminated with organochlorine compounds

Info

Publication number
JP3214978B2
JP3214978B2 JP12697594A JP12697594A JP3214978B2 JP 3214978 B2 JP3214978 B2 JP 3214978B2 JP 12697594 A JP12697594 A JP 12697594A JP 12697594 A JP12697594 A JP 12697594A JP 3214978 B2 JP3214978 B2 JP 3214978B2
Authority
JP
Japan
Prior art keywords
groundwater
gas
organochlorine
compound
contaminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12697594A
Other languages
Japanese (ja)
Other versions
JPH07308660A (en
Inventor
酉作 三宅
正一 佐々木
清己 熊谷
登 竹井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP12697594A priority Critical patent/JP3214978B2/en
Publication of JPH07308660A publication Critical patent/JPH07308660A/en
Application granted granted Critical
Publication of JP3214978B2 publication Critical patent/JP3214978B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、機械工業、電子工業、
クリーニング業などの各種の産業において、脱脂や洗浄
剤として使用した後のトリクロロエチレン、1,1,1
−トリクロロエタン、テトラクロロエチレン、四塩化炭
素、1,1,2−トリクロロエタン、1,2−ジクロロ
エタンや、それらの生物分解生成物である1−1ジクロ
ロエチレン、1,2−シス−ジクロロエチレン、1,2
−トランス−ジクロロエチレン、揮発性有機塩素ガスな
どの有機塩素化合物によって汚染された地下水を浄化す
る有機塩素化合物汚染地下水の浄化処理設備に関する。
The present invention relates to a machine industry, an electronic industry,
In various industries such as the cleaning industry, trichloroethylene, 1,1,1
-Trichloroethane, tetrachloroethylene, carbon tetrachloride, 1,1,2-trichloroethane, 1,2-dichloroethane, and their biodegradation products, 1-1 dichloroethylene, 1,2-cis-dichloroethylene, 1,2
The present invention relates to a purification treatment facility for groundwater contaminated with an organochlorine compound, which purifies groundwater contaminated with an organochlorine compound such as trans-dichloroethylene and volatile organic chlorine gas.

【0002】[0002]

【従来の技術】上述のような産業地域では、その敷地や
近辺の土壌が廃液中の有害物質である有機塩素化合物に
よって汚染され、その有機塩素化合物が、地下水中に染
み込んでいき、地下水を汚染することになる。
2. Description of the Related Art In an industrial area as described above, the site or nearby soil is contaminated with an organochlorine compound, which is a harmful substance in a waste liquid, and the organochlorine compound permeates groundwater and contaminates the groundwater. Will do.

【0003】このような汚染地下水を浄化するものとし
て、従来、実開平5−26179号公報に開示されるよ
うに、曝気処理槽に汚染地下水を供給して曝気処理し、
地下水から有機塩素化合物含有ガスを気液分離し、その
有機塩素化合物含有ガスを所定の温度にしてから活性炭
素繊維製吸着材を備えた溶剤回収装置に供給し、有機塩
素化合物を活性炭素繊維製吸着材に吸着させ、しかる後
に、活性炭素繊維製吸着材に過熱水蒸気を供給し、吸着
した有機塩素化合物を熱脱着して回収し、汚染した地下
水を浄化するようにしたものがあった。
As a method for purifying such contaminated groundwater, conventionally, as disclosed in Japanese Utility Model Laid-Open No. 5-26179, contaminated groundwater is supplied to an aeration tank to perform aeration.
The gas containing organochlorine compounds is separated from groundwater by gas-liquid separation, and the gas containing organochlorine compounds is heated to a predetermined temperature, and then supplied to a solvent recovery device equipped with an adsorbent made of activated carbon fiber, and the organochlorine compound is made of activated carbon fiber. In some cases, the adsorbent is adsorbed, and after that, superheated steam is supplied to the adsorbent made of activated carbon fiber, the adsorbed organic chlorine compound is thermally desorbed and recovered, and contaminated groundwater is purified.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来例
の場合に、熱脱着した有機塩素化合物を回収した後に、
その有機塩素化合物を別途無害化処理しなければならな
いなど、未だ改善の余地があった。
However, in the case of the conventional example, after recovering the thermally desorbed organic chlorine compound,
There is still room for improvement, such as the need to detoxify the organochlorine compound separately.

【0005】本発明は、このような事情に鑑みてなされ
たものであって、請求項1に係る発明の有機塩素化合物
汚染地下水の浄化処理設備は、地下水中の有機塩素化合
物を効率良く回収して無害化処理できるようにするとと
もに経済性を向上できるようにすることを目的とし、そ
して、請求項2に係る発明の有機塩素化合物汚染地下水
の浄化処理設備は、構成を小型化するとともに経済性を
向上できるようにすることを目的とする。
[0005] The present invention has been made in view of such circumstances, and a purification treatment facility for groundwater contaminated with an organochlorine compound according to the first aspect of the present invention efficiently recovers the organochlorine compound in the groundwater. preparative When allow detoxifying Te
It is another object of the present invention to improve the economical efficiency, and to improve the economical efficiency of the purification treatment facility for groundwater contaminated with organochlorine compounds according to the invention of claim 2 by reducing the size of the structure. the shall be the purpose.

