JP3193342B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP3193342B2
JP3193342B2 JP14565798A JP14565798A JP3193342B2 JP 3193342 B2 JP3193342 B2 JP 3193342B2 JP 14565798 A JP14565798 A JP 14565798A JP 14565798 A JP14565798 A JP 14565798A JP 3193342 B2 JP3193342 B2 JP 3193342B2
Authority
JP
Japan
Prior art keywords
less
negative electrode
secondary battery
powder
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14565798A
Other languages
Japanese (ja)
Other versions
JPH1154123A (en
Inventor
雅規 北川
秀 越名
豊次 杉本
祥司 山口
学 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Mitsubishi Chemical Corp
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP14565798A priority Critical patent/JP3193342B2/en
Publication of JPH1154123A publication Critical patent/JPH1154123A/en
Application granted granted Critical
Publication of JP3193342B2 publication Critical patent/JP3193342B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解質二次電
池に係り、特にリチウムイオン二次電池の負極用炭素材
に関する。
The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a carbon material for a negative electrode of a lithium ion secondary battery.

【0002】[0002]

【従来の技術】従来、非水電解質二次電池としては、高
電圧、高容量による高エネルギー密度化を志向して、負
極活物質として金属リチウム、正極活物質として遷移金
属の酸化物や硫化物やセレン化物等のカルコゲン化合
物、例えば二酸化マンガンや二硫化モリブデンやセレン
化チタンなど、非水電解質としてリチウム塩の有機溶媒
溶液からなる有機電解液を用いた、いわゆるリチウム二
次電池が検討されている。
2. Description of the Related Art Conventionally, as a nonaqueous electrolyte secondary battery, with a view to increasing the energy density by a high voltage and a high capacity, lithium metal is used as a negative electrode active material, and an oxide or sulfide of a transition metal is used as a positive electrode active material. Secondary batteries using an organic electrolytic solution composed of an organic solvent solution of a lithium salt as a non-aqueous electrolyte, such as a chalcogen compound such as manganese dioxide, molybdenum disulfide, or titanium selenide, such as manganese dioxide or selenide, are being studied. .

【0003】しかしながら、このリチウム二次電池は、
正極活物質として比較的充放電特性が優れた層間化合物
を選択することができるが、負極の金属リチウムの充放
電特性は必ずしも優れていない。そのために、充放電を
繰り返すサイクル寿命を長くすることが難しく、その
上、内部短絡による発熱が起こる恐れがあり、安全性に
問題があった。すなわち、負極活物質の金属リチウムは
放電により有機電解液中にリチウムイオンとして溶出す
る。溶出したリチウムイオンは充電により、金属リチウ
ムとして負極表面に析出するが、元のようにすべて平滑
に析出せずに、樹枝状または苔状の活性な金属結晶とし
て析出するものがある。活性な金属結晶は電解液中の有
機溶媒を分解するとともに、金属結晶自体の表面は不動
態被膜で覆われて不活性化し、放電に寄与し難くなる。
その結果、充放電サイクルが進むにつれて負極容量が低
下するので、セル作製時に、負極容量を正極のそれより
著しく大きくする必要があった。また、活性な樹枝状金
属リチウム結晶は、セパレータを貫通して正極と接触し
て、内部短絡する場合がある。内部短絡により、セルは
発熱する恐れがある。
[0003] However, this lithium secondary battery is
As the positive electrode active material, an interlayer compound having relatively excellent charge / discharge characteristics can be selected, but the charge / discharge characteristics of metallic lithium of the negative electrode are not necessarily excellent. Therefore, it is difficult to prolong the cycle life of repeated charge and discharge, and furthermore, there is a possibility that heat may be generated due to an internal short circuit, and there is a problem in safety. That is, metallic lithium as the negative electrode active material is eluted as lithium ions into the organic electrolyte by discharge. The eluted lithium ions deposit on the negative electrode surface as metallic lithium upon charging, but some do not deposit as smooth as the original, but deposit as active dendritic or mossy metal crystals. The active metal crystal decomposes the organic solvent in the electrolytic solution, and at the same time, the surface of the metal crystal itself is covered with a passivation film to be inactivated and hardly contribute to discharge.
As a result, the negative electrode capacity decreases as the charge / discharge cycle progresses. Therefore, it was necessary to make the negative electrode capacity significantly larger than that of the positive electrode during cell fabrication. The active dendritic lithium metal crystal may penetrate the separator and come into contact with the positive electrode to cause an internal short circuit. The cell may generate heat due to an internal short circuit.

【0004】そこで、負極材料として充電および放電に
より、インターカレーションおよびディインターカレー
ションを可逆的に繰り返すことができる炭素材を用い
る、いわゆるリチウムイオン二次電池が提案され、活発
に研究開発されて、すでに実用化段階を迎えている。こ
のリチウムイオン二次電池は過充電しない限り、充放電
時に、負極表面に活性な樹枝状金属リチウム結晶が析出
しないので、安全性の向上が大いに期待できる。さら
に、この電池は金属リチウムを負極活物質に用いるリチ
ウム二次電池よりも高率充放電特性とサイクル寿命が著
しく優れているので、近年この電池の需要は急速に伸張
している。
Therefore, a so-called lithium ion secondary battery using a carbon material capable of reversibly repeating intercalation and deintercalation by charging and discharging as a negative electrode material has been proposed and actively researched and developed. Has already reached the stage of practical application. As long as this lithium ion secondary battery is not overcharged, active dendritic lithium metal crystals do not precipitate on the surface of the negative electrode during charge and discharge, and therefore, a great improvement in safety can be expected. Further, since this battery has remarkably superior high-rate charge / discharge characteristics and cycle life as compared with a lithium secondary battery using metallic lithium as a negative electrode active material, the demand for this battery has been rapidly growing in recent years.

【0005】4V級のリチウムイオン二次電池の正極活
物質としては、放電状態に相当するLiCoO2 、Li
NiO2 、LiMnO2 、LiMn2 4 などのリチウ
ムと遷移金属の複合酸化物が採用または検討されてい
る。電解質としては、リチウム二次電池と同様に有機電
解液やポリマー固体電解質等の非水電解質が用いられ
る。
As a positive electrode active material of a 4 V class lithium ion secondary battery, LiCoO 2 , Li
Composite oxides of lithium and a transition metal such as NiO 2 , LiMnO 2 , and LiMn 2 O 4 have been adopted or studied. As the electrolyte, a nonaqueous electrolyte such as an organic electrolyte or a polymer solid electrolyte is used as in the case of the lithium secondary battery.

【0006】負極材料に黒鉛を用いた場合、リチウムイ
オンがインターカレーションされて生成する層間化合物
のC6 Liを基準にした炭素1g当たりの容量の理論値
は372mAhである。従って、種々の炭素材におい
て、この比容量の理論値に近付き、かつ実用電池の負極
としては、単位体積当たりの容量値、すなわち、容量密
度(mAh/cc)が可及的に高くなるものを選ぶべき
である。
When graphite is used for the negative electrode material, the theoretical value of the capacity per 1 g of carbon based on C 6 Li as an intercalation compound generated by intercalation of lithium ions is 372 mAh. Therefore, in various carbon materials, the one which approaches the theoretical value of the specific capacity and has a capacity value per unit volume, that is, a capacity density (mAh / cc) as high as possible as a negative electrode of a practical battery should be used. You should choose.

【0007】各種炭素材のうち、俗にハードカーボンと
称される難黒鉛化炭素において、前記した比容量理論値
(372mAh/g)を越える材料が見出されて検討が
進められている。しかし、難黒鉛化性の非晶質炭素の真
比重は小さく、嵩張るので、負極の容量密度を大きくす
るのは実質的に困難である。その上、充電後の負極電位
が金属リチウム電位に近似する程卑とはいえず、放電電
位は平坦性も劣る等の課題が多い。
Among various carbon materials, among hard-graphitizable carbons commonly called hard carbons, materials exceeding the above-mentioned theoretical specific capacity (372 mAh / g) have been found and studied. However, since the non-graphitizable amorphous carbon has a small true specific gravity and is bulky, it is substantially difficult to increase the capacity density of the negative electrode. In addition, there are many problems that the negative electrode potential after charging is not so low as to be close to the metallic lithium potential, and the discharge potential is poor in flatness.

【0008】これに対して、結晶性が高い天然黒鉛およ
び人造黒鉛粉末を負極に用いた場合、充電後の電位は金
属リチウム電位に近似し、かつ放電電位の平坦性も優れ
ており、実用電池として、充放電特性が向上するので、
最近では黒鉛系粉末が負極材料の主流となりつつある。
On the other hand, when natural graphite and artificial graphite powder having high crystallinity are used for the negative electrode, the potential after charging is close to the lithium metal potential, and the flatness of the discharging potential is excellent, so that a practical battery can be used. As the charge and discharge characteristics are improved,
Recently, graphite-based powders are becoming the mainstream of negative electrode materials.

【0009】そのなかにあって、リチウムイオン二次電
池の負極用黒鉛粉末の平均粒径が大きければ、高率での
充放電特性および低温における放電特性が劣る傾向があ
る。
Among them, if the average particle size of the graphite powder for a negative electrode of a lithium ion secondary battery is large, the charge / discharge characteristics at a high rate and the discharge characteristics at a low temperature tend to be inferior.

【0010】そこで、粉末の平均粒径を小さくすれば、
高率充放電特性および低温放電特性は向上するが、徒ら
に平均粒径を小さくし過ぎると、粉末の比表面積が大き
くなり過ぎることによって、初充電により粉末中に挿入
されたリチウムが第1サイクル以降の放電に寄与できな
い不可逆容量が大きくなる問題が生ずる。この現象は高
エネルギー密度化志向に対して致命的な欠点であるとと
もに、100℃を越えるような高温下で電池を放置した
場合、有機電解液中の溶媒を分解させて、自己放電する
だけでなく、セル内圧を高めて漏液事故を起こす恐れが
あり、電池の信頼性を低下させる原因となっていた。
Therefore, if the average particle size of the powder is reduced,
Although the high-rate charge / discharge characteristics and the low-temperature discharge characteristics are improved, if the average particle size is too small, the specific surface area of the powder becomes too large. There is a problem that the irreversible capacity that cannot contribute to the discharge after the cycle increases. This phenomenon is a fatal drawback to the trend toward higher energy density, and when a battery is left at a high temperature exceeding 100 ° C., the solvent in the organic electrolyte is decomposed and self-discharge occurs only. However, there is a danger that a liquid leakage accident may occur due to an increase in the internal pressure of the cell, which causes a reduction in the reliability of the battery.

