JP2004115746A - Prepreg, insulation layer, metal-clad laminated board and printed circuit board - Google Patents

Prepreg, insulation layer, metal-clad laminated board and printed circuit board Download PDF

Info

Publication number
JP2004115746A
JP2004115746A JP2002284622A JP2002284622A JP2004115746A JP 2004115746 A JP2004115746 A JP 2004115746A JP 2002284622 A JP2002284622 A JP 2002284622A JP 2002284622 A JP2002284622 A JP 2002284622A JP 2004115746 A JP2004115746 A JP 2004115746A
Authority
JP
Japan
Prior art keywords
epoxy resin
prepreg
resin
insulating layer
insulation layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2002284622A
Other languages
Japanese (ja)
Inventor
Masashi Hattori
服部 将志
Minoru Yonekura
米倉 稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2002284622A priority Critical patent/JP2004115746A/en
Publication of JP2004115746A publication Critical patent/JP2004115746A/en
Abandoned legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To impart sufficient moisture-absorption resistance and heat resistance to prevent the delamination of the insulation layer by the heat in the process for the mounting of parts in the case of supporting a printed circuit on the insulation layer formed by the hot-pressing of a prepreg layer produced by impregnating and drying a thermosetting resin in a nonwoven fabric of a synthetic resin fiber. <P>SOLUTION: The prepreg is produced by impregnating and drying a thermosetting resin in a nonwoven fabric of a synthetic resin fiber (aramid fiber) and an epoxy resin is used as an essential component of the thermosetting resin. The epoxy resin is a polyfunctional epoxy resin having a functionality of ≥3. The epoxy resin contains 20-40 mass% epoxy resin containing a cycloalkane in the molecular skeleton (cyclopentadiene epoxy resin) and the other polyfunctional epoxy resin is preferably a phenolic novolak epoxy resin. The prepreg layer is hot-pressed to form the insulation layer and the layer is placed at least on the surface layer of a printed circuit board. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、厳しい使用環境(例えば、自動車のエンジンルーム内等)で使用するのに適したプリント配線板に関する。また、このプリント配線板を構成するためのプリプレグ、絶縁層、金属箔張り積層板に関するものである。
【0002】
【従来の技術】
近年、電子機器の小型軽量化、高密度化の点より、プリント配線板に搭載して使用される電子部品は、表面実装部品(リードレスチップ部品)へ移行し、プリント配線板への実装方式は表面実装方式が主流となってきた。表面実装部品の小型化に伴い、部品実装の半田付け工程は複数回行なわれるようになってきており、層間剥離の起こりにくい耐熱性のプリント配線基板が求められている。また、全地球的な環境保護意識の高まりの中で、鉛フリーの半田が使用されるようになってきており、Sn−Ag−Cu系合金に代表される鉛フリー半田は、従来のSn−Pb系半田に比べて融点が20〜30℃高いため、プリント配線基板の更なる高耐熱化が求められている。
【0003】
そこで、プリント配線基板を構成する熱硬化性樹脂として、分子骨格の一部ないし全部にシクロアルカン類を含有するエポキシ樹脂とクレゾールノボラック樹脂(硬化剤)を配合したエポキシ樹脂組成物が提案されている。これを合成樹脂繊維不織布に含浸し乾燥したプリプレグ層を加熱加圧成形した絶縁層は、吸湿性が小さくなり、部品実装時の層間剥離が起こりにくくなっている(例えば、特許文献1)。しかし、鉛フリー半田が使用されるような高温環境においては、まだ耐熱性が充分であるとは言えない。
【0004】
【特許文献1】
特開平10−138381号公報
【0005】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、合成樹脂繊維不織布に熱硬化性樹脂を含浸し乾燥したプリプレグを準備し、このプリプレグ層を加熱加圧成形した絶縁層にプリント配線を支持したときに、部品実装時の熱で絶縁層の層間剥離が起こらない充分な耐吸湿・耐熱性を付与することである。
【0006】
【課題を解決するための手段】
本発明は、絶縁層の水分拡散係数を小さくして空気中の水分が絶縁層表面から内部に侵入するのを防止することと絶縁層のガラス転移温度を高めることにより、上記の課題を解決する。絶縁層内部に侵入した水分は、合成樹脂繊維と熱硬化性樹脂の界面に付着し、急激な加熱により水分が膨張して絶縁層の層間剥離の原因となる。
上記課題を解決するための本発明に係るプリプレグは、合成樹脂繊維不織布に熱硬化性樹脂を含浸し乾燥したものであって、前記熱硬化性樹脂の必須成分としてエポキシ樹脂が用いられる。当該エポキシ樹脂は3官能以上の多官能エポキシ樹脂である。そのうち、20〜40質量%が分子骨格にシクロアルカン類を含有するエポキシ樹脂であることを特徴とする。本発明に係る絶縁層は、前記プリプレグの層を加熱加圧成形してなる。
【0007】
上記絶縁層は、水分拡散係数1.3×10−8cm/秒以下、ガラス転移温度(TMA法で測定)170℃以上となっている。エポキシ樹脂として3官能以上の多官能エポキシ樹脂を用いることによりガラス転移温度が高められ、加えて、分子骨格にシクロアルカン類を含有するエポキシ樹脂を配合することにより水分拡散係数が小さくなり、空気中の水分が絶縁層表面から内部に侵入するの防止している。これらにより、絶縁層の耐熱性が高めらる。上記分子骨格にシクロアルカン類を含有するエポキシ樹脂の配合量下限値20質量%は、水分拡散係数を小さく抑える上で考慮する配合量であり、同上限値40質量%は、ガラス転移温度を高く維持する上で考慮する配合量である。
【0008】
ここで、水分拡散係数は、以下にようにして求められるものである。
まず、厚さd(cm)の積層板を60℃−90%RHの雰囲気に時間t(秒)置いて吸湿させる。そして、吸湿処理時間(秒)における吸湿率を次の数式により求める。
【0009】
【数1】