【0006】[0006]

【課題を解決するための手段】請求項1に係る発明の有
機塩素化合物汚染地下水の浄化処理設備は、上述のよう
な目的を達成するために、有機塩素化合物を含有した汚
染地下水を揚水する揚水装置と、汚染地下水を曝気処理
して有機塩素化合物を地下水から気液分離する曝気処理
槽と、地下水と分離された有機塩素化合物含有ガスを加
熱する加熱器と、加熱された有機塩素化合物含有ガスを
供給し、固体触媒と接触させて加熱分解する反応槽と、
その反応槽からの燃焼ガスを供給して塩素または/およ
び塩酸を無害化処理する無害化処理装置と、加熱器の前
段に備えられて反応槽からの燃焼ガスによって、反応槽
に供給する有機塩素化合物含有ガスを予熱する熱交換器
を備えて構成する。
According to a first aspect of the present invention, there is provided a purification apparatus for treating groundwater contaminated with an organic chlorine compound, which pumps contaminated groundwater containing an organic chlorine compound in order to achieve the above object. Equipment, an aeration tank for aeration of contaminated groundwater and gas-liquid separation of organic chlorine compounds from groundwater, a heater for heating the gas containing organic chlorine compounds separated from the groundwater, and a heated gas containing organic chlorine compounds , And a reaction tank that is heated and decomposed by contact with a solid catalyst;
A detoxification apparatus for detoxifying chlorine and / or hydrochloric acid by supplying a combustion gas from the reaction vessel, prior to the heater
The reaction tank is provided in the stage by the combustion gas from the reaction tank.
Exchanger for preheating gas containing organochlorine compounds to be supplied to the plant
And is configured.

【0007】また、請求項2に係る発明の有機塩素化合
物汚染地下水の浄化処理設備は、上述のような目的を達
成するために、請求項1に係る発明の有機塩素化合物汚
染地下水の浄化処理設備における曝気処理槽と加熱器と
の間に、曝気処理後の有機塩素化合物含有ガス中の有機
塩素化合物の濃度を高める濃縮装置を設けて構成する。
[0007] In order to achieve the above object, the purification equipment for purifying groundwater contaminated with organochlorine compounds according to the second aspect of the present invention has the following features. A concentrating device for increasing the concentration of the organic chlorine compound in the gas containing the organic chlorine compound after the aeration is provided between the aeration tank and the heater.

【0008】(削除)(Delete)

【0009】[0009]

【作用】請求項1に係る発明の有機塩素化合物汚染地下
水の浄化処理設備の構成によれば、有機塩素化合物を含
有した汚染地下水を揚水装置で汲み上げ、その汚染地下
水を曝気処理して有機塩素化合物を地下水と分離し、有
機塩素化合物含有ガスを加熱器で加熱し、その有機塩素
化合物含有ガスを反応槽に供給し、固体触媒と接触させ
て加熱分解し、分解生成された塩素または/および塩酸
を無害化処理装置で無害化処理し、有機塩素化合物によ
り汚染した地下水を浄化することができる。しかも、反
応槽から取り出される加熱分解後の高温の燃焼ガスの熱
エネルギーを利用して、反応槽に供給する有機塩素化合
物含有ガスを予熱するとともに、無害化処理装置に供給
される燃焼ガスの温度を下げることができる。
According to the construction of the facility for purifying organic chlorine compound-contaminated groundwater according to the first aspect of the present invention, the contaminated groundwater containing the organic chlorine compound is pumped up by a water pump, and the contaminated groundwater is subjected to aeration treatment to form the organic chlorine compound. Is separated from groundwater, the organic chlorine compound-containing gas is heated by a heater, the organic chlorine compound-containing gas is supplied to a reaction tank, and is contacted with a solid catalyst to be thermally decomposed. Can be detoxified by a detoxification apparatus to purify groundwater contaminated with organic chlorine compounds. Moreover, anti
Heat of high temperature combustion gas after pyrolysis taken out of reactor
Organic chlorinated compounds supplied to the reaction tank using energy
Preheats gas containing substances and supplies it to detoxification equipment
The temperature of the combustion gas to be discharged can be reduced.

【0010】また、請求項2に係る発明の有機塩素化合
物汚染地下水の浄化処理設備の構成によれば、地下水と
分離された有機塩素化合物含有ガスの濃度を濃縮装置で
高くしてから反応槽に供給することができる。
Further, according to the configuration of the purification equipment for organic chlorine compound-contaminated groundwater according to the second aspect of the present invention, the concentration of the organic chlorine compound-containing gas separated from the groundwater is increased by the concentrator, and then the gas is supplied to the reaction tank. Can be supplied.