【0011】以上のことから、負極用黒鉛粉末には適切
な比表面積および平均粒径が重要になることは容易に理
解される。そのような観点から提案された発明が例え
ば、特開平6−295725号公報において、BET法
による比表面積が1〜10m2/gであり、平均粒径が
10〜30μmであり、かつ、粒径10μm以下の粉末
の含有率および粒径30μm以上の粉末の含有率の少な
くとも一方が10%以下である黒鉛粉末を使用すること
が開示されている。さらに、特開平7−134988号
公報においては、石油ピッチを低温で熱処理して生成す
るメソカーボンマイクロビーズを黒鉛化し、広角X線回
折法による(002)面の面間隔(d002)が3.3
6〜3.40Åで、BET法による比表面積が0.7〜
5.0m2/gである球状黒鉛粉末を使用することが開
示されている。また、特開平5−307959号公報に
おいて比表面積が20m2 /g以下で核の炭素物質の1
/2以下の比表面積を有する多相炭素物質を使用するこ
とが開示されている。
From the above, it is easily understood that an appropriate specific surface area and an average particle size are important for graphite powder for a negative electrode. An invention proposed from such a viewpoint is disclosed in, for example, JP-A-6-295725, in which the BET method has a specific surface area of 1 to 10 m 2 / g, an average particle diameter of 10 to 30 μm, and a particle diameter of 10 to 30 μm. It is disclosed to use a graphite powder in which at least one of the content of a powder of 10 μm or less and the content of a powder of 30 μm or more in particle size is 10% or less. Further, in Japanese Patent Application Laid-Open No. 7-134988, mesocarbon microbeads produced by heat-treating petroleum pitch at a low temperature are graphitized, and the (002) plane spacing (d002) is 3.3 by wide-angle X-ray diffraction.
6 to 3.40 °, the specific surface area by the BET method is 0.7 to
It is disclosed to use a spheroidal graphite powder that is 5.0 m 2 / g. In Japanese Patent Application Laid-Open No. Hei 5-307959, one of the core carbon materials having a specific surface area of 20 m 2 / g or less is used.
It is disclosed to use a multi-phase carbon material having a specific surface area of less than or equal to / 2.

【0012】[0012]

【発明が解決しようとする課題】前述した発明は、リチ
ウムイオン二次電池の高率充放電特性および低温時の放
電特性の向上に極めて効果的であるだけでなく、宿命的
ともいえる、サイクル初期に決定づけられる不可逆容量
の低減に効果的であった。しかし、高温下での放置によ
る保存性や信頼性に対して不十分であり、負極の比容量
(mAh/g)および容量密度(mAh/cc)の点で
も不満が残っていた。本発明は、リチウム二次電池のさ
らなる信頼性および高エネルギー密度化の改善をはかる
ことをその目的とする。
The above-described invention is not only extremely effective in improving the high-rate charge / discharge characteristics and the discharge characteristics at low temperatures of a lithium ion secondary battery, but also can be said to be fatal. Was effective in reducing the irreversible capacity determined by However, storage stability and reliability due to standing at a high temperature were insufficient, and dissatisfaction remained in terms of specific capacity (mAh / g) and capacity density (mAh / cc) of the negative electrode. An object of the present invention is to further improve the reliability and high energy density of a lithium secondary battery.

【0013】[0013]

【課題を解決するための手段】前述したリチウムイオン
二次電池における課題を解決するために、本発明は、 (1)広角X線回折法による(002)面の面間隔(d
002)が3.37Å未満でかつC軸方向の結晶子の大
きさ(Lc)が少なくとも1000Å以上 (2)アルゴンイオンレーザーラマンスペクトルにおけ
る1580cm-1のピーク強度に対する1360cm-1
のピーク強度比であるR値が0.3以下でかつ1580
cm-1ピークの半値幅が24cm-1以下 (3)平均粒径が10〜30μmでかつ一番薄い部分の
厚みが少なくとも3μm以上平均粒径以下 (4)BET法による比表面積が3.5m2 /g以上1
0.0m2 /g以下 (5)タッピング密度が0.5g/cc以上1.0g/
cc以下 (6)広角X線回折法による(110)/(004)の
X線回折ピーク強度比が0.015以上の特性を示す塊
状の黒鉛粉末を核とし、その核の表面に炭素前駆体を被
覆後、不活性ガス雰囲気下で700〜2800℃の温度
範囲で焼成し、炭素質物の表層を形成させた複層構造の
炭素質粉末を負極材料として用いることにより、初期サ
イクルに認められる不可逆容量を可及的に小さくすると
共に、高温下での放置における電池の保存性および信頼
性を向上し、優れた高率放電特性および低温における放
電特性を確保し、かつ比容量が高い非水電解質二次電池
の実現を可能にしたものである。
In order to solve the above-mentioned problems in the lithium ion secondary battery, the present invention provides: (1) a (002) plane spacing (d) obtained by a wide-angle X-ray diffraction method;
002) is less than a and the size of the C-axis direction of the crystallite 3.37 Å (Lc) of at least 1000Å or more (2) 1360 cm to the peak intensity of 1580 cm -1 in the argon ion laser Raman spectrum -1
Is less than 0.3 and 1580
cm -1 half width of the peak is 24cm -1 or less (3) the specific surface area by an average particle size of 10~30μm a and the thickness of the thinnest portion of at least 3μm or more the average particle diameter or less under (4) BET method 3.5m 2 / g or more 1
0.0 m 2 / g or less (5) tapping density of 0.5 g / cc or more 1.0 g /
cc or less (6) A mass of graphite powder having a characteristic of an X-ray diffraction peak intensity ratio of (110) / (004) of 0.015 or more by a wide-angle X-ray diffraction method as a nucleus, and a carbon precursor on the surface of the nucleus After being coated, the mixture is fired in a temperature range of 700 to 2800 ° C. in an inert gas atmosphere, and by using a carbonaceous powder having a multilayer structure in which a carbonaceous material surface layer is formed as a negative electrode material, irreversibility observed in an initial cycle is obtained. A non-aqueous electrolyte that minimizes the capacity as much as possible, improves the storability and reliability of the battery when left at high temperatures, ensures excellent high-rate discharge characteristics and discharge characteristics at low temperatures, and has a high specific capacity. This enables the realization of a secondary battery.

【0014】[0014]

【発明の実施の形態】本発明の請求項1に記載の発明
は、正極と負極とこれらの間に配されるセパレータを備
え、前記負極は、充電および放電によりリチウムイオン
がインターカレーションおよびディインターカレーショ
ンを可逆的に繰り返すことができる負極材料として、 (1)広角X線回折法による(002)面の面間隔(d
002)が3.37Å未満でかつC軸方向の結晶子の大
きさ(Lc)が少なくとも1000Å以上 (2)アルゴンイオンレーザーラマンスペクトルにおけ
る1580cm-1のピーク強度に対する1360cm-1
のピーク強度比であるR値が0.3以下でかつ1580
cm-1ピークの半値幅が24cm-1以下 (3)平均粒径が10〜30μmでかつ一番薄い部分の
厚みが少なくとも3μm以上平均粒径以下 (4)BET法による比表面積が3.5m2 /g以上1
0.0m2 /g以下 (5)タッピング密度が0.5g/cc以上1.0g/
cc以下 (6)広角X線回折法による(110)/(004)の
X線回折ピーク強度比が0.015以上の特性を示す塊
状の黒鉛粉末を核とし、その核の表面に炭素前駆体を被
覆後、不活性ガス雰囲気下で700〜2800℃の温度
範囲で焼成し、炭素質物の表層を形成させた複層構造の
炭素質粉末を用いた非水電解質二次電池にすることによ
り、リチウムイオン二次電池の諸特性を改善するととも
に、高エネルギー密度化を達成し得るものである。
DETAILED DESCRIPTION OF THE INVENTION The invention according to claim 1 of the present invention comprises a positive electrode, a negative electrode and a separator disposed between the positive electrode and the negative electrode. The negative electrode intercalates and deintercalates lithium ions by charging and discharging. As a negative electrode material capable of reversibly repeating intercalation, (1) the (002) plane spacing (d) by wide-angle X-ray diffraction
002) is less than a and the size of the C-axis direction of the crystallite 3.37 Å (Lc) of at least 1000Å or more (2) 1360 cm to the peak intensity of 1580 cm -1 in the argon ion laser Raman spectrum -1
Is less than 0.3 and 1580
cm -1 half width of the peak is 24cm -1 or less (3) the specific surface area by an average particle size of 10~30μm a and the thickness of the thinnest portion of at least 3μm or more the average particle diameter or less under (4) BET method 3.5m 2 / g or more 1
0.0 m 2 / g or less (5) tapping density of 0.5 g / cc or more 1.0 g /
cc or less (6) A mass of graphite powder having a characteristic of an X-ray diffraction peak intensity ratio of (110) / (004) of 0.015 or more by a wide-angle X-ray diffraction method as a nucleus, and a carbon precursor on the surface of the nucleus After coating, firing in a temperature range of 700 to 2800 ° C. in an inert gas atmosphere to form a non-aqueous electrolyte secondary battery using a carbonaceous powder having a multilayer structure in which a surface layer of a carbonaceous material is formed, The present invention can improve various characteristics of a lithium ion secondary battery and achieve high energy density.

【0015】上記(1)〜(6)の特性を有する塊状黒
鉛粒子は高純度で、かつ高結晶性の天然又は人造の鱗状
又は鱗片状黒鉛を角取り的粉砕や割断的粉砕、球状化粉
砕後篩分けの過程で黒鉛粉末の厚さが大きいもの、すな
わち鱗片状粒子のなかでも球形に近いものを集めること
により、徒らに比表面積を増大させず、タッピング密度
が0.5以上の粒子を得ることができる。またこの時の
広角X線回折法による(110)/(004)のX線回
折ピーク強度比が0.015以上を示すものが良く、さ
らに平均円形度(粒子面積相当円の周囲長を分子とし、
撮像された粒子投影像の周囲長を分母とした比率で、粒
子像が真円に近いほど1となり、粒子像が細長いあるい
はデコボコしているほど小さい値になる)は0.940
以上と形状ファクターとしては球状化しているものが良
い。一例として流体エネルギー粉砕機により鱗片状黒鉛
粒子をさらに微粉砕する過程で、角取りしてディスク状
またはタブレット状粒子に粉砕後篩分けする方法があげ
られるが、上記(1)〜(6)の物性を示す黒鉛粒子で
あれば作成方法は特に限定されるものではない。
The massive graphite particles having the characteristics (1) to (6) are high-purity and highly crystalline natural or artificial scaly or scaly graphite, which are ground, cut, and spheroidized. By collecting the graphite powder having a large thickness in the process of post-sieving, that is, particles close to a sphere among the flake-shaped particles, the specific surface area is not increased, and the tapping density is 0.5 or more. Can be obtained. In this case, it is preferable that the X-ray diffraction peak intensity ratio of (110) / (004) determined by the wide-angle X-ray diffraction method is 0.015 or more. ,
(The ratio becomes 1 when the particle image is closer to a perfect circle, and becomes smaller when the particle image is elongated or irregular.)
As described above, the shape factor is preferably spherical. As an example, in the process of further pulverizing the flaky graphite particles by a fluid energy pulverizer, a method of squaring and pulverizing the particles into disk-shaped or tablet-shaped particles and then sieving the same can be mentioned. The production method is not particularly limited as long as it is graphite particles showing physical properties.

【0016】上記黒鉛粉末の平均粒径が10〜30μm
が好適に用いられるが、12〜26μmがより好まし
く、15〜23μmが最も好ましい。この時、粒径10
μm未満の粉末の含有率を20%以下、好ましくは10
%以下、又は粒径25μmを越える粉末の含有率を20
%以下、好ましくは10%とすると更に好ましい。更に
粒径10μm未満および粒径25μmを越える粉末の含
有率がそれぞれ20%以下、好ましくは10%以下およ
び20%以下、好ましくはそれぞれ10%以下とすると
最も好ましい。BET法による比表面積は3.5〜1
0.0m2 /gの範囲のものを用いることができるが、
4.0〜8.0m2 /gが好ましく、4.0〜7.0m
2 /gが最も好ましい。
The average particle size of the graphite powder is 10 to 30 μm.
Is preferably used, more preferably 12 to 26 μm, most preferably 15 to 23 μm. At this time, a particle size of 10
The content of powder having a particle size of less than 20 μm
% Or a powder content of more than 25 μm
%, More preferably 10%. Most preferably, the content of powder having a particle size of less than 10 μm and exceeding 25 μm is 20% or less, preferably 10% or less and 20% or less, and more preferably 10% or less, respectively. Specific surface area by BET method is 3.5 to 1
A range of 0.0 m 2 / g can be used,
4.0-8.0 m 2 / g is preferred, and 4.0-7.0 m
2 / g is most preferred.