Figure 2004115746
次に、(t1/2/d)を横軸とし、上記吸湿率を縦軸として、吸湿処理時間t(秒)における吸湿率をプロットして吸湿曲線を作成する。作成した吸湿曲線から、当該曲線の最初の直線部分の傾きmを求める。また、それ以上吸湿率が増えない飽和吸湿率Mを求める。
これらの準備をした上で、水分拡散係数Dは、
D=π(m/4M)
により求めたものである。
【0010】
【発明の実施の形態】
アラミド繊維などの合成樹脂繊維で構成された不織布は吸湿しやすいので、これらの不織布に熱硬化性樹脂を含浸して成形した絶縁層の水分拡散係数を小さくして、空気中の水分が絶縁層(基板)表面からできるだけ侵入しないようにしなければならない。
【0011】
熱硬化性樹脂の必須成分として用いられるエポキシ樹脂は、3官能以上の多官能エポキシ樹脂であるが、その20〜40質量%を、分子骨格にシクロアルカン類を含有するエポキシ樹脂が占める。これは、酸素、窒素、燐などの双極子を有する原子をできるだけ分子骨格から排除したものであり、脂肪族系の炭化水素で構成される。例えば次の(式1)に示す分子構造式のシクロペンタジエンエポキシ樹脂(大日本インキ製「HP−7200」,エポキシ当量:264)である。
【0012】
【化1】
Figure 2004115746
上記分子骨格にシクロアルカン類を含有するエポキシ樹脂以外の3官能以上の多官能エポキシ樹脂は、低吸湿であるフェノール類ノボラック型エポキシ樹脂が好ましい。硬化剤は、好ましくはフェノール類ノボラック樹脂を用いる。例えば、フェノールノボラック、クレゾールノボラック、ビスフェノールA型ノボラック等である。フェノール類ノボラック樹脂を硬化剤として用いることにより吸湿性を小さくすることができる。また、水酸基当量/エポキシ当量を1〜1.5とする。これはエポキシ樹脂組成物を含浸し乾燥した合成樹脂繊維不織布(プリプレグ)の外観が良くなるからである。分子骨格の一部ないし全部にシクロアルカン類を含有する他の熱硬化性樹脂を混合して使用してもよい。
【0013】
上記の熱硬化性樹脂組成物には、難燃性を付与するために、ハロゲン含有有機化合物などの難燃剤や酸化アンチモン等の難燃助剤、その他の有機又は無機充填材、着色剤等を添加してもよい。
【0014】
不織布を構成する合成樹脂繊維も吸湿率ができるだけ小さいものが望ましい。
例えば、ポリエステル繊維、ナイロン66、m−フェニレンイソフタラミド繊維(メタ系アラミド繊維)、p−フェニレンテレフタラミド繊維(パラ系アラミド繊維)などの合成樹脂繊維をそれぞれ単独で用いて、もしくは混抄して不織布を構成することができる。部品実装時のリフロー温度で溶融しない耐熱性を有するアラミド繊維は好ましいものである。
【0015】
本発明に係るプリプレグは、上記熱硬化性樹脂組成物を合成樹脂繊維不織布に含浸し加熱乾燥して製造される。絶縁層は、前記プリプレグの層を加熱加圧成形して形成される。このとき、表面に金属箔を一体化することができ、当該金属箔として、銅箔、アルミニウム箔、ニッケル箔等を採用することができる。導電性の良好な金属箔であれば種類、厚みとも特に限定しない。また、必要により接着剤付き金属箔を用いることができる。この場合、接着剤としては、フェノール樹脂系、エポキシ樹脂系、ブチラール樹脂系、ポリエステル系、ポリウレタン系あるいはその混合物など、汎用の金属箔用接着剤を用いることができる。
【0016】
本発明に係るプリント配線板は、コアプリント配線板に上記プリプレグの層を介して金属箔を配置し加熱加圧成形した多層プリント配線板をその概念に含む。
また、コアプリント配線板同士の間に上記プリプレグの層を介在させて加熱加圧成形した多層プリント配線板をその概念に含む。吸湿は表面の絶縁層から起こるので、上記プリプレグの層を加熱加圧成形した絶縁層を少なくとも表面に配置する。
【0017】
【実施例】
実施例1〜3、参考例1〜2、従来例1〜2
(化1)に示した分子構造式のシクロペンタジエンエポキシ樹脂と、多官能(3官能以上)ノボラック型エポキシ樹脂(ジャパンエポキシレジン製「E−157」,エポキシ当量:210)を表1に示す量で配合し、固形分質量で、前記エポキシ樹脂100質量部に対し、硬化剤としてフェノールノボラック樹脂40質量部、難燃剤としてテトラブロモビスフェノールA50質量部、触媒として2−エチル4−メチルイミダゾール0.2質量部を配合し、各例のエポキシ樹脂ワニスを調製した。
厚さ100μmのパラ系アラミド繊維不織布に、上記各例のエポキシ樹脂ワニスを含浸乾燥し、樹脂含有量48質量%のプリプレグを得た。
各例のプリプレグを8枚重ね合せ、その上下に銅箔(厚さ18μm)を載置し、温度170℃、圧力4MPaの条件で60分間加熱加圧成形して、板厚0.8mmの銅張り積層板を得た。
【0018】
従来例3
ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン製「Ep−1001」,エポキシ当量:500)100質量部、硬化剤としてフェノールノボラック樹脂21質量部、触媒として2−エチル4−メチルイミダゾール0.2質量部を配合したエポキシ樹脂ワニスを調製した。エポキシ樹脂ワニスを用い、以下、実施例と同様に板厚0.8mmの銅張り積層板を得た。
【0019】
【表1】
Figure 2004115746
【0020】
上記実施例、参考例及び従来例における板厚0.8mmの銅張り積層板の耐吸湿・耐熱性を以下のようにして調査した。
まず、銅箔を全面エッチングして除去後、60℃−90%RHの雰囲気に72時間置く。その後、リフロー装置に通し(最大温度250℃,通過時間30秒)、積層板の層間に剥離があるかどうかを観察した。
観察の結果、剥離なしを「○」で、剥離ありを「×」で表2に示した。また、水分拡散係数(×10−8cm/秒)を併せて示した。
また、表2には、全面エッチングした積層板のTMA法によるガラス転移温度(Tg)測定値と、銅張り積層板の半田耐熱性(300℃の半田槽に10分間浮かべて、表面に膨れがなければ「〇」、膨れが発生すれれば「×」)を併せて示した。
【0021】
【表2】
Figure 2004115746
【0022】
【発明の効果】
表2から明らかなように、本発明に係る絶縁層は、絶縁層(基板)表面から水分が侵入するのを抑制して、熱による絶縁層(基板)の層間剥離が起こらないようにすることができる。特に、合成樹脂繊維で構成された不織布に熱硬化性樹脂を含浸して加熱加圧成形した絶縁層において、耐吸湿・耐熱性が顕著になり表面実装を行なうプリント配線板の基板として有用なものである。半田耐熱性も高めることができ、使用環境の厳しい条件下でも不具合なく使用することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a printed wiring board suitable for use in a severe use environment (for example, in an engine room of an automobile). The present invention also relates to a prepreg, an insulating layer, and a metal foil-clad laminate for forming the printed wiring board.
[0002]
[Prior art]
In recent years, electronic components mounted on printed wiring boards have been shifted to surface mount components (leadless chip components) due to the reduction in size, weight, and density of electronic devices. The surface mount method has become the mainstream. With the miniaturization of surface-mounted components, the soldering process for component mounting has been performed a plurality of times, and a heat-resistant printed wiring board that is unlikely to cause delamination is required. In addition, lead-free solders have been used with increasing awareness of global environmental protection, and lead-free solders represented by Sn-Ag-Cu-based alloys have been used in conventional Sn- Since the melting point is higher by 20 to 30 ° C. than that of the Pb-based solder, further higher heat resistance of the printed wiring board is required.