【0011】(削除)(Delete)

【0012】[0012]

【実施例】次に、本発明の実施例を図面に基づいて詳細
に説明する。
Next, an embodiment of the present invention will be described in detail with reference to the drawings.

【0013】図1は、有機塩素化合物汚染地下水の浄化
処理設備の実施例を示すフローシートであり、この図に
おいて、地下水揚水のために掘削された井戸1内に、汚
染地下水を揚水する揚水装置としての井戸ポンプ2が投
入されている。揚水装置としては、地下水中に投入する
タイプに限らず、地上側に設置して配管を介して揚水す
るタイプのポンプを使用するなど各種のものが使用でき
る。
FIG. 1 is a flow sheet showing an embodiment of a purification system for groundwater contaminated with an organochlorine compound. In this figure, a pumping apparatus for pumping contaminated groundwater into a well 1 drilled for pumping groundwater. The well pump 2 is supplied. The pumping device is not limited to the type that is put into the underground water, and various types can be used, such as a pump that is installed on the ground side and pumps up through piping.

【0014】井戸ポンプ2に、流量制御弁4が介装され
た給水管5を介して曝気処理槽6が接続されている。ま
た、井戸1内には液面計3が設置されており、当該液面
計3と流量制御弁4とが計装的に接続されており、井戸
1内の液面に応じて流量を調節し、井戸ポンプ2の空引
き運転を回避できるようになっている。なお、図示しな
いが給水管5には流量計が介装されており、給水管5内
の流量が監視できるようになっている。
An aeration tank 6 is connected to the well pump 2 via a water supply pipe 5 in which a flow control valve 4 is interposed. A level gauge 3 is installed in the well 1, and the level gauge 3 and the flow control valve 4 are instrumentally connected to adjust the flow rate according to the level in the well 1. In addition, the well pump 2 can avoid the idle operation. Although not shown, a flow meter is interposed in the water supply pipe 5 so that the flow rate in the water supply pipe 5 can be monitored.

【0015】曝気処理槽6内には、ラシヒリング、テラ
レットパッキンなどの充填材7が充填され、その曝気処
理槽6の下部に、処理水の排水管8と給気用のブロワー
9とが接続され、汚染地下水を曝気処理して有機塩素化
合物を気体中に移行させ、地下水と気液分離するように
構成されている。曝気処理により有機塩素化合物が分離
された後の処理水は、冷却水、洗浄水などの工業用水と
か農業用水などに利用され、また、消毒殺菌して飲料水
などにも利用される。地盤沈下の虞が有るような箇所で
は、地下に戻す場合もある。
The aeration tank 6 is filled with a filler 7 such as Raschig ring or teralet packing, and a drainage pipe 8 for treated water and a blower 9 for supplying air are connected to the lower part of the aeration tank 6. The contaminated groundwater is aerated to transfer the organochlorine compound into a gas and separate the gas from the groundwater. The treated water from which the organochlorine compounds have been separated by aeration treatment is used for industrial water such as cooling water and washing water or agricultural water, and is also used for drinking water after being disinfected and sterilized. In places where there is a risk of land subsidence, it may be returned to the underground.

【0016】曝気処理槽6の上部と、有機塩素化合物を
吸着する濃縮装置10とが第1の配管11を介して接続
されている。濃縮装置10には、吸着した有機塩素化合
物を熱脱着するために高温の空気を供給する高温空気供
給管12が接続され、また、有機塩素化合物を吸着除去
した後のガスを大気放出する排気管13と、高温空気に
より熱脱着されて濃度が高くなった有機塩素化合物含有
ガスを排出する第2の配管14が接続されている。
An upper portion of the aeration tank 6 and a concentrating device 10 for adsorbing an organic chlorine compound are connected via a first pipe 11. The concentrating device 10 is connected to a high-temperature air supply pipe 12 for supplying high-temperature air for thermally desorbing the adsorbed organic chlorine compound, and an exhaust pipe for releasing the gas after adsorbing and removing the organic chlorine compound to the atmosphere. 13 and a second pipe 14 for discharging an organic chlorine compound-containing gas whose concentration has been increased by thermal desorption with high-temperature air.

【0017】濃縮装置10は、ハニカム状の粒状活性炭
や活性炭素繊維などの活性炭素材シートを円筒状に成型
し、その円筒体10aを回転軸10bに取り付けて駆動
回転させ、吸着域と脱着域とが形成されるように構成
し、円筒体10aを回転させながら、回転軸芯方向の一
方の一部から曝気処理後の有機塩素化合物含有ガスを供
給して有機塩素化合物を吸着除去した後のガスを大気放
出し、別の部分から加熱空気を供給して、吸着した有機
塩素化合物を熱脱着して取り出すようになっている。
The concentrating apparatus 10 forms an activated carbon material sheet such as honeycomb-shaped granular activated carbon or activated carbon fiber into a cylindrical shape, and attaches the cylindrical body 10a to a rotating shaft 10b to drive and rotate it. Is formed, and while the cylindrical body 10a is rotated, the gas after the organic chlorine compound is adsorbed and removed by supplying the gas containing the organic chlorine compound after the aeration treatment from one part in the rotation axis direction. Is released to the atmosphere, and heated air is supplied from another portion to thermally desorb and remove the adsorbed organic chlorine compound.