【0017】リチウムイオンがインターカレーションさ
れて生成する層間化合物のC6 Liを基準にした炭素1
g当たりの容量の理論値は372mAhであるが、この
ようにして選定した黒鉛粒子は、充放電レートを0.2
mA/cm2 とした、リチウム金属対極を用いた半電池
による電気容量測定を行い、比容量が330mAh/g
以上、より好ましくは350mAh/g以上と上記理論
容量に近ければ近いものほど好適に用いられる。
Carbon 1 based on C 6 Li, an intercalation compound formed by intercalation of lithium ions
The theoretical value of the capacity per g is 372 mAh, but the graphite particles selected in this way have a charge / discharge rate of 0.2
was mA / cm 2, subjected to electrical capacitance measurement by the half-cell using lithium metal counter electrode, specific capacity 330 mAh / g
As described above, more preferably 350 mAh / g or more, which is closer to the theoretical capacity, is more preferably used.

【0018】本発明で用いることのできる黒鉛粒子核表
面を被覆するための炭素前駆体としてはまず、液相で炭
素化を進行させる有機物として、軟ピッチから硬ピッチ
までのコールタールピッチ、石炭液化油等の石炭系重質
油、アスファルテン等の直流系重質油、原油、ナフサな
どの熱分解時に副生するナフサタール等分解系重質油等
の石油系重質油、分解系重質油を熱処理することで得ら
れる、エチレンタールピッチ、FCCデカントオイル、
アシュランドピッチなど熱処理ピッチ等を用いることが
できる。さらにポリ塩化ビニル、ポリビニルアセテー
ト、ポリビニルブチラール、ポリビニルアルコール等の
ビニル系高分子と3- メチルフェノールフォルムアルデ
ヒド樹脂、3、5- ジメチルフェノールフォルムアルデ
ヒド樹脂等の置換フェノール樹脂、アセナフチレン、デ
カシクレン、アントラセンなどの芳香族炭化水素、フェ
ナジンやアクリジンなどの窒素環化合物、チオフェンな
どのイオウ環化合物などの物質があげられる。また、固
相で炭素化を進行させる有機物としては、セルロースな
どの天然高分子、ポリ塩化ビニリデンやポリアクリロニ
トリルなどの鎖状ビニル樹脂、ポリフェニレン等の芳香
族系ポリマー、フルフリルアルコール樹脂、フェノール
−ホルムアルデヒド樹脂、イミド樹脂等熱硬化性樹脂や
フルフリルアルコールのような熱硬化性樹脂原料などが
あげられる。これらの有機物を必要に応じて、適宜溶媒
を選択して溶解希釈することにより、黒鉛粒子核の表面
に付着させ、使用することができる。
As a carbon precursor for coating the graphite particle core surface which can be used in the present invention, first, as an organic substance which progresses carbonization in a liquid phase, coal tar pitch from soft pitch to hard pitch, coal liquefaction Coal-based heavy oil such as oil, direct-current heavy oil such as asphaltenes, petroleum-based heavy oil such as naphthatal-derived cracked heavy oil by-produced during thermal cracking of crude oil and naphtha, and cracked heavy oil. Ethylene tar pitch, FCC decant oil obtained by heat treatment,
A heat treatment pitch such as an Ashland pitch can be used. Furthermore, vinyl polymers such as polyvinyl chloride, polyvinyl acetate, polyvinyl butyral, and polyvinyl alcohol, and substituted phenol resins such as 3-methylphenol formaldehyde resin and 3,5-dimethylphenol formaldehyde resin, acenaphthylene, decacyclene, and anthracene. Substances such as aromatic hydrocarbons, nitrogen ring compounds such as phenazine and acridine, and sulfur ring compounds such as thiophene are exemplified. Examples of the organic substance that progresses carbonization in the solid phase include natural polymers such as cellulose, chain vinyl resins such as polyvinylidene chloride and polyacrylonitrile, aromatic polymers such as polyphenylene, furfuryl alcohol resin, and phenol-formaldehyde. Examples thereof include thermosetting resins such as resins and imide resins, and thermosetting resin raw materials such as furfuryl alcohol. These organic substances can be used by adhering to the surface of the graphite particle nucleus by dissolving and diluting these organic substances, if necessary, by appropriately selecting a solvent.

【0019】本願発明においては、通常、かかる黒鉛粒
子核と炭素前駆体を混合したものを加熱し中間物質を得
て、その後炭化焼成、粉砕することにより、最終的に黒
鉛粒子核の表面に炭素質物の表層を形成させた複層構造
の炭素質粉末を得るが、複層構造の炭素質粉末中の炭素
質物の割合は50重量%以下0.1重量%以上、好まし
くは25重量%以下0.5重量%以上、更に好ましくは
15重量%以下1重量%以上、特に好ましくは10重量
%以下2重量%以上となるように調整する。
In the present invention, usually, a mixture of the graphite particle nucleus and the carbon precursor is heated to obtain an intermediate substance, which is then carbonized, fired and pulverized, so that the surface of the graphite particle nucleus is finally A carbonaceous powder having a multilayer structure in which a surface layer of the carbonaceous material is formed is obtained. The ratio of the carbonaceous material in the carbonaceous powder having the multilayer structure is 50% by weight or less and 0.1% by weight or more, preferably 25% by weight or less. The content is adjusted to be at least 0.5% by weight, more preferably at most 15% by weight and at least 1% by weight, particularly preferably at most 10% by weight and at most 2% by weight.

【0020】一方、本願発明のかかる複層炭素質物を得
るための製造工程は以下の4工程に分けられる。
On the other hand, the production process for obtaining such a multi-layer carbonaceous material according to the present invention is divided into the following four processes.

【0021】第1工程 黒鉛粒子と炭素前駆体、更に必要に応じて溶媒とを種々
の市販の混合機や混練機等を用いて混合し、混合物を得
る工程。
First step: a step of mixing graphite particles, a carbon precursor and, if necessary, a solvent using various commercially available mixers and kneaders to obtain a mixture.

【0022】第2工程 必要に応じ前記混合物を攪拌しながら加熱し、溶媒を除
去した中間物質を得る工程。
Second step: a step of heating the mixture with stirring, if necessary, to obtain an intermediate from which the solvent has been removed.

【0023】第3工程 前記混合物又は中間物質を、窒素ガス、炭酸ガス、アル
ゴンガス等の不活性ガス雰囲気下で700℃以上280
0℃以下に加熱し、炭素化物質を得る工程。
Third step: The mixture or the intermediate substance is heated to 700 ° C. or more and 280 ° C. in an atmosphere of an inert gas such as nitrogen gas, carbon dioxide gas, and argon gas.
A step of heating to 0 ° C. or lower to obtain a carbonized substance.

【0024】第4工程 前記炭素化物質を必要に応じて粉砕、解砕、分級処理な
ど粉体加工する工程。
Fourth step: a step of subjecting the carbonized material to powder processing such as pulverization, crushing, and classification as required.

【0025】これらの工程中第2工程及び第4工程は場
合によっては省略可能であり、第4工程は第3工程の前
に行ってもよい。
In these steps, the second step and the fourth step can be omitted in some cases, and the fourth step may be performed before the third step.

【0026】また、第3工程の加熱処理条件としては、
熱履歴温度条件が重要である。その温度下限は炭素前駆
体の種類、その熱履歴によっても若干異なるが通常70
0℃以上、好ましくは900℃以上である。一方、上限
温度は基本的に黒鉛粒子核の結晶構造を上回る構造秩序
を有しない温度まで上げることができる。従って熱処理
の上限温度としては、通常2800℃以下、好ましくは
2000℃以下、更に好ましくは1500℃以下が好ま
しい範囲である。このような熱処理条件において、昇温
速度、冷却速度、熱処理時間などは目的に応じて任意に
設定する事ができる。また、比較的低温領域で熱処理し
た後、所定の温度に昇温する事もできる。なお、本工程
に用いる反応機は回分式でも連続式でも又、一基でも複
数基でもよい。
The heat treatment conditions in the third step include:
Thermal history temperature conditions are important. The lower limit of the temperature slightly varies depending on the type of the carbon precursor and its thermal history, but it is usually 70.
The temperature is 0 ° C. or higher, preferably 900 ° C. or higher. On the other hand, the upper limit temperature can be raised to a temperature that does not basically have a structural order exceeding the crystal structure of the graphite particle nucleus. Therefore, the upper limit temperature of the heat treatment is usually 2800 ° C. or lower, preferably 2000 ° C. or lower, and more preferably 1500 ° C. or lower. Under such heat treatment conditions, the rate of temperature rise, cooling rate, heat treatment time and the like can be arbitrarily set according to the purpose. After the heat treatment in a relatively low temperature range, the temperature can be raised to a predetermined temperature. The reactor used in this step may be a batch type or a continuous type, and may be a single unit or a plurality of units.