[0003]
Therefore, as a thermosetting resin constituting a printed wiring board, an epoxy resin composition in which an epoxy resin containing a cycloalkane in part or all of a molecular skeleton and a cresol novolak resin (curing agent) has been proposed. . The insulating layer obtained by impregnating this with a synthetic resin fiber nonwoven fabric and drying the prepreg layer by heating and pressing has a low hygroscopic property, so that delamination during component mounting does not easily occur (for example, Patent Document 1). However, in a high-temperature environment where lead-free solder is used, it cannot be said that heat resistance is still sufficient.
[0004]
[Patent Document 1]
JP-A-10-138381
[Problems to be solved by the invention]
The problem to be solved by the present invention is to prepare a prepreg obtained by impregnating a synthetic resin fiber nonwoven fabric with a thermosetting resin and then drying the prepreg layer. The purpose is to provide sufficient moisture absorption and heat resistance so that delamination of the insulating layer does not occur due to heat during mounting.
[0006]
[Means for Solving the Problems]
The present invention solves the above problems by reducing the moisture diffusion coefficient of the insulating layer to prevent moisture in the air from entering the inside of the insulating layer from the surface and increasing the glass transition temperature of the insulating layer. . The moisture that has entered the inside of the insulating layer adheres to the interface between the synthetic resin fiber and the thermosetting resin, and the moisture expands due to rapid heating, causing delamination of the insulating layer.
A prepreg according to the present invention for solving the above-mentioned problems is obtained by impregnating a synthetic resin fiber nonwoven fabric with a thermosetting resin and drying the same. An epoxy resin is used as an essential component of the thermosetting resin. The epoxy resin is a trifunctional or higher polyfunctional epoxy resin. Among them, 20 to 40% by mass is an epoxy resin containing a cycloalkane in a molecular skeleton. The insulating layer according to the present invention is formed by heating and pressing the prepreg layer.
[0007]
The insulating layer has a water diffusion coefficient of 1.3 × 10 −8 cm 2 / sec or less and a glass transition temperature (measured by a TMA method) of 170 ° C. or more. The glass transition temperature is increased by using a polyfunctional epoxy resin having three or more functional groups as the epoxy resin. In addition, by mixing the epoxy resin containing cycloalkanes into the molecular skeleton, the water diffusion coefficient is reduced, and the air diffusion coefficient is reduced. Of water from the surface of the insulating layer. These enhance the heat resistance of the insulating layer. The lower limit of 20% by mass of the epoxy resin containing cycloalkanes in the molecular skeleton is the amount to be considered when suppressing the water diffusion coefficient to be small, and the upper limit of 40% by mass increases the glass transition temperature. This is the amount to be considered for maintaining.
[0008]
Here, the water diffusion coefficient is determined as follows.
First, a laminate having a thickness of d (cm) is placed in an atmosphere of 60 ° C. and 90% RH for a time t (second) to absorb moisture. Then, the moisture absorption rate in the moisture absorption processing time (second) is obtained by the following equation.
[0009]
(Equation 1)
Figure 2004115746