【0018】第2の配管14に第1の熱交換器15が接
続されるとともに、その第1の熱交換器15に、第3の
配管16を介して、電気ヒータ17による第2の熱交換
器18で構成された加熱器19が接続され、更に、第2
の熱交換器18に、第4の配管20を介して、チタン−
珪素系複合触媒より成る固体触媒21を充填した反応槽
22が接続されている。
A first heat exchanger 15 is connected to the second pipe 14 and a second heat exchange by an electric heater 17 is connected to the first heat exchanger 15 via a third pipe 16. A heater 19 constituted by a heater 18 is connected, and further, a second
Through a fourth pipe 20 to a heat exchanger 18 of
A reaction tank 22 filled with a solid catalyst 21 made of a silicon-based composite catalyst is connected.

【0019】反応槽22と前記第1の熱交換器15とが
第5の配管23を介して接続されるとともに、その第1
の熱交換器15と無害化処理装置24とが第6の配管2
5を介して接続されている。図示しないが、第4の配管
20の反応槽22からの燃焼排ガスの出口箇所に、そこ
での燃焼排ガスの温度を測定する温度センサが設けら
れ、その温度センサと電気ヒータ17のコントローラと
が接続され、例えば、燃焼排ガスの出口温度が 350℃な
どの設定温度に維持されるように電気ヒータ17をON
−OFF制御するように構成されている。
The reaction tank 22 and the first heat exchanger 15 are connected via a fifth pipe 23,
The heat exchanger 15 and the detoxifying device 24 are connected to the sixth pipe 2
5 are connected. Although not shown, a temperature sensor for measuring the temperature of the combustion exhaust gas at the outlet of the combustion exhaust gas from the reaction tank 22 of the fourth pipe 20 is provided, and the temperature sensor and the controller of the electric heater 17 are connected. For example, the electric heater 17 is turned on so that the outlet temperature of the combustion exhaust gas is maintained at a set temperature such as 350 ° C.
It is configured to perform -OFF control.

【0020】上記構成により、揚水されてからの曝気処
理によって地下水から分離された有機塩素化合物含有ガ
スを濃縮装置10により濃縮し、第1の熱交換器15に
よって反応槽22からの燃焼ガスにより予熱し、また、
第2の熱交換器18により電気ヒータ17で加熱し、更
に、反応槽22において、固体触媒21との接触により
水蒸気の存在下で加熱分解し、そこで分解生成された塩
素ガスまたは/および塩酸を第1の熱交換器15で冷却
することにより、例えば、90〜 100℃の結露を生じない
程度の温度にして無害化処理装置24に供給するように
なっている。
With the above structure, the gas containing organochlorine compounds separated from the groundwater by the aeration treatment after being pumped is concentrated by the concentrator 10, and preheated by the first heat exchanger 15 by the combustion gas from the reaction tank 22. And also
Heated by the electric heater 17 by the second heat exchanger 18, and furthermore, in the reaction tank 22, it is thermally decomposed in the presence of steam by contact with the solid catalyst 21. By cooling in the first heat exchanger 15, the temperature is reduced to a temperature at which dew condensation does not occur, for example, at 90 to 100 ° C., and the temperature is supplied to the detoxification treatment device 24.

【0021】前記無害化処理装置24では、石灰石が充
填されていて、その石灰石の層に塩素ガスまたは/およ
び塩酸を通すことにより塩を生成して吸収除去すること
により放流可能なpH範囲とし、しかる後に放流する。
In the detoxification treatment device 24, limestone is filled, and a chlorine gas or / and hydrochloric acid is passed through the limestone layer to generate a salt and absorb and remove the salt, thereby setting a pH range capable of being discharged. Release after a while.

【0022】前記曝気処理槽6から排出される曝気処理
後の有機塩素化合物含有ガス中には、曝気処理槽6に供
給される地下水の温度に対応した飽和湿度で水蒸気が含
有されており、第1の熱交換器15での予熱、ならび
に、第2の熱交換器18での加熱それぞれに伴い、有機
塩素化合物含有ガスの相対湿度は減少するものの、絶対
湿度としては変化が無く、反応槽22において、水蒸気
の存在下で加熱分解できるのである。なお、図1では曝
気処理槽6と第1の熱交換器15との間に濃縮装置10
を介装し、曝気処理槽6から流出する有機塩素化合物含
有ガス中の有機塩素化合物の濃度を高めているが、当該
濃縮装置10の設置を省略しても差し支えない。また、
加熱器19の上流側に、反応槽22の燃焼排ガスの熱を
利用する第1の熱交換器15が設定されているが、これ
も省略することができる。
The organic chlorine compound-containing gas discharged from the aeration treatment tank 6 after the aeration treatment contains water vapor at a saturation humidity corresponding to the temperature of the groundwater supplied to the aeration treatment tank 6. With the preheating in the first heat exchanger 15 and the heating in the second heat exchanger 18, the relative humidity of the organic chlorine compound-containing gas decreases, but the absolute humidity does not change, and the reaction tank 22 does not change. , It can be thermally decomposed in the presence of water vapor. In FIG. 1, the concentrator 10 is disposed between the aeration tank 6 and the first heat exchanger 15.
Is provided to increase the concentration of the organochlorine compound in the gas containing the organochlorine compound flowing out of the aeration treatment tank 6, but the installation of the concentrator 10 may be omitted. Also,
The first heat exchanger 15 that utilizes the heat of the combustion exhaust gas from the reaction tank 22 is set upstream of the heater 19, but this can also be omitted.