【0027】このようにして炭素質物の表層を形成させ
た本願発明の複層構造の炭素質粉末材料は、ラマンスペ
クトル分析によるピーク強度比R値や、X線広角回折の
回折図において得られるd002、Lcの値において、
核となる黒鉛材料の結晶化度を上回らないこと、すなわ
ちR値は核のその値以上で、半値幅Δvは、核のその値
以上、d002値は、核のその値以上で、Lcは核のそ
の値以下であることが好ましい。具体的な複層構造の炭
素質粉末材料のR値としては、0. 01以上1. 0以
下、好ましくは0. 05以上0. 8以下、より好ましく
は0. 1以上0.6以下、さらに好ましくは0. 2以上
0. 4以下の範囲で、かつ、核の値以上であることが挙
げられる。また、平均粒径が11〜40μmのものが好
適に用いられるが、13〜30μmがより好ましく、1
6〜25μmが最も好ましい。この時、粒径10μm未
満の粉末の含有率を20%以下、好ましくは10%以
下、又は粒径25μmを越える粉末の含有率を20%以
下、好ましくは10%以下とすると更に好ましい。更に
粒径10μm未満および粒径25μmを越える粉末の含
有率がそれぞれ20%以下、好ましくは10%以下およ
び20%以下、好ましくはそれぞれ10%以下とすると
最も好ましい。また、粒子の一番薄い部分の厚さの平均
値が4μm以上平均粒径以下であるものが好ましい。更
にBET法による比表面積が1.0〜5.0m2 /g、
より好ましくは1.5〜4.0m2 /g、更に好ましく
は2.0〜3.5m2 /gのものが好適に用いられる。
複層構造の炭素質粉末材料のタッピング密度は炭素被覆
により使用した核黒鉛材料よりも更に向上するが、0.
7〜1.2g/ccの範囲に制御することが望ましい。
このような範囲に入る炭素質粉末をバインダーや各種添
加剤とともに混合し、銅やニッケル等の集電体上に塗布
や圧着などの方法により電極として使用できるよう成形
する。そののち、平板プレスやロールプレス等で圧延す
ることにより電極上の活物質層の密度(以下極板密度と
呼ぶ)を調整する。この時、極板密度を1.2より大き
く1.6以下とすることにより、より好ましくは1.3
以上1.5以下とすることにより電池の低温放電時や高
率放電時の電池容量を低下させることなく、電池の単位
体積当たりの容量を最大に引き出すことができるように
なる。このようにして作成した負極と通常使用されるリ
チウムイオン電池用の金属カルコゲナイド系正極を組み
合わせて構成した電池は、4V級の高電圧を実現でき、
かつ、容量が大きく、初期サイクルに認められる不可逆
容量が小さく、高温下での放置における電池の保存性お
よび信頼性が高く、高率放電特性及び低温における放電
特性に極めて優れる。この場合のカルコゲナイド系正極
はLixMO2 (Mは1種以上の遷移金属、x=0〜
1. 2)が好適であり、特に、LixCoO2、Lix
NiO2 、LixMn2 4 および、それらのCo、N
i、Mnの一部を他の遷移金属などの元素で置換したも
のが好適である。
The carbonaceous powder material having a multilayer structure of the present invention having the surface layer of carbonaceous material formed in this way has a peak intensity ratio R value obtained by Raman spectrum analysis and d002 obtained in a diffractogram of X-ray wide-angle diffraction. , Lc,
That is, the crystallinity of the graphite material as a nucleus does not exceed the crystallinity, that is, the R value is not less than that value of the nucleus, the half width Δv is not less than that value of the nucleus, the d002 value is not less than that value of the nucleus, and Lc is Is preferably less than or equal to that value. The R value of the carbonaceous powder material having a specific multilayer structure is 0.01 or more and 1.0 or less, preferably 0.05 or more and 0.8 or less, more preferably 0.1 or more and 0.6 or less. Preferably, it is in the range of 0.2 or more and 0.4 or less, and is not less than the value of the core. Further, those having an average particle size of 11 to 40 μm are preferably used, but 13 to 30 μm is more preferable, and
Most preferred is 6 to 25 μm. At this time, it is more preferable that the content of powder having a particle size of less than 10 μm is 20% or less, preferably 10% or less, or the content of powder having a particle size of more than 25 μm is 20% or less, preferably 10% or less. Most preferably, the content of powder having a particle size of less than 10 μm and exceeding 25 μm is 20% or less, preferably 10% or less and 20% or less, and more preferably 10% or less, respectively. Further, it is preferable that the average value of the thickness of the thinnest part of the particles is not less than 4 μm and not more than the average particle size. Furthermore, the specific surface area by the BET method is 1.0 to 5.0 m 2 / g,
More preferably 1.5~4.0m 2 / g, more preferably it is suitably used in 2.0 to 3.5 2 / g.
The tapping density of the carbonaceous powder material having a multilayer structure is further improved as compared with the nuclear graphite material used by the carbon coating.
It is desirable to control within the range of 7 to 1.2 g / cc.
A carbonaceous powder falling within such a range is mixed with a binder and various additives, and is molded on a current collector such as copper or nickel so as to be used as an electrode by a method such as coating or pressing. After that, the density of the active material layer on the electrode (hereinafter referred to as electrode density) is adjusted by rolling with a flat plate press, a roll press or the like. At this time, by setting the electrode plate density to be greater than 1.2 and less than or equal to 1.6, more preferably 1.3.
By setting the ratio to 1.5 or less, the capacity per unit volume of the battery can be maximized without lowering the battery capacity at the time of low-temperature discharge or high-rate discharge. A battery formed by combining the negative electrode thus prepared and a metal chalcogenide-based positive electrode for a commonly used lithium ion battery can realize a high voltage of 4V class,
In addition, the battery has a large capacity, a small irreversible capacity observed in the initial cycle, a high storage stability and reliability of the battery when left at high temperatures, and extremely excellent high-rate discharge characteristics and low-temperature discharge characteristics. In this case, the chalcogenide-based positive electrode is LixMO 2 (M is one or more transition metals, x = 0 to 0).
1.2) is preferable, and particularly, LixCoO 2 , Lix
NiO 2 , LixMn 2 O 4 and their Co, N
Those in which a part of i and Mn are replaced with an element such as another transition metal are preferable.

【0028】本発明は特に電解液を限定するものではな
いが、上記4V級正極と本発明の負極を用いた電池に用
いられる電解液の溶媒としては耐酸化性及び低温特性に
優れるエチレンカーボネート、プロピレンカーボネー
ト、ブチレンカーボネートなどの環状カーボネート1種
以上と、ジメチルカーボネート、ジエチルカーボネー
ト、エチルメチルカーボネートなどの鎖状カーボネート
1種以上との混合溶媒を主成分とするのが好適である。
また、必要に応じて、脂肪族カルボン酸エステルやエー
テル類などの他の溶媒を混合できる。混合比率は、体積
換算で環状カーボネートが溶媒全体の5〜50%特に1
5〜40%、鎖状カーボネートが10〜90%、特に2
0〜80%の範囲が好ましい。
Although the present invention does not particularly limit the electrolytic solution, ethylene carbonate having excellent oxidation resistance and low-temperature characteristics is used as a solvent for the electrolytic solution used in the battery using the above-mentioned 4V-class positive electrode and the negative electrode of the present invention. It is preferable to use as a main component a mixed solvent of one or more cyclic carbonates such as propylene carbonate and butylene carbonate and one or more chain carbonates such as dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate.
Further, if necessary, other solvents such as aliphatic carboxylic acid esters and ethers can be mixed. The mixing ratio is such that the cyclic carbonate accounts for 5 to 50%, particularly 1
5-40%, chain carbonate 10-90%, especially 2
A range from 0 to 80% is preferred.

【0029】また、正極に3V級などの比較的低電位の
材料を使用する場合は、上記溶媒以外の溶媒も使用でき
る。
When a material having a relatively low potential such as a 3 V class is used for the positive electrode, a solvent other than the above solvents can be used.

【0030】これらの溶媒の溶質にはリチウム塩が使用
される。一般的に知られているリチウム塩にはLiCl
4 、LiBF4 、LiPF6 、LiAlCl4 、Li
SbF6 、LiSCN、LiCl、LiCF3 SO3
LiCF3 CO2 、Li(CF3 SO2 2 、LiAs
6 、LiN(CF3 SO2 2 などがある。
As the solute of these solvents, lithium salts are used. Commonly known lithium salts include LiCl
O 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , Li
SbF 6 , LiSCN, LiCl, LiCF 3 SO 3 ,
LiCF 3 CO 2 , Li (CF 3 SO 2 ) 2 , LiAs
F 6 and LiN (CF 3 SO 2 ) 2 .

【0031】上記以外の電池構成上必要な部材の選択に
ついては何ら制約を設けるものではない。
There are no restrictions on the selection of other components necessary for the battery configuration other than those described above.

【0032】上記炭素質物の表層を形成させた複層構造
の炭素質粉末材料を負極として用いた電池は、炭素質物
の表層を形成させない黒鉛粒子や上記(1)〜(6)の
特性を有しない黒鉛粒子を用いて炭素質物の表層を形成
させた複層構造の炭素質粉末材料を負極として用いた電
池に比べ、高率充放電性能および低温での高率放電性能
を向上する。その上、高温下でも電解液中の有機溶媒を
分解させ難く、セル内圧の上昇をさせ難くなるため従来
問題であった電解液の漏液事故を防ぐことができる。ま
た、複層構造の炭素質粉末にすることで比表面積が小さ
くなるため、高温下でも電解液中の有機溶媒を分解させ
難く、高温での電池性能の劣化を小さくすることができ
る。
A battery using as a negative electrode a carbonaceous powder material having a multilayer structure in which the surface layer of the carbonaceous material is formed has graphite particles which do not form the surface layer of the carbonaceous material and has the characteristics described in (1) to (6). As compared with a battery using as a negative electrode a carbonaceous powder material having a multilayer structure in which a carbonaceous material surface layer is formed using non-graphite particles, high-rate charge / discharge performance and high-rate discharge performance at a low temperature are improved. In addition, it is difficult to decompose the organic solvent in the electrolytic solution even at a high temperature, and it is difficult to increase the internal pressure of the cell. Further, since the specific surface area is reduced by using a carbonaceous powder having a multilayer structure, it is difficult to decompose the organic solvent in the electrolytic solution even at a high temperature, and deterioration of battery performance at a high temperature can be reduced.

【0033】[0033]

【実施例】以下、本発明の実施形態について、図表を用
いて詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0034】(測定法) (1)体積基準平均粒径 界面活性剤にポリオキシエチレン(20)ソルビタンモ
ノラウレートの2vol%水溶液を約1cc用い、これ
を予め炭素質粉末に混合し、しかる後にイオン交換水を
分散媒として、堀場製作所社製レーザー回折式粒度分布
計「LA−700」にて、体積基準平均粒径(メジアン
径)を測定した。
(Measurement Method) (1) Volume-Based Average Particle Size About 1 cc of a 2 vol% aqueous solution of polyoxyethylene (20) sorbitan monolaurate was used as a surfactant, and this was mixed with carbonaceous powder in advance and then Using ion-exchanged water as a dispersion medium, the volume-based average particle diameter (median diameter) was measured with a laser diffraction particle size distribution analyzer “LA-700” manufactured by Horiba, Ltd.

【0035】(2)タッピング密度 (株)セイシン企業社製粉体密度測定器「タップデンサ
ー KYT−3000」を用い、サンプルが透過する篩
には、目開き300μmの篩を使用し、20ccのタッ
ピングセルに粉体を落下させ、セルが満杯に充填された
後、ストローク長10mmのタッピングを1000回行
って、その時のタッピング密度を測定した。
(2) Tapping Density Using a powder density measuring instrument “Tap Denser KYT-3000” manufactured by Seishin Enterprise Co., Ltd., a sieve having a mesh size of 300 μm is used as a sieve through which the sample passes, and a 20 cc tapping cell is used. After the cell was completely filled, tapping with a stroke length of 10 mm was performed 1,000 times, and the tapping density at that time was measured.

【0036】(3)BET比表面積測定 大倉理研社製AMS−8000を用い、予備乾燥として
350℃に加熱し、15分間窒素ガスを流した後、窒素
ガス吸着による相対圧0.3におけるBET1点法によ
って測定した。
(3) Measurement of BET specific surface area AMS-8000 manufactured by Okura Riken Co., Ltd. was heated to 350 ° C. as preliminary drying, and nitrogen gas was flowed for 15 minutes. It was measured by the method.

【0037】(4)X線回折 試料に対して約15%のX線標準高純度シリコン粉末を
加えて混合し、試料セルに詰め、グラファイトモノクロ
メーターで単色化したCuKα線を線源とし、反射式デ
ィフラクトメーター法によって、広角X線回折曲線を測
定した。測定により得られた広角X線回折曲線を学振法
に基づき、(002)面の面間隔(d002)およびC
軸方向の結晶子の大きさ(Lc)を測定した。
(4) X-ray Diffraction Approximately 15% of an X-ray standard high-purity silicon powder is added to the sample and mixed, packed into a sample cell, and a CuKα ray monochromatized by a graphite monochromator is used as a radiation source. The wide-angle X-ray diffraction curve was measured by the formula diffractometer method. Based on the Gakushin method, the wide-angle X-ray diffraction curve obtained by the measurement was used to determine the plane spacing (d002) of the (002) plane and C
The crystallite size (Lc) in the axial direction was measured.