Next, a horizontal axis represents (t 1/2 / d) and a vertical axis represents the above-mentioned moisture absorption rate, and plots the moisture absorption rate during the moisture absorption processing time t (second) to create a moisture absorption curve. From the created moisture absorption curve, the slope m of the first straight line portion of the curve is determined. Further, a saturated moisture absorption rate M at which the moisture absorption rate does not increase any more is determined.
After making these preparations, the water diffusion coefficient D
D = π (m / 4M) 2
It was obtained by:
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Nonwoven fabrics composed of synthetic resin fibers such as aramid fibers are easily absorbed by moisture, so the moisture diffusion coefficient of the insulating layer formed by impregnating these nonwoven fabrics with a thermosetting resin is reduced to reduce the moisture in the air. (Substrate) It is necessary to prevent intrusion from the surface as much as possible.
[0011]
The epoxy resin used as an essential component of the thermosetting resin is a trifunctional or higher functional polyfunctional epoxy resin, and 20 to 40% by mass of the epoxy resin contains a cycloalkane in a molecular skeleton. In this method, atoms having a dipole such as oxygen, nitrogen, and phosphorus are excluded from the molecular skeleton as much as possible, and are composed of aliphatic hydrocarbons. For example, a cyclopentadiene epoxy resin having a molecular structure represented by the following (formula 1) (“HP-7200” manufactured by Dainippon Ink, epoxy equivalent: 264).
[0012]
Embedded image
Figure 2004115746
The polyfunctional epoxy resin having three or more functions other than the epoxy resin containing a cycloalkane in the molecular skeleton is preferably a phenol novolak type epoxy resin having low moisture absorption. As the curing agent, a phenolic novolak resin is preferably used. For example, phenol novolak, cresol novolak, bisphenol A type novolak and the like. By using a phenolic novolak resin as a curing agent, the hygroscopicity can be reduced. Further, the hydroxyl equivalent / epoxy equivalent is set to 1 to 1.5. This is because the appearance of the synthetic resin fiber nonwoven fabric (prepreg) impregnated with the epoxy resin composition and dried is improved. Other thermosetting resins containing cycloalkanes may be mixed and used in part or all of the molecular skeleton.
[0013]
In order to impart flame retardancy to the above thermosetting resin composition, a flame retardant such as a halogen-containing organic compound or a flame retardant auxiliary such as antimony oxide, other organic or inorganic fillers, a coloring agent, etc. It may be added.
[0014]
It is desirable that the synthetic resin fibers constituting the nonwoven fabric also have a moisture absorption rate as small as possible.
For example, synthetic resin fibers such as polyester fiber, nylon 66, m-phenylene isophthalamide fiber (meta-aramid fiber), and p-phenylene terephthalamide fiber (para-aramid fiber) are used alone or mixed. To form a nonwoven fabric. Aramid fibers having heat resistance that does not melt at the reflow temperature during component mounting are preferred.
[0015]
The prepreg according to the present invention is produced by impregnating the above-mentioned thermosetting resin composition into a synthetic resin fiber nonwoven fabric and drying by heating. The insulating layer is formed by heating and pressing the prepreg layer. At this time, a metal foil can be integrated on the surface, and a copper foil, an aluminum foil, a nickel foil, or the like can be used as the metal foil. The type and thickness are not particularly limited as long as the metal foil has good conductivity. If necessary, a metal foil with an adhesive can be used. In this case, as the adhesive, a general-purpose metal foil adhesive such as a phenol resin, an epoxy resin, a butyral resin, a polyester, a polyurethane, or a mixture thereof can be used.
[0016]