【0023】次に、実験結果について説明する。 (第1実験例) 汚染地下水が存在する箇所において井戸を掘削し、地下
水を揚水してから曝気処理し、地下水と分離した有機塩
素化合物含有ガスを、25リットルのチタン−珪素系複合
触媒より成る固体触媒を充填した反応槽内に、その出口
温度が 300℃に維持されるように電気ヒータを制御しな
がら1時間当りの空間速度(SV、以下同様)2000(50
m3/H)で供給して処理した。この有機塩素化合物含有ガ
スの反応槽の入口でのトリクロロエチレンの濃度は633p
pmであったが、出口でのトリクロロエチレンの濃度は 3
9.2ppmまで減少し、トリクロロエチレンの分解率は93.8
%であった。
Next, the experimental results will be described. (First Experimental Example) A well is excavated in a place where contaminated groundwater is present, the groundwater is pumped and then aerated, and the organic chlorine compound-containing gas separated from the groundwater is composed of 25 liters of a titanium-silicon composite catalyst. In the reactor filled with the solid catalyst, the space temperature per hour (SV, hereinafter the same) was controlled while controlling the electric heater so that the outlet temperature was maintained at 300 ° C.
m 3 / H). The concentration of trichlorethylene at the inlet of the reaction vessel for this gas containing organochlorine compounds was 633p
pm, but the concentration of trichlorethylene at the outlet was 3
Reduced to 9.2 ppm, the decomposition rate of trichlorethylene was 93.8
%Met.

【0024】(第2実験例) 1時間当りの空間速度を3000(75m3/H)とした以外は、
前述第1実験例と同様にして地下水を揚水して処理し
た。この有機塩素化合物含有ガスの反応槽の入口でのト
リクロロエチレンの濃度は503ppmであったが、出口での
トリクロロエチレンの濃度は 48.9ppmまで減少し、トリ
クロロエチレンの分解率は90.9%であった。
(Second Experimental Example) Except that the space velocity per hour was 3000 (75 m 3 / H),
Groundwater was pumped and treated in the same manner as in the first experimental example. The concentration of trichlorethylene at the inlet of the reaction vessel of this organic chlorine compound-containing gas was 503 ppm, but the concentration of trichlorethylene at the outlet was reduced to 48.9 ppm, and the decomposition rate of trichlorethylene was 90.9%.

【0025】(第3実験例) 反応槽からの出口温度が 350℃に維持されるように電気
ヒータを制御した以外は、前述第1実験例と同様にして
地下水を揚水して処理した。この有機塩素化合物含有ガ
スの反応槽の入口でのトリクロロエチレンの濃度は416p
pmであったが、出口でのトリクロロエチレンの濃度は0.
3ppmまで減少し、トリクロロエチレンの分解率は99.9%
であった。
(Third Experimental Example) Groundwater was pumped and treated in the same manner as in the first experimental example, except that the electric heater was controlled so that the outlet temperature from the reaction tank was maintained at 350 ° C. The concentration of trichlorethylene at the inlet of the reaction vessel of this gas containing organochlorine compounds was 416 p.
pm, but the concentration of trichlorethylene at the outlet was 0,0.
Reduced to 3 ppm, the decomposition rate of trichlorethylene is 99.9%
Met.

【0026】(第4実験例) 反応槽からの出口温度が 350℃に維持されるように電気
ヒータを制御するとともに、1時間当りの空間速度を30
00(75m3/H)とした以外は、前述第1実験例と同様にし
て地下水を揚水して処理した。この有機塩素化合物含有
ガスの反応槽の入口でのトリクロロエチレンの濃度は44
1ppmであったが、出口でのトリクロロエチレンの濃度は
1.5ppmまで減少し、トリクロロエチレンの分解率は99.7
%であった。
(Fourth Experimental Example) The electric heater was controlled so that the outlet temperature from the reactor was maintained at 350 ° C., and the space velocity per hour was reduced to 30 ° C.
Groundwater was pumped up and treated in the same manner as in the first experimental example, except that it was set to 00 (75 m 3 / H). The concentration of trichlorethylene at the inlet of the reaction vessel of this gas containing organochlorine compounds was 44
Although it was 1 ppm, the concentration of trichlorethylene at the outlet was
Reduced to 1.5 ppm, the decomposition rate of trichlorethylene was 99.7
%Met.