【0038】(5)ラマン測定 日本分光社製NR−1800を用い、波長514.5n
mのアルゴンイオンレーザー光を用いたラマンスペクト
ル分析において、1580cm-1の付近のピークPAの
強度IA、1360cm-1の範囲のピークPBの強度I
Bを測定し、その強度の比R=IB/IAを測定した。
また、1580cm-1の付近のピークPAの半値幅を波
数(cm-1)を単位として求めた。試料の調製にあたっ
ては、粉末状態のものを自然落下によりセルに充填し、
セル内のサンプル表面にレーザー光を照射しながら、セ
ルをレーザー光と垂直な面内で回転させて測定を行っ
た。
(5) Raman Measurement Using NR-1800 manufactured by JASCO Corporation, wavelength: 514.5 n
In Raman spectrum analysis using an argon ion laser beam of m, the intensity of the peak PA around the 1580 cm -1 IA, the intensity of the peak PB in the range of 1360 cm -1 I
B was measured, and the intensity ratio R = IB / IA was measured.
Moreover, it was determined in units of wave number (cm -1) the half-value width of the peak PA around the 1580 cm -1. When preparing the sample, fill the cell in the powder state by natural fall,
The measurement was performed by rotating the cell in a plane perpendicular to the laser beam while irradiating the sample surface in the cell with the laser beam.

【0039】(6)炭素粉末の一番薄い部分の厚さの平
均値 炭素粉末の厚さの平均値は、各供試黒鉛粉末を金型を用
い加圧成形した後、成型体を加圧方向と平行に切断した
面のSEM像から求めた。すなわち、炭素粉末の一番薄
い部分の厚さ方向の値を100個以上測定し、その平均
値を求めた。
(6) Average value of the thickness of the thinnest part of the carbon powder The average value of the thickness of the carbon powder is determined by pressing each test graphite powder using a mold and then pressing the molded body. It was determined from an SEM image of a plane cut parallel to the direction. That is, 100 or more values in the thickness direction of the thinnest portion of the carbon powder were measured, and the average value was obtained.

【0040】(7)(110)/(004)のX線ピー
ク強度比の測定 (110)/(004)のX線ピーク強度比は金型を用
い、炭素粉末を加圧し、密度約1. 7g/ccのペレッ
ト状に成形し、広角X線回折測定により得られる(11
0)/(004)のピーク強度比を算出し、その平均値
を求めた。(004)面と(110)面の回折線は黒鉛
結晶の炭素六員環網状平面並びにその垂直面での回折線
である。鱗片形状の多い場合、ディスク状またはタブレ
ット状の黒鉛粒子が多い場合に比べて、ペレット作成時
に加圧面と平行方向に黒鉛粒子が選択的に配向する。従
って、ディスク状またはタブレット状の黒鉛粒子に比べ
て鱗片状粒子が多くなると(110)/(004)ピー
ク強度比は小さくなる。
(7) Measurement of X-ray peak intensity ratio of (110) / (004) The X-ray peak intensity ratio of (110) / (004) was measured by pressing a carbon powder using a mold and applying a density of about 1. 7 g / cc in the form of a pellet and obtained by wide-angle X-ray diffraction measurement (11
The peak intensity ratio of (0) / (004) was calculated, and the average value was calculated. The diffraction lines on the (004) plane and the (110) plane are the diffraction lines on the carbon six-membered ring network plane of the graphite crystal and the vertical plane thereof. In the case where the scale-like shape is large, the graphite particles are selectively oriented in the direction parallel to the pressing surface at the time of pellet formation, as compared with the case where the disk-shaped or tablet-shaped graphite particles are large. Therefore, when the scale-like particles increase as compared with the disk-like or tablet-like graphite particles, the (110) / (004) peak intensity ratio decreases.

【0041】(8)平均円形度の測定 東亜医用電子社製フロー式粒子像分析装置「FPIA−
1000」を使用し、水に分散した黒鉛粒子をCCDカ
メラで1/30秒ごとに撮像し、その粒子像をリアルタ
イム解析することにより全粒子に対する平均円形度の算
出を行った。分散媒にはイオン交換水を使用し、界面活
性剤には、ポリオキシエチレン(20)ソルビタンモノ
ラウレートを使用した。平均円形度とは、粒子投影面積
相当円の周囲長を分子とし、撮像された粒子投影像の周
囲長を分母とした比率で、粒子像が真円に近いほど1と
なり、粒子像が細長いあるいはデコボコしているほど小
さい値になる。
(8) Measurement of average circularity Flow particle image analyzer “FPIA-” manufactured by Toa Medical Electronics Co., Ltd.
Using "1000", graphite particles dispersed in water were imaged every 1/30 second with a CCD camera, and the particle images were analyzed in real time to calculate the average circularity for all particles. Ion-exchanged water was used as the dispersion medium, and polyoxyethylene (20) sorbitan monolaurate was used as the surfactant. The average circularity is a ratio of a perimeter of a circle corresponding to a particle projected area as a numerator and a perimeter of a captured particle projected image as a denominator. The smaller the value, the smaller the value.

【0042】(基礎実験例1)図1はリチウムイオン二
次電池の負極の可逆容量および不可逆容量を測定するた
めのコイン形セルの断面図である。図1において、ステ
ンレス鋼製セルケース1の内底面にステンレス鋼製のエ
キスパンドメタルからなるグリッド3を予めスポット溶
接しておき、このグリッド3とリチウムイオン二次電池
の負極用炭素粉末を主成分とする合剤を缶内成型法によ
り炭素電極5として一体に固定する。炭素電極5の合剤
は、供試用炭素粉末とアクリル系結着剤とを重量比で1
00:5の比率で混合したものである。ステンレス鋼製
のふた2の周縁には、ポリプロピレン製ガスケット7が
嵌着されており、かつ、ふた2の内面には金属リチウム
4が圧着されている。炭素電極5に非水電解質を注加含
浸させた後、微孔性ポリエチレン膜からなるセパレータ
6を介してガスケット7付のふた2をセルケース1にカ
ップリングし、セルケース1の上縁開口部を内方向にカ
ールさせて封口する。なお、非水電解質としては、エチ
レンカーボネートとジエチルカーボネートとの体積比
1:1の混合溶媒に六フッ化リン酸リチウムを1mol
/lの濃度に溶解させた有機電解液を用いた。炭素電極
5に14種類の供試炭素粉末を用いてセルを作製し、炭
素電極5を正極、金属リチウム電極4を負極として、2
0℃のもとで電流密度0.3mA/cm2 の定電流で充
電および放電する。セル電圧が0Vになるまで炭素にリ
チウムをインターカレートした後、セル電圧が1.0V
になるまで炭素からリチウムをディインターカレートし
て求めた量を可逆容量とする。インターカレートに要し
た電気量から可逆容量を除した値を不可逆容量とした。
なお、これらテストセルの充放電終止電圧値は、負極炭
素/正極LiCoO2 系の実用電池の充電終止電圧4.
20Vおよび放電終止電圧2.75Vにほぼ相当する。
(Basic Experimental Example 1) FIG. 1 is a sectional view of a coin-shaped cell for measuring a reversible capacity and an irreversible capacity of a negative electrode of a lithium ion secondary battery. In FIG. 1, a grid 3 made of stainless steel expanded metal is spot-welded to the inner bottom surface of a stainless steel cell case 1 in advance, and the grid 3 and carbon powder for a negative electrode of a lithium ion secondary battery are mainly used. The resulting mixture is integrally fixed as a carbon electrode 5 by an in-can molding method. The mixture of the carbon electrode 5 was prepared by mixing the test carbon powder and the acrylic binder in a weight ratio of 1%.
They are mixed at a ratio of 00: 5. A gasket 7 made of polypropylene is fitted around the periphery of the lid 2 made of stainless steel, and metallic lithium 4 is pressed on the inner surface of the lid 2. After pouring and impregnating the carbon electrode 5 with a non-aqueous electrolyte, the lid 2 with the gasket 7 is coupled to the cell case 1 via the separator 6 made of a microporous polyethylene membrane, and the upper edge opening of the cell case 1 is opened. Is curled inward and sealed. In addition, as a non-aqueous electrolyte, 1 mol of lithium hexafluorophosphate was mixed in a mixed solvent of ethylene carbonate and diethyl carbonate at a volume ratio of 1: 1.
An organic electrolyte dissolved at a concentration of / l was used. A cell was prepared using 14 types of test carbon powders for the carbon electrode 5, and the carbon electrode 5 was used as a positive electrode, the metal lithium electrode 4 was used as a negative electrode, and 2
The battery is charged and discharged at a constant current of 0.3 mA / cm 2 at 0 ° C. After intercalating lithium with carbon until the cell voltage becomes 0 V, the cell voltage becomes 1.0 V
The amount determined by deintercalating lithium from carbon until the value becomes the reversible capacity. The value obtained by dividing the reversible capacity from the amount of electricity required for intercalation was defined as the irreversible capacity.
The charge-discharge end voltage value of these test cells was determined as the charge end voltage of the negative electrode carbon / positive electrode LiCoO 2 -based practical battery.
20V and a discharge end voltage of 2.75V.

【0043】常法により粉砕して得られる鱗片状人造黒
鉛、天然黒鉛および種々の粉砕方法によりタッピング密
度を向上させた人造及び天然黒鉛粉末(試料No.1〜
15)およびそれらとの比較試料として、特開平7−1
34988号公報に開示されているメソカーボンマイク
ロビーズを黒鉛化した球状のメソカーボンマイクロビー
ズ(MCMB、試料No.16)および石油ピッチコー
クス粉末(試料No.17)を負極用供試炭素粉末と
し、それら粉末の物性値と前述した可逆容量と不可逆容
量とを表1にまとめて示す。
Flake artificial graphite and natural graphite obtained by pulverization by a conventional method, and artificial and natural graphite powders having improved tapping densities by various pulverization methods (Sample Nos. 1 to 4)
15) and a comparative sample thereof are disclosed in JP-A-7-17-1.
No. 34988, the spherical mesocarbon microbeads obtained by graphitizing the mesocarbon microbeads (MCMB, sample No. 16) and petroleum pitch coke powder (sample No. 17) were used as the test carbon powder for the negative electrode, Table 1 summarizes the physical properties of the powders and the above-mentioned reversible capacity and irreversible capacity.

【0044】[0044]

【表1】 [Table 1]

【0045】表1の結果からLcが1000Å未満であ
る比較試料の球状黒鉛粉末(試料No.16)およびコ
ークス粉末(試料No.17)は、不可逆容量は比較的
小さいが、エネルギー密度に大きく影響する可逆容量は
どちらも300mAh/g未満と小さかった。これらに
対して、原材料が天然黒鉛および人造黒鉛粉末の試料N
o.1〜15の可逆容量はすべて少なくとも350mA
h/gで、比容量の理論値(372mAh/g)に近似
した値となった。これらのなかで、試料No.10〜1
5の黒鉛粉末の不可逆容量は20〜26mAh/gで、
他の黒鉛粉末(試料No.1〜9)のそれより小さいこ
とが注目される。
From the results in Table 1, the comparative spheroidal graphite powder (Sample No. 16) and coke powder (Sample No. 17) having Lc less than 1000 ° have relatively small irreversible capacities, but have a large effect on energy density. Both reversible capacities were as small as less than 300 mAh / g. On the other hand, the raw materials were samples N of natural graphite and artificial graphite powder.
o. All reversible capacities from 1 to 15 are at least 350 mA
h / g, the value approximated the theoretical value of the specific capacity (372 mAh / g). Among these, sample No. 10-1
The irreversible capacity of the graphite powder of No. 5 is 20 to 26 mAh / g,
It is noted that it is smaller than that of other graphite powders (Sample Nos. 1 to 9).

【0046】本発明の前提条件として広角X線回折によ
る(002)面の面間隔(d002)が3.37Å未満
であり、C軸方向の結晶子の大きさ(Lc)が少なくと
も1000Å以上である結晶化度および純度が高い天然
黒鉛または人造黒鉛をリチウムイオン二次電池の負極材
に用いることより高水準の可逆容量が得られることが理
解される。
As preconditions for the present invention, the plane spacing (d002) of the (002) plane by wide-angle X-ray diffraction is less than 3.37 °, and the crystallite size (Lc) in the C-axis direction is at least 1000 °. It is understood that a high level of reversible capacity can be obtained by using natural graphite or artificial graphite having high crystallinity and purity as the negative electrode material of the lithium ion secondary battery.