The concept of the printed wiring board according to the present invention includes a multi-layer printed wiring board formed by arranging a metal foil on a core printed wiring board via the above-described prepreg layer, and performing heat and pressure molding.
The concept also includes a multilayer printed wiring board formed by heating and pressing with the prepreg layer interposed between core printed wiring boards. Since moisture absorption occurs from the insulating layer on the surface, an insulating layer formed by heating and pressing the prepreg layer is disposed on at least the surface.
[0017]
【Example】
Examples 1-3, Reference Examples 1-2, Conventional Examples 1-2
The cyclopentadiene epoxy resin having the molecular structural formula shown in Chemical Formula 1 and a polyfunctional (3 or more functional) novolak epoxy resin (“E-157” manufactured by Japan Epoxy Resin, epoxy equivalent: 210) are shown in Table 1. Phenol novolak resin as a curing agent, 50 parts by mass of tetrabromobisphenol A as a flame retardant, and 2-ethyl 4-methylimidazole 0.2 as a catalyst with respect to 100 parts by mass of the epoxy resin in terms of solid content. By mass, the epoxy resin varnish of each example was prepared.
The epoxy resin varnish of each of the above examples was impregnated and dried into a 100 μm-thick para-aramid fiber nonwoven fabric to obtain a prepreg having a resin content of 48% by mass.
Eight prepregs of each example are superimposed, copper foil (thickness: 18 μm) is placed on the upper and lower sides, and heated and pressed at a temperature of 170 ° C. and a pressure of 4 MPa for 60 minutes. A laminated board was obtained.
[0018]
Conventional example 3
100 parts by mass of a bisphenol A type epoxy resin ("Ep-1001" manufactured by Japan Epoxy Resin, epoxy equivalent: 500), 21 parts by mass of a phenol novolak resin as a curing agent, and 0.2 parts by mass of 2-ethyl 4-methylimidazole as a catalyst. The compounded epoxy resin varnish was prepared. Using an epoxy resin varnish, a copper-clad laminate having a plate thickness of 0.8 mm was obtained in the same manner as in the example below.
[0019]
[Table 1]
Figure 2004115746
[0020]
The moisture absorption and heat resistance of the copper-clad laminates having a thickness of 0.8 mm in the above Examples, Reference Examples and Conventional Examples were investigated as follows.
First, the copper foil is entirely etched and removed, and then placed in an atmosphere of 60 ° C. and 90% RH for 72 hours. Thereafter, the laminate was passed through a reflow apparatus (maximum temperature: 250 ° C., transit time: 30 seconds) to observe whether there was any peeling between the layers of the laminate.
As a result of the observation, Table 2 shows that there was no peeling, and Table 2 shows that there was peeling. The water diffusion coefficient (× 10 −8 cm 2 / sec) is also shown.
Table 2 shows the measured values of the glass transition temperature (Tg) of the laminated board subjected to the TMA method and the soldering heat resistance of the copper-clad laminate (floating in a solder bath at 300 ° C. for 10 minutes, causing blistering on the surface). “〇” indicates no swelling, and “×” indicates swelling.
[0021]
[Table 2]
Figure 2004115746
[0022]
【The invention's effect】
As is evident from Table 2, the insulating layer according to the present invention suppresses the invasion of moisture from the surface of the insulating layer (substrate), and prevents delamination of the insulating layer (substrate) due to heat. Can be. In particular, an insulating layer formed by impregnating a non-woven fabric made of synthetic resin fibers with a thermosetting resin and heating and press-forming, has remarkable moisture absorption and heat resistance, and is useful as a substrate for a printed wiring board for surface mounting. It is. Solder heat resistance can also be increased, and it can be used without trouble even under severe conditions of use environment.