【0027】以上の結果から、固体触媒と接触させて加
熱分解することにより、有機塩素化合物を有効に分解除
去できることが明らかであり、そのうえ、反応槽からの
出口温度を 300℃よりも 350℃にする方が、分解率を大
幅に向上できることが明らかであった。この出口温度と
しては、 250〜 400℃の範囲にするのが望ましく、より
好適な範囲は 320〜 380℃である。出口温度が低いと反
応が悪く、逆に、出口温度が高いと、装置を構成する材
料の腐食が進行しやすくなったり、温度上昇に伴う分解
率がそれ程改善されず熱的に不経済になるという不都合
があるからである。また、空間速度としては、3000より
も2000に、すなわち、遅くした方が分解率を高くできる
ことが明らかであった。この空間速度としては、1600〜
2400の範囲にするのが望ましく、より好適な範囲は1800
〜2200である。例えば、空間速度を1600以下とすれば分
解率は更に上昇するという利点があるが、逆に装置規模
が大きくなるとともに、ランニングコストも上昇すると
いう欠点があり、欠点が利点を凌駕してしまいあまり得
策とは言えない。
From the above results, it is clear that the organochlorine compound can be effectively decomposed and removed by contacting with a solid catalyst and thermally decomposing, and furthermore, the outlet temperature from the reaction vessel is reduced from 350 ° C to 350 ° C. It was clear that the decomposition can greatly improve the decomposition rate. The outlet temperature is desirably in the range of 250 to 400 ° C, and a more preferable range is 320 to 380 ° C. If the outlet temperature is low, the reaction is poor. Conversely, if the outlet temperature is high, the corrosion of the material constituting the device is apt to progress, and the decomposition rate due to the temperature rise is not so much improved, and it is thermally uneconomical This is because there is an inconvenience. It was also clear that the space velocity was set to 2000 rather than 3000, that is, the slower the space velocity, the higher the decomposition rate. As this space velocity, 1600 ~
Desirably in the range of 2400, a more preferred range is 1800
~ 2200. For example, if the space velocity is 1600 or less, there is an advantage that the decomposition rate further increases, but on the contrary, there is a disadvantage that the apparatus scale becomes large, and the running cost also increases. Not a good idea.

【0028】反応槽22内に使用する固体触媒として
は、チタン−珪素系複合触媒に限らず、この種の用途に
従来から用いられている公知の触媒を使用することがで
き、例えば、チタン−ジルコニウム系複合触媒とかチタ
ン−珪素−ジルコニウム系複合触媒なども使用できる。
The solid catalyst used in the reaction tank 22 is not limited to a titanium-silicon composite catalyst, and may be a known catalyst conventionally used for this type of application. A zirconium-based composite catalyst or a titanium-silicon-zirconium-based composite catalyst can also be used.

【0029】また、上記実施例では、無害化処理装置2
4において、石灰石と接触させて塩素または/および塩
酸を無害化処理しているが、石灰石の代わりにカキ殻を
用いるとか、あるいは、水酸化ナトリウム水溶液、水酸
化カリウム水溶液、水酸化カルシウム水溶液、アンモニ
ア水溶液などの各種のアルカリ溶液と接触させて塩酸ヒ
ュームガス等を除去する際に用いられていた従来からの
公知の装置が採用できる。
In the above embodiment, the detoxifying apparatus 2
In No. 4, chlorine and / or hydrochloric acid are detoxified by contact with limestone, but oyster shells are used instead of limestone, or sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, calcium hydroxide aqueous solution, ammonia A conventionally known apparatus used for removing fume gas and the like by contacting with various alkaline solutions such as an aqueous solution can be employed.

【0030】上記加熱器19としては、電気ヒータ17
によるものに限らず、例えば、バーナで燃焼させた高温
ガスにより加熱するように構成するものでも良い。
As the heater 19, an electric heater 17 is used.
However, for example, a configuration in which heating is performed by high-temperature gas burned by a burner may be used.

【0031】前述濃縮装置10としては、例えば、活性
炭素材によるガス吸着用エレメントをフィルターとして
取り付けた吸着塔を並列状態で設置し、その一方の吸着
塔で吸着させているときに、他方の吸着塔で吸着した有
機塩素化合物を脱着するように交互に切換えるように構
成したものなど、各種のものが採用できる。
As the above-mentioned enrichment apparatus 10, for example, an adsorption tower having a gas adsorption element made of an activated carbon material attached as a filter is installed in parallel, and when one of the adsorption towers is adsorbing, the other adsorption tower is used. Various types can be employed, such as those configured to alternately switch so as to desorb the organic chlorine compounds adsorbed in step (1).