【0047】(基礎実験例2)基礎実験例1で、可逆容
量および不可逆容量を求めた負極用炭素粉末(試料N
o.1〜17)を用いて、円筒形セルを作製し、低温に
おける高率放電特性および充電状態で高温放置した場合
の漏液性を測定した。
(Basic Experimental Example 2) Carbon powder for a negative electrode (sample N
o. 1 to 17), a cylindrical cell was produced, and the high-rate discharge characteristics at low temperature and the liquid leakage when left in a charged state at high temperature were measured.

【0048】図2は渦巻状電極群構成の円筒形セルの断
面図である。図2において、各1枚の帯状正極10と負
極11とを微孔性ポリエチレン膜からなるセパレータ1
2を介して渦巻状に捲回して電極群が構成される。正極
10は活物質材料のリチウムとコバルトとの複合酸化物
であるLiCoO2 と導電材のカーボンブラックと結着
剤のポリ四フッ化エチレン(PTFE)とを重量比で1
00:3:10の割合で混合したペーストを集電体であ
るアルミニウム箔の両面に塗着、乾燥後ロールプレス
し、所定寸法に裁断したものである。なお、結着剤のP
TFEはディスパージョン溶液のものを用いた。正極1
0のアルミニウム箔には、正極リード片13がスポット
溶接されている。負極11は供試炭素粉末にアクリル系
結着剤溶液を加えて混合したペーストを集電体である銅
箔の両面に塗着、乾燥後ロールプレスし、所定の寸法に
裁断したものである。負極11の銅箔には負極リード片
14がスポット溶接されている。捲回した電極群の下面
に底部絶縁板15を装着して、ニッケル鍍鋼板製のセル
ケース16内に収容した後、負極リード片14をセルケ
ース16の内底面にスポット溶接する。その後電極群上
に上部絶縁板17を載置してからセルケース16の開口
部の所定位置に溝入れし、所定量の有機電解液を注入含
浸させる。有機電解液としては基礎実験例1と同じ有機
電解液を用いた。その後、周縁にガスケット18が嵌着
された封口板19の内底面に正極リード片13をスポッ
ト溶接する。封口板19をセルケース16の開口部にガ
スケット18を介して嵌め込んで、セルケース16の上
縁を内方向にカールして封口すればセルは完成する。
FIG. 2 is a sectional view of a cylindrical cell having a spiral electrode group configuration. In FIG. 2, one strip-shaped positive electrode 10 and one strip-shaped negative electrode 11 are separated by a separator 1 made of a microporous polyethylene film.
The electrode group is formed by spirally winding through the electrodes 2. The positive electrode 10 is composed of LiCoO 2 , a composite oxide of lithium and cobalt as active material, carbon black as conductive material, and polytetrafluoroethylene (PTFE) as binder at a weight ratio of 1%.
A paste mixed at a ratio of 00: 3: 10 is applied to both sides of an aluminum foil as a current collector, dried, roll-pressed, and cut into a predetermined size. In addition, P of the binder
The TFE used was a dispersion solution. Positive electrode 1
The positive electrode lead piece 13 is spot-welded to the aluminum foil of No. 0. The negative electrode 11 is obtained by applying a paste obtained by adding an acrylic binder solution to a test carbon powder on both sides of a copper foil serving as a current collector, drying the roll, and cutting it into a predetermined size. A negative electrode lead piece 14 is spot-welded to the copper foil of the negative electrode 11. After attaching the bottom insulating plate 15 to the lower surface of the wound electrode group and housing it in the cell case 16 made of nickel-plated steel plate, the negative electrode lead piece 14 is spot-welded to the inner bottom surface of the cell case 16. After that, the upper insulating plate 17 is placed on the electrode group, and is then grooved at a predetermined position in the opening of the cell case 16, and a predetermined amount of the organic electrolyte is injected and impregnated. As the organic electrolyte, the same organic electrolyte as used in Example 1 was used. Thereafter, the positive electrode lead piece 13 is spot-welded to the inner bottom surface of the sealing plate 19 in which the gasket 18 is fitted around the periphery. The cell is completed when the sealing plate 19 is fitted into the opening of the cell case 16 via the gasket 18 and the upper edge of the cell case 16 is curled inward and sealed.

【0049】各セルの放電容量は負極容量で規制される
ようにし、種類にかかわらず各セルの負極用炭素粉末重
量を同じにした。他の部品材料の使用量、作製方法は全
く同じにして負極用炭素粉末の比較ができるようにし
た。
The discharge capacity of each cell was regulated by the capacity of the negative electrode, and the weight of the carbon powder for the negative electrode of each cell was the same regardless of the type. The amounts of other component materials used and the production method were exactly the same so that the carbon powder for the negative electrode could be compared.

【0050】17種類の負極用炭素粉末を用いたセルA
〜Q各5セルについて、20℃ですべてのセルを100
mA(1/5C)定電流で各セルの端子電圧が4.2V
になるまで充電した後、100mA(1/5C)定電流
で2.75Vまで放電して、1/5C放電容量を求め
た。その後、同様に充電した後500mA(1C)定電
流で2.75Vまで放電して、1C放電容量を求めた。
次いで、20℃で充電した後、−20℃で24時間放置
し、同じ−20℃で1C放電容量を求めた。各セルを2
0℃に静置し、セルの温度が20℃に復してから同じ電
池で充電した後、100℃で1日放置し、セルの温度が
20℃になってから漏液の有無を全セルについて観察し
た。
Cell A using 17 kinds of carbon powder for negative electrode
~ Q For 5 cells each, 100 ° C for all cells at 20 ° C
The terminal voltage of each cell is 4.2 V at a constant current of mA (1/5 C).
, And then discharged at a constant current of 100 mA (1 / 5C) to 2.75 V to obtain a 1 / 5C discharge capacity. Thereafter, the battery was charged in the same manner and then discharged at a constant current of 500 mA (1C) to 2.75 V to obtain a 1C discharge capacity.
Next, after charging at 20 ° C., the battery was allowed to stand at −20 ° C. for 24 hours, and the 1C discharge capacity was determined at the same −20 ° C. Each cell is 2
After the cell temperature was returned to 20 ° C, the battery was charged with the same battery, and then left at 100 ° C for 1 day. After the cell temperature reached 20 ° C, the presence or absence of liquid leakage was checked for all cells. Was observed.

【0051】供試炭素粉末の物性値に対比して、前述し
た電池性能(5セルの平均値)をまとめて表2に示す。
The above-mentioned battery performance (average value of 5 cells) is shown in Table 2 in comparison with the physical property values of the test carbon powder.

【0052】[0052]

【表2】 [Table 2]

【0053】表2から、表1で示した可逆容量が小さか
った試料No.16および17の20℃での1/5Cお
よび1C放電容量は低いが、試料No.1〜15の黒鉛
粉末のそれらは相対的に大きい。しかしながら試料N
o.1〜15の内で、低温における高率放電容量(−2
0℃、1C)が400mA以上を示したのは、試料N
o.1、2、3、6、7、8、9、10、11、12、
13、14、および15の黒鉛粉末によるセルA、B、
C、F、G、H、I、J、K、L、M、N、およびOで
あった。さらに、高温放置後に漏液が全く認められなか
ったのは、試料No.4、10、11、12、13、1
4、15、16、および17の炭素粉末によるセルD、
J、K、L、M、N、O、P、およびQであった。これ
らの結果からすべての電池性能にわたって優れていたの
は試料No.10、11、12、13、14および15
の黒鉛粉末によるセルJ、K、L、M、NおよびOであ
った。
From Table 2, it can be seen that Sample No. 1 in which the reversible capacity shown in Table 1 was small. Although the 1/5 C and 1 C discharge capacities at 20 ° C. of Samples 16 and 17 were low, Sample Nos. Those of 1 to 15 graphite powders are relatively large. However, sample N
o. Among 1-15, the high rate discharge capacity at low temperature (-2
0 ° C., 1C) showed 400 mA or more because the sample N
o. 1, 2, 3, 6, 7, 8, 9, 10, 11, 12,
Cells A, B, with graphite powders 13, 14, and 15
C, F, G, H, I, J, K, L, M, N, and O. Further, no leakage was observed after standing at a high temperature. 4, 10, 11, 12, 13, 1
Cell D with 4, 15, 16, and 17 carbon powders,
J, K, L, M, N, O, P, and Q. From these results, it was found that Sample No. 1 was excellent over all battery performances. 10, 11, 12, 13, 14 and 15
The cells were J, K, L, M, N, and O using graphite powders.

【0054】(実施例及び比較例)基礎実験例2で1/
5C放電容量、1C放電容量、−20℃での1C放電容
量および高温下で放置した場合の漏液性を測定したセル
で、すべての電池特性にわたって優れていた試料No.
10、11、12、13、14および15の黒鉛粉末に
よるセルJ、K、L、M、NおよびOの電池を高温下で
放置した後、基礎実験例2に記載した充放電条件で20
℃での1/5C放電容量を求めたところ、高温下で放置
する前の1/5C放電容量に比べ、70〜80%の放電
容量しか示さなかった。これらのセルは、高温下での放
置による漏液事故は皆無であり、電池の信頼性は向上し
たものの、電池特性の劣化が激しく、高温下に放置され
た場合においても、電池特性の劣化を小さくする必要が
ある。
(Examples and Comparative Examples)
Sample No. 5 was a cell in which the 5C discharge capacity, the 1C discharge capacity, the 1C discharge capacity at −20 ° C., and the liquid leakage when left at a high temperature were measured.
After the batteries of cells J, K, L, M, N and O made of graphite powder of 10, 11, 12, 13, 14 and 15 were left at a high temperature, they were charged under the charge / discharge conditions described in Basic Experimental Example 2 for 20 days.
When the 1 / C discharge capacity at ℃ ° C. was determined, it showed only 70 to 80% of the 容量 C discharge capacity before leaving at high temperature. These cells have no liquid leakage accidents due to being left at high temperatures, and although the reliability of the batteries has been improved, the battery characteristics have been severely degraded. Need to be smaller.

【0055】そこで、基礎実験例2で電池性能を測定し
た負極用炭素粉末(試料No.1〜17)をそれぞれ核
として、ナフサ分解時に得られる石油系タールピッチを
炭素前駆体として用いて炭素化後5重量%になるよう被
覆後、不活性ガス流の下、最終的に1200℃で熱処理
した。その後、室温まで冷却後、粉砕機を用いて解砕
し、一定の粒径分布をもった炭素系複合粉末を得た。こ
うして核の表面上に新しい炭素質物の表層を形成させた
複層構造の炭素質粉末(試料No.18〜34)を作成
し、負極用供試炭素粉末とした。
Then, carbonization was performed using the carbon powder for the negative electrode (sample Nos. 1 to 17) whose battery performance was measured in the basic experimental example 2 as a core and the petroleum tar pitch obtained at the time of naphtha decomposition as a carbon precursor. After coating to 5% by weight, a final heat treatment was performed at 1200 ° C. under an inert gas flow. Then, after cooling to room temperature, the mixture was pulverized using a pulverizer to obtain a carbon-based composite powder having a certain particle size distribution. Thus, a carbonaceous powder having a multilayer structure in which a new carbonaceous material surface layer was formed on the surface of the nucleus (sample Nos. 18 to 34) was prepared, and was used as a negative electrode test carbon powder.