Claims (5)

合成樹脂繊維不織布に熱硬化性樹脂を含浸し乾燥したプリプレグであって、
前記熱硬化性樹脂の必須成分としてエポキシ樹脂が用いられ、当該エポキシ樹脂は3官能以上の多官能エポキシ樹脂であり、そのうち20〜40質量%が分子骨格にシクロアルカン類を含有するエポキシ樹脂であることを特徴とするプリプレグ。
A prepreg obtained by impregnating a synthetic resin fiber nonwoven fabric with a thermosetting resin and drying the prepreg,
An epoxy resin is used as an essential component of the thermosetting resin, and the epoxy resin is a polyfunctional epoxy resin having three or more functional groups, of which 20 to 40% by mass is an epoxy resin containing a cycloalkane in a molecular skeleton. A prepreg characterized by the following.
請求項1記載のプリプレグの層を加熱加圧成形した絶縁層。An insulating layer formed by heating and pressing the prepreg layer according to claim 1. 水分拡散係数が1.3×10−8cm/秒以下であり、ガラス転移温度が170℃以上であることを特徴とする請求項2記載の絶縁層。3. The insulating layer according to claim 2, wherein the water diffusion coefficient is 1.3 × 10 −8 cm 2 / sec or less, and the glass transition temperature is 170 ° C. or more. 請求項2又は3記載の絶縁層の少なくとも片側表面に金属箔が一体化されている金属箔張り積層板。A metal foil-clad laminate wherein a metal foil is integrated on at least one surface of the insulating layer according to claim 2. 少なくとも表面層に、請求項2又は3記載の絶縁層を備えたプリント配線板。A printed wiring board comprising the insulating layer according to claim 2 at least on a surface layer.
JP2002284622A 2002-09-30 2002-09-30 Prepreg, insulation layer, metal-clad laminated board and printed circuit board Abandoned JP2004115746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002284622A JP2004115746A (en) 2002-09-30 2002-09-30 Prepreg, insulation layer, metal-clad laminated board and printed circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002284622A JP2004115746A (en) 2002-09-30 2002-09-30 Prepreg, insulation layer, metal-clad laminated board and printed circuit board