【0032】[0032]

【発明の効果】請求項1に係る発明の有機塩素化合物汚
染地下水の浄化処理設備によれば、有機塩素化合物を含
有した汚染地下水から有機塩素化合物含有ガスを気液分
離し、その有機塩素化合物含有ガスを固体触媒との接触
により加熱分解し、分解生成された塩素または/および
塩酸を無害化処理装置で無害化処理するから、有機塩素
化合物を効率良く回収して無害化処理できるようになっ
た。そのうえ、反応槽からの高温の燃焼ガスの熱エネル
ギーを利用して反応槽に供給する有機塩素化合物含有ガ
スを予熱するから、加熱器を一層小型化できるとともに
電力消費量または燃料使用量を一層減少でき、一方、無
害化処理装置に供給される燃焼ガスの温度を下げること
ができて別途冷却装置を付加せずに済み、経済性を向上
できるようになった。
According to the apparatus for treating groundwater contaminated with an organic chlorine compound according to the first aspect of the present invention, a gas containing the organic chlorine compound is separated from the contaminated groundwater containing the organic chlorine compound by gas-liquid separation. The gas is thermally decomposed by contact with the solid catalyst, and the chlorine and / or hydrochloric acid generated by the decomposition is detoxified by the detoxification device, so that the organic chlorine compounds can be efficiently recovered and detoxified. . In addition, the thermal energy of the hot combustion gases from the reactor
Gas containing organic chlorine compounds supplied to the reaction tank using energy
Preheating the heater, so that the heater can be further downsized.
Power consumption or fuel consumption can be further reduced, while
Reducing the temperature of the combustion gas supplied to the detoxification equipment
Eliminates the need for a separate cooling device, improving economics
Now you can.

【0033】また、請求項2に係る発明の有機塩素化合
物汚染地下水の浄化処理設備によれば、地下水と分離さ
れた有機塩素化合物含有ガスの濃度を高くしてから反応
槽に供給するから、曝気処理後の有機塩素化合物含有ガ
スの容量に比べて反応槽に供給する有機塩素化合物含有
ガスの容量を減少でき、加熱器および反応槽のいずれを
も小型化できるとともに、加熱器として電気ヒータを使
用する場合には電力消費量を、バーナを使用する場合に
は燃料使用量をそれぞれ減少できて経済性を向上できる
ようになった。
Further, according to the second aspect of the present invention, the concentration of the gas containing the organic chlorine compound separated from the groundwater is increased before supplying the gas to the reaction tank. The capacity of the gas containing organic chlorine compounds supplied to the reaction tank can be reduced compared to the capacity of the gas containing organic chlorine compounds after treatment, and both the heater and the reaction tank can be downsized, and an electric heater is used as the heater When the burner is used, the power consumption can be reduced, and when the burner is used, the fuel consumption can be reduced, and the economy can be improved.

【0034】(削除)(Delete)

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る有機塩素化合物汚染地下水の浄化
処理設備の実施例を示すフローシートである。
FIG. 1 is a flow sheet showing an embodiment of a purification equipment for groundwater contaminated with an organochlorine compound according to the present invention.

【符号の説明】[Explanation of symbols]

2…揚水装置としての井戸ポンプ 6…曝気処理槽 10…濃縮装置 15…第1の熱交換器 19…加熱器 21…固体触媒 22…反応槽 24…無害化処理装置 2 ... Well pump as a pumping device 6 ... Aeration treatment tank 10 ... Concentrator 15 ... First heat exchanger 19 ... Heating device 21 ... Solid catalyst 22 ... Reaction tank 24 ... Detoxification treatment device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹井 登 東京都文京区本郷5丁目5番16号 オル ガノ株式会社内 (56)参考文献 特開 平5−92181(JP,A) 特開 平3−289973(JP,A) (58)調査した分野(Int.Cl.7,DB名) C02F 1/00 B01D 19/00 B01D 53/36 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Noboru Takei 5-6-116 Hongo, Bunkyo-ku, Tokyo Organo Corporation (56) References JP-A-5-92181 (JP, A) JP-A-3 −289973 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C02F 1/00 B01D 19/00 B01D 53/36