【0056】17種類の負極用炭素粉末を用いた以外、
基礎実験例2と同様にそれぞれセルR〜AH各5セル作
製し、同様の電池性能を測定したのに加えて、高温放置
後漏液が見られなかったセルの1/5C放電容量を測定
した。
Except that 17 kinds of carbon powders for negative electrode were used,
Five cells R to AH were prepared in the same manner as in Basic Experimental Example 2, and in addition to measuring the same battery performance, the 1 / 5C discharge capacity of the cell in which no liquid leakage was observed after standing at high temperature was measured. .

【0057】供試炭素粉末の物性値に対して前述した電
池性能をまとめて表3に示す。
Table 3 summarizes the battery performance described above with respect to the physical properties of the test carbon powder.

【0058】[0058]

【表3】 [Table 3]

【0059】表3から、複層構造の炭素質粉末にするこ
とによる1/5C放電容量、1C放電容量、−20℃1
C放電容量の変化は見られなかった。しかしながら、基
礎実験例2で漏液が見られた試料No.1、2、3、
5、6、7、8および9を核にした複層構造の炭素質粉
末試料(No.18、19、20、22、23、24、
25、26)によるセルR、S、T、V、W、X、Y、
Zの漏液数は減少する傾向を示したが、漏液を止めるに
は不十分であった。一方、高温放置後に漏液が全く認め
られなかったのは、試料21、27、28、29、3
0、31、32、33および34の複層構造の炭素質粉
末によるセルU、AA、AB、AC、AD、AE、A
F、AGおよびAHであった。これらのセルの高温放置
後の1/5C放電容量は、高温放置前の1/5C放電容
量に対して82〜96%の値となり、複層構造の炭素質
粉末にすることで高温放置後の1/5C放電容量は向上
した。これらのなかで、試料27、28、29、30、
31および32の複層構造の炭素質粉末によるセルA
A、AB、AC、AD、AEおよびAFは、高温放置後
の1/5C放電容量はすべてすくなくとも530mAh
以上で、高温放置前の1/5C放電容量に対して93%
以上の値となった。これらの結果からすべての電池性能
にわたって優れていたのは試料No.27、28、2
9、30、31および32の複層構造の炭素質粉末によ
るセルAA、AB、AC、AD、AEおよびAFであっ
た。
From Table 3, 1/5 C discharge capacity, 1 C discharge capacity, -20 ° C.
No change in C discharge capacity was observed. However, in the sample No. 1, 2, 3,
Carbonaceous powder samples having a multilayer structure with nuclei of 5, 6, 7, 8 and 9 (Nos. 18, 19, 20, 22, 23, 24,
25, 26), cells R, S, T, V, W, X, Y,
The number of leaks of Z showed a tendency to decrease, but was insufficient to stop the leaks. On the other hand, the samples 21, 27, 28, 29, 3
Cells U, AA, AB, AC, AD, AE, A made of carbonaceous powder having a multilayer structure of 0, 31, 32, 33, and 34
F, AG and AH. The 1 / 5C discharge capacity of these cells after high-temperature storage was 82 to 96% of the 1 / 5C discharge capacity before high-temperature storage. The 1 / 5C discharge capacity improved. Among these, samples 27, 28, 29, 30,
Cell A using carbonaceous powder having a multilayer structure of 31 and 32
A, AB, AC, AD, AE and AF have a 1 / 5C discharge capacity after leaving at high temperature of at least 530 mAh.
As described above, 93% of the 1 / 5C discharge capacity before being left at high temperature
It became the above value. From these results, it was found that Sample No. 1 was excellent over all battery performances. 27, 28, 2
Cells AA, AB, AC, AD, AE and AF were made of carbon powders having a multilayer structure of 9, 30, 31 and 32.

【0060】なお、上記において複層構造の炭素質粉末
を得るために焼成温度を1300℃で実施したが、70
0℃〜2800℃の温度範囲で、同様の粉末物性が得ら
れ、本発明と同様の効果が見られた。また、複層構造の
炭素質粉末は、核に用いた黒鉛粉末と新たに表層を形成
させた炭素物質との重量比が95:5になるように、核
材料とピッチを混合し作製したが、これらの重量比が9
9:1〜50:50の範囲で同様の物性が得られ、本発
明と同様の効果が得られた。
In the above, the firing temperature was set to 1300 ° C. in order to obtain a carbonaceous powder having a multilayer structure.
In the temperature range of 0 ° C. to 2800 ° C., similar powder properties were obtained, and the same effects as those of the present invention were obtained. Further, the carbonaceous powder having a multilayer structure was prepared by mixing the core material and the pitch so that the weight ratio of the graphite powder used for the core and the carbon material newly forming the surface layer was 95: 5. , Their weight ratio is 9
The same physical properties were obtained in the range of 9: 1 to 50:50, and the same effects as those of the present invention were obtained.

【0061】また、上記においては、本発明について非
水電解液として有機電解液についてのみ説明したが、ポ
リマーなどの陽イオン伝導性固体電解質からなる二次電
池に適用することを妨げるものではない。
In the above description, only the organic electrolyte is described as the non-aqueous electrolyte in the present invention, but this does not preclude application to a secondary battery comprising a cation-conductive solid electrolyte such as a polymer.

【0062】[0062]

【発明の効果】以上のように本発明による負極用黒鉛粉
末を使用することにより、比容量の理論値(372mA
h/g)の少なくとも95%の354〜360mAh/
g(95.2〜96.8%)であり、不可逆容量は20
〜26mAh/gと小さく、エネルギー密度の向上に資
するものである。さらに、高率充放電および低温高率放
電性能が優れるだけでなく、高温放置によっても漏液事
故が発生せず、電池性能の劣化も小さな、信頼性の高い
リチウム二次電池を提供できるという効果を奏し得るも
のである。
As described above, by using the graphite powder for a negative electrode according to the present invention, the theoretical value of the specific capacity (372 mA) is obtained.
h / g) of 354 to 360 mAh /
g (95.2-96.8%) and the irreversible capacity is 20.
It is as small as 26 mAh / g, which contributes to improvement of energy density. In addition, high-rate charge / discharge and low-temperature high-rate discharge performance are not only excellent, but also a high-reliability lithium secondary battery can be provided that does not cause liquid leakage accidents even when left at high temperatures and has little deterioration in battery performance. Can be played.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の効果を検討すべく可逆容量および不可
逆容量を測定するためのコイン形セルの断面図。
FIG. 1 is a cross-sectional view of a coin-shaped cell for measuring a reversible capacity and an irreversible capacity to examine the effect of the present invention.

【図2】本発明の実施形態による渦巻状電極群構成の円
筒形セルの断面図。
FIG. 2 is a cross-sectional view of a cylindrical cell having a spiral electrode group configuration according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1:セルケース 2:ふた 3:グリッド 4:金属リチウム電極 5:炭素電極 6:セパレータ 7:ガスケット 10:正極 11:負極 12:セパレータ 13:正極リード片 14:負極リード片 15:底部絶縁板 16:セルケース 17:上部絶縁板 18:ガスケット 19:封口板 1: Cell case 2: Lid 3: Grid 4: Metal lithium electrode 5: Carbon electrode 6: Separator 7: Gasket 10: Positive electrode 11: Negative electrode 12: Separator 13: Positive electrode lead piece 14: Negative electrode lead piece 15: Bottom insulating plate 16 : Cell case 17: Upper insulating plate 18: Gasket 19: Sealing plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉本 豊次 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 山口 祥司 茨城県稲敷郡阿見町中央8丁目3番1号 三菱化学株式会社内筑波研究所内 (72)発明者 林 学 茨城県稲敷郡阿見町中央8丁目3番1号 三菱化学株式会社内筑波研究所内 (56)参考文献 特開 平6−295725(JP,A) 特開 平8−339798(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/58 H01M 4/02 - 4/04 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Toyoji Sugimoto 1006 Kazuma, Kazuma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Shoji Yamaguchi 8-3-1 Chuo, Ami-cho, Inashiki-gun, Ibaraki Prefecture Inside Tsukuba Research Laboratory, Mitsubishi Chemical Corporation (72) Inventor Manabu Hayashi 8-3-1 Chuo, Ami-cho, Inashiki-gun, Ibaraki Prefecture Inside Tsukuba Research Laboratory, Mitsubishi Chemical Corporation (56) References JP-A-6-295725 (JP, A) JP-A-8-339798 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/58 H01M 4/02-4/04

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 正極と負極とこれらの間に配されるセパ
レータを備え、前記負極は、充電および放電によりリチ
ウムイオンがインターカレーションおよびディインター
カレーションを可逆的に繰り返すことができる負極材料
として、以下の特性を示す塊状の黒鉛粉末を核とし、そ
の核の表面に炭素前駆体を被覆後、不活性ガス雰囲気下
で700〜2800℃の温度範囲で焼成し、炭素質物の
表層を形成させた複層構造の炭素質粉末を用いた非水電
解質二次電池。 (1)広角X線回折法による(002)面の面間隔(d
002)が3.37Å未満でかつC軸方向の結晶子の大
きさ(Lc)が少なくとも1000Å以上 (2)アルゴンイオンレーザーラマンスペクトルにおけ
る1580cm-1のピーク強度に対する1360cm-1
のピーク強度比であるR値が0.3以下でかつ1580
cm-1ピークの半値幅が24cm-1以下 (3)平均粒径が10〜30μmでかつ一番薄い部分の
厚さの平均値が少なくとも3μm以上平均粒径以下 (4)BET法による比表面積が3.5m2 /g以上1
0.0m2 /g以下 (5)タッピング密度が0.5g/cc以上1.0g/
cc以下 (6)広角X線回折法による(110)/(004)の
X線回折ピーク強度比が0.015以上
1. A negative electrode material comprising a positive electrode, a negative electrode, and a separator disposed therebetween, wherein the negative electrode is a negative electrode material capable of reversibly repeating intercalation and deintercalation of lithium ions by charging and discharging. After forming a lumped graphite powder having the following characteristics as a nucleus and coating the surface of the nucleus with a carbon precursor, sintering is performed in a temperature range of 700 to 2800 ° C. in an inert gas atmosphere to form a surface layer of a carbonaceous material. Non-aqueous electrolyte secondary battery using a carbonaceous powder having a multilayer structure. (1) Spacing (d) of (002) plane by wide-angle X-ray diffraction method
002) is less than a and the size of the C-axis direction of the crystallite 3.37 Å (Lc) of at least 1000Å or more (2) 1360 cm to the peak intensity of 1580 cm -1 in the argon ion laser Raman spectrum -1
Is less than 0.3 and 1580
cm -1 half width of the peak is 24cm -1 or less (3) Average particle size of an average mean value of the thickness of at least 3μm or more particle diameter or less under a and thinnest portions 10 to 30 [mu] m (4) BET specific surface area Is at least 3.5 m 2 / g 1
0.0 m 2 / g or less (5) tapping density of 0.5 g / cc or more 1.0 g /
(6) X-ray diffraction peak intensity ratio of (110) / (004) by wide-angle X-ray diffraction method is 0.015 or more.
【請求項2】 核に用いる黒鉛の平均円形度が0.94
0以上である請求項1に記載の非水電解質二次電池。
2. The average circularity of graphite used as a core is 0.94.
The non-aqueous electrolyte secondary battery according to claim 1, which has a value of 0 or more.
【請求項3】 複層構造の炭素質粉末材料のタッピング
密度が0.7g/cc以上1.2g/cc以下である請
求項1又は2に記載の非水電解質二次電池。
3. The non-aqueous electrolyte secondary battery according to claim 1, wherein the tapping density of the carbonaceous powder material having a multilayer structure is 0.7 g / cc or more and 1.2 g / cc or less.
【請求項4】 複層構造の炭素質粉末材料のBET法に
よる比表面積が1.0〜5.0m2 /gである請求項1
〜3のいずれかに記載の非水電解質二次電池。
4. The carbonaceous powder material having a multilayer structure having a specific surface area of 1.0 to 5.0 m 2 / g as measured by the BET method.
4. The non-aqueous electrolyte secondary battery according to any one of claims 1 to 3.
【請求項5】 複層構造の炭素質粉末材料の平均粒径が
11〜40μmであり、一番薄い部分の厚さの平均値が
4μm以上平均粒径以下の請求項1〜4のいずれかに記
載の非水電解質二次電池。
5. The carbonaceous powder material having a multilayer structure having an average particle size of 11 to 40 μm, and an average thickness of a thinnest portion of the carbonaceous powder material is 4 μm or more and an average particle size or less. The non-aqueous electrolyte secondary battery according to 1.
【請求項6】 正極と負極とこれらの間に配されるセパ
レータを備え、前記正極はリチウム含有酸化物(化学式
LixMO2 、ただし、MはCo、Ni、Mn、Feか
ら選ばれる1種以上の遷移金属、x=0以上1.2以
下)を活物質とし、前記負極は、充電および放電により
リチウムイオンがインターカレーションおよびディイン
ターカレーションを可逆的に繰り返すことができる負極
材料として、以下の特性を示す塊状の黒鉛粉末を核と
し、その核の表面に炭素前駆体を被覆後、不活性ガス雰
囲気下で700〜2800℃の温度範囲で焼成し、炭素
質物の表層を形成させた複層構造の炭素質粉末を用いた
非水電解質二次電池。 (1)広角X線回折法による(002)面の面間隔(d
002)が3.37Å未満でかつC軸方向の結晶子の大
きさ(Lc)が少なくとも1000Å以上 (2)アルゴンイオンレーザーラマンスペクトルにおけ
る1580cm-1のピーク強度に対する1360cm-1
のピーク強度比であるR値が0.3以下でかつ1580
cm-1ピークの半値幅が24cm-1以下 (3)平均粒径が10〜30μmでかつ一番薄い部分の
厚さの平均値が少なくとも3μm以上平均粒径以下 (4)BET法による比表面積が3.5m2 /g以上1
0.0m2 /g以下 (5)タッピング密度が0.5g/cc以上1.0g/
cc以下 (6)広角X線回折法による(110)/(004)の
X線回折ピーク強度比が0.015以上
6. A positive electrode, a negative electrode and a separator disposed therebetween, wherein the positive electrode is a lithium-containing oxide (chemical formula: LixMO 2 , wherein M is at least one selected from Co, Ni, Mn, and Fe). Transition metal, x = 0 or more and 1.2 or less) as an active material, and the negative electrode is a negative electrode material capable of reversibly repeating intercalation and deintercalation of lithium ions by charging and discharging. A multi-layered structure in which a massive graphite powder having characteristics is used as a nucleus, and the surface of the nucleus is coated with a carbon precursor, and then calcined in an inert gas atmosphere at a temperature of 700 to 2800 ° C. to form a surface layer of a carbonaceous material. Non-aqueous electrolyte secondary battery using carbonaceous powder of structure. (1) Spacing (d) of (002) plane by wide-angle X-ray diffraction method
002) is less than a and the size of the C-axis direction of the crystallite 3.37 Å (Lc) of at least 1000Å or more (2) 1360 cm to the peak intensity of 1580 cm -1 in the argon ion laser Raman spectrum -1
Is less than 0.3 and 1580
cm -1 half width of the peak is 24cm -1 or less (3) Average particle size of an average mean value of the thickness of at least 3μm or more particle diameter or less under a and thinnest portions 10 to 30 [mu] m (4) BET specific surface area Is at least 3.5 m 2 / g 1
0.0 m 2 / g or less (5) tapping density of 0.5 g / cc or more 1.0 g /
(6) X-ray diffraction peak intensity ratio of (110) / (004) by wide-angle X-ray diffraction method is 0.015 or more.
JP14565798A 1997-05-30 1998-05-27 Non-aqueous electrolyte secondary battery Expired - Lifetime JP3193342B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14565798A JP3193342B2 (en) 1997-05-30 1998-05-27 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP14192097 1997-05-30
JP9-141920 1997-05-30
JP14565798A JP3193342B2 (en) 1997-05-30 1998-05-27 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH1154123A JPH1154123A (en) 1999-02-26
JP3193342B2 true JP3193342B2 (en) 2001-07-30

Family

ID=26474084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14565798A Expired - Lifetime JP3193342B2 (en) 1997-05-30 1998-05-27 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3193342B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010100764A1 (en) * 2009-03-02 2010-09-10 Showa Denko K.K. Composite graphite particles and lithium secondary battery using the same
US8399131B2 (en) 2007-06-01 2013-03-19 Panasonic Corporation Composite negative electrode active material and non-aqueous electrolyte secondary battery
WO2014057690A1 (en) 2012-10-12 2014-04-17 昭和電工株式会社 Composite carbon particle and lithium-ion secondary cell using same
US8999580B2 (en) 2005-12-21 2015-04-07 Show A Denko K.K. Composite graphite particles and lithium rechargeable battery using the same

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011066010A (en) * 1998-11-27 2011-03-31 Mitsubishi Chemicals Corp Carbon material for electrode
JP2001332263A (en) * 2000-03-16 2001-11-30 Sony Corp Secondary battery and manufacturing method for negative electrode material of carbon
EP1990851A3 (en) * 2000-03-16 2008-11-19 Sony Corporation Non-aqueous electrolyte secondary battery and method of preparing carbon-based material for negative electrode
JP2002029720A (en) * 2000-07-04 2002-01-29 Sumitomo Electric Ind Ltd Reformed graphite particles and battery using the same
CA2324431A1 (en) * 2000-10-25 2002-04-25 Hydro-Quebec New process for obtaining natural graphite particles in spherical shape: modelling and application
JP4014816B2 (en) 2001-04-13 2007-11-28 シャープ株式会社 Lithium polymer secondary battery
JP3849769B2 (en) * 2001-12-03 2006-11-22 日立粉末冶金株式会社 Graphite particles for negative electrode of non-aqueous secondary battery
JP2003197182A (en) * 2001-12-21 2003-07-11 Samsung Sdi Co Ltd Graphite-containing composition, negative electrode for lithium secondary battery, and lithium secondary battery
JP4064351B2 (en) 2002-01-25 2008-03-19 東洋炭素株式会社 Anode material for lithium ion secondary battery
JP2004063456A (en) * 2002-06-05 2004-02-26 Mitsubishi Chemicals Corp Manufacturing method of carbon material for electrode
JP2011040406A (en) * 2002-06-05 2011-02-24 Mitsubishi Chemicals Corp Method for manufacturing electrode carbon material
US7052803B2 (en) 2002-07-31 2006-05-30 Matsushita Electric Industrial Co., Ltd. Lithium rechargeable battery
US6998192B1 (en) 2002-08-29 2006-02-14 Quallion Llc Negative electrode for a nonaqueous battery
US6852449B2 (en) 2002-08-29 2005-02-08 Quallion Llc Negative electrode including a carbonaceous material for a nonaqueous battery
JP4215633B2 (en) * 2002-12-19 2009-01-28 Jfeケミカル株式会社 Method for producing composite graphite particles
CN100422077C (en) * 2002-12-19 2008-10-01 杰富意化学株式会社 Composite graphite particle, its production method, Li ion secondary battery cathode material and Li ion secondary battery
JP4252847B2 (en) 2003-06-09 2009-04-08 パナソニック株式会社 Lithium ion secondary battery
KR100560538B1 (en) * 2003-06-27 2006-03-15 삼성에스디아이 주식회사 Negative active material for rechargeable ion lithium battery
WO2005043653A1 (en) * 2003-10-31 2005-05-12 Showa Denko K.K. Carbon material for battery electrode and production method and use thereof
JP4529445B2 (en) * 2004-01-13 2010-08-25 日立化成工業株式会社 Negative electrode material for lithium ion secondary battery and lithium ion secondary battery
JP4748949B2 (en) * 2004-03-31 2011-08-17 三洋電機株式会社 Nonaqueous electrolyte secondary battery
CN100341173C (en) * 2004-04-29 2007-10-03 宁波杉杉新材料科技有限公司 Method for preparing natural graphite cathode material of lithium ion battery
CN1331253C (en) * 2004-04-29 2007-08-08 宁波杉杉新材料科技有限公司 Method for preparing artificial graphite cathode material of lithium ion battery
US7174207B2 (en) 2004-09-23 2007-02-06 Quallion Llc Implantable defibrillator having reduced battery volume
US7597999B2 (en) * 2006-06-07 2009-10-06 Conocophillips Company Methods of preparing carbonaceous anode materials and using same
US9490499B2 (en) 2006-07-19 2016-11-08 Nippon Carbon Co., Ltd. Negative electrode active material for lithium ion rechargeable battery and negative electrode using the same
KR100817977B1 (en) * 2007-05-03 2008-03-31 엘에스전선 주식회사 Anode material of secondary battery and secondary battery using the same
WO2010110443A1 (en) 2009-03-27 2010-09-30 三菱化学株式会社 Negative electrode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using same
EP2413403B1 (en) 2009-03-27 2018-03-07 Mitsubishi Chemical Corporation Negative electrode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using same
JP2009277659A (en) * 2009-07-08 2009-11-26 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
JP5754098B2 (en) * 2009-09-15 2015-07-22 三菱化学株式会社 Carbon material for lithium ion secondary battery
JP5576740B2 (en) * 2009-12-14 2014-08-20 日立マクセル株式会社 Electrochemical element
CN102918688B (en) * 2010-05-18 2015-10-21 丰田自动车株式会社 Negative electrode active material
JPWO2011145301A1 (en) * 2010-05-18 2013-07-22 パナソニック株式会社 Lithium secondary battery
CN103098274A (en) * 2010-07-30 2013-05-08 日立化成株式会社 Negative pole material for lithium ion secondary battery, negative pole for lithium ion secondary battery, and lithium ion secondary battery
JP5742153B2 (en) * 2010-09-29 2015-07-01 三菱化学株式会社 Multi-layer carbon material for non-aqueous secondary battery, negative electrode material using the same, and non-aqueous secondary battery
WO2012057290A1 (en) * 2010-10-29 2012-05-03 三菱化学株式会社 Multilayer-structured carbon material for negative electrode of nonaqueous electrolyte secondary battery, negative electrode for nonaqueous secondary battery, lithium ion secondary battery, and method for manufacturing multilayer-structured carbon material for negative electrode of nonaqueous electrolyte secondary battery
KR101349066B1 (en) * 2011-12-01 2014-01-08 지에스칼텍스 주식회사 Anode active material comprising graphite particle with modified surface and litium secondary battery employed with the same
JP6154380B2 (en) * 2012-08-06 2017-06-28 昭和電工株式会社 Anode material for lithium ion secondary battery
JP6242716B2 (en) 2014-03-04 2017-12-06 Jxtgエネルギー株式会社 Artificial graphite material for negative electrode of lithium ion secondary battery and method for producing the same
JP6438287B2 (en) 2014-12-05 2018-12-12 株式会社東芝 Non-aqueous electrolyte battery active material, non-aqueous electrolyte battery electrode, non