Publications (1)

Publication Number Publication Date
JP2004115746A true JP2004115746A (en) 2004-04-15

Family

ID=32278113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002284622A Abandoned JP2004115746A (en) 2002-09-30 2002-09-30 Prepreg, insulation layer, metal-clad laminated board and printed circuit board

Country Status (1)

Country Link
JP (1) JP2004115746A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006121090A1 (en) * 2005-05-12 2006-11-16 Risho Kogyo Co., Ltd. White prepreg, white laminated plate, and metal foil clad white laminated plate
JP2010264605A (en) * 2009-05-12 2010-11-25 Sekisui Chem Co Ltd Insulating film, roughed insulating curing film, laminate, and method for producing laminate
CN114771050A (en) * 2022-04-12 2022-07-22 黄河三角洲京博化工研究院有限公司 High-frequency copper-clad plate and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006121090A1 (en) * 2005-05-12 2006-11-16 Risho Kogyo Co., Ltd. White prepreg, white laminated plate, and metal foil clad white laminated plate
KR100940232B1 (en) 2005-05-12 2010-02-04 리쇼 고교 가부시키가이샤 White prepreg, white laminated plate, and metal foil clad white laminated plate
TWI403545B (en) * 2005-05-12 2013-08-01 Risho Kogyo Kk White prepreg, white laminates, and metal foil-cladded white laminates
JP2010264605A (en) * 2009-05-12 2010-11-25 Sekisui Chem Co Ltd Insulating film, roughed insulating curing film, laminate, and method for producing laminate
CN114771050A (en) * 2022-04-12 2022-07-22 黄河三角洲京博化工研究院有限公司 High-frequency copper-clad plate and preparation method thereof
CN114771050B (en) * 2022-04-12 2024-03-22 黄河三角洲京博化工研究院有限公司 High-frequency copper-clad plate and preparation method thereof

Similar Documents

Publication Publication Date Title
JPH10321974A (en) Board for forming circuit
JP2004115746A (en) Prepreg, insulation layer, metal-clad laminated board and printed circuit board
JP3343443B2 (en) Resin composition and prepreg
JP3339357B2 (en) Laminated board
JP3592056B2 (en) Epoxy resin composition, prepreg and laminate
JP2006036936A (en) Epoxy resin composition, prepreg, and multilayer printed wiring board
JPH08283436A (en) Prepreg and copper-clad laminate board
JP3211608B2 (en) Manufacturing method of copper-clad laminate
JP3883727B2 (en) Aramid fiber base insulation board and printed wiring board
JP2005002226A (en) Flame-retardant epoxy resin composition and laminated plate-related product using the same
JPH11261239A (en) Multi-layer printed circuit board
JP2002338661A (en) Resin composition for printed wiring board, and prepreg, metal-clad laminate, resin-coated metal foil and printed wiring board made by using it
JP2935329B2 (en) Manufacturing method of metal foil clad laminate
JP2003313272A (en) Epoxy resin composition for impregnating organic fiber base material, and prepreg, laminated sheet, and printed- wiring board using the same
JPH0573076B2 (en)
JP3823649B2 (en) Prepreg, laminated board and printed wiring board using amide group-containing organic fiber substrate
JP2734912B2 (en) Copper-clad laminate for surface mount printed wiring boards
JPH10190174A (en) Printed wiring board
JPH04259543A (en) Manufacture of laminated board for printed circuit
JP2000015746A (en) Copper-clad laminate and manufacture thereof
JP2004115745A (en) Epoxy resin composition for impregnating organic fabric base material, prepreg using the same, laminated sheet and printed wiring board
JP2006316171A (en) Prepreg, laminated plate, and multi-ply laminated plate
JPH0740505A (en) Copper clad laminated sheet and production thereof
JPH08165334A (en) Production of prepreg
JP2002241521A (en) Epoxy resin prepreg, epoxy resin copper-clad board, epoxy resin printed circuit board and epoxy resin multilayer printed circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040423

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20060216

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A131 Notification of reasons for refusal

Effective date: 20060509

Free format text: JAPANESE INTERMEDIATE CODE: A131

A762 Written abandonment of application

Effective date: 20060612

Free format text: JAPANESE INTERMEDIATE CODE: A762