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 有機塩素化合物を含有した汚染地下水を
揚水する揚水装置と、 汚染地下水を曝気処理して有機塩素化合物を地下水から
気液分離する曝気処理槽と、 地下水と分離された有機塩素化合物含有ガスを加熱する
加熱器と、 加熱された有機塩素化合物含有ガスを供給し、固体触媒
と接触させて加熱分解する反応槽と、 前記反応槽からの燃焼ガスを供給して塩素または/およ
び塩酸を無害化処理する無害化処理装置と 前記加熱器の前段に備えられて前記反応槽からの燃焼ガ
スによって、前記反応槽に供給する有機塩素化合物含有
ガスを予熱する熱交換器と を備えたことを特徴とする有
機塩素化合物汚染地下水の浄化処理設備。
1. A pumping device for pumping contaminated groundwater containing an organochlorine compound, an aeration tank for aeration treatment of the contaminated groundwater and gas-liquid separation of the organochlorine compound from the groundwater, an organochlorine compound separated from the groundwater A heater for heating the contained gas, a reaction tank for supplying a heated organochlorine compound-containing gas and contacting it with a solid catalyst for thermal decomposition, and supplying a combustion gas from the reaction tank for chlorine and / or hydrochloric acid a detoxification apparatus for detoxifying, combustion gas from the reactor provided upstream of the heater
Containing organic chlorine compound supplied to the reaction tank
A facility for purifying groundwater contaminated with organochlorine compounds, comprising a heat exchanger for preheating gas .
【請求項2】 請求項1に記載の曝気処理槽と加熱器と
の間に、曝気処理後の有機塩素化合物含有ガス中の有機
塩素化合物の濃度を高める濃縮装置を設けてある有機塩
素化合物汚染地下水の浄化処理設備。
2. A method for contaminating an organochlorine compound, comprising a concentrator for increasing the concentration of an organochlorine compound in an organochlorine compound-containing gas after aeration treatment, between the aeration tank and the heater according to claim 1. Groundwater purification equipment.
JP12697594A 1994-05-16 1994-05-16 Purification equipment for groundwater contaminated with organochlorine compounds Expired - Fee Related JP3214978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12697594A JP3214978B2 (en) 1994-05-16 1994-05-16 Purification equipment for groundwater contaminated with organochlorine compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12697594A JP3214978B2 (en) 1994-05-16 1994-05-16 Purification equipment for groundwater contaminated with organochlorine compounds

Publications (2)

Publication Number Publication Date
JPH07308660A JPH07308660A (en) 1995-11-28
JP3214978B2 true JP3214978B2 (en) 2001-10-02

Family

ID=14948538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12697594A Expired - Fee Related JP3214978B2 (en) 1994-05-16 1994-05-16 Purification equipment for groundwater contaminated with organochlorine compounds

Country Status (1)

Country Link
JP (1) JP3214978B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8379081B2 (en) 2007-04-27 2013-02-19 Kabushiki Kaisha Toshiba Appearance inspection apparatus and appearance inspection method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5836203B2 (en) * 2012-06-14 2015-12-24 株式会社昭和 Treatment method of soil contaminated water with photocatalytic material
JP2014069162A (en) * 2012-10-01 2014-04-21 Shimizu Corp Purification treatment system of polluted under ground water
JP6393965B2 (en) * 2013-04-12 2018-09-26 東洋紡株式会社 Wastewater treatment system
JP6428992B2 (en) * 2013-04-12 2018-11-28 東洋紡株式会社 Wastewater treatment system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8379081B2 (en) 2007-04-27 2013-02-19 Kabushiki Kaisha Toshiba Appearance inspection apparatus and appearance inspection method

Also Published As

Publication number Publication date
JPH07308660A (en) 1995-11-28

Similar Documents

Publication Publication Date Title
EP0485787B1 (en) Treatment equipment of exhaust gas containing organic halogen compounds
US7537702B2 (en) Water purification system and modes of operation
JP2001515786A (en) Photocatalytic treatment system and method for contaminated media
CN111006226A (en) Incineration treatment system and incineration treatment method for chlorine-containing waste gas and waste liquid
JP3214978B2 (en) Purification equipment for groundwater contaminated with organochlorine compounds
CN215138426U (en) A VOCs exhaust treatment device for concentration variation is big
JP3626459B2 (en) Organohalogen compound processing apparatus and processing method thereof
CN109331565B (en) Method for recovering or pyrolyzing organic waste gas by composite adsorption microwave
JPH0576618A (en) Purification processing method of earth polluted with organic solvent and purification processing device
CN109331564B (en) Device for recovering or pyrolyzing organic waste gas by composite adsorption microwave
KR100424507B1 (en) Apparatus for destruction of volatile organic compounds
WO2006076849A1 (en) Cleaning process for converting a waste gas into an industrial organic waste gas capable of circulating utilization
JPH06238125A (en) Method of reducing flue gas from combustion process
JP4441162B2 (en) Organic exhaust gas treatment method and organic exhaust gas treatment apparatus
JP2775789B2 (en) Wastewater treatment method
JP5861547B2 (en) Wastewater treatment system
JPH11156189A (en) Exhaust gas treatment method
JP2004000916A (en) Decomposition device for material to be decomposed and decomposition method therefor
JP3499782B2 (en) Method and apparatus for removing trace organic compounds in water
JP2006247580A (en) Recycling method of adsorbent and purification apparatus for photodegradable chloro substance-containing fluid
JP2001137837A (en) Treating device for water containing volatile organic material, and non-polluting treating device for groundwater
CN216023924U (en) Powdered activated carbon high-temperature thermal regeneration waste gas purification equipment
CN218688085U (en) Foul smell treatment device for sewage pool
JP3269914B2 (en) Purification equipment for organic chlorine-contaminated soil
JPH08963A (en) Cleaing equipment for organohalogen compound-polluted material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080727

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080727

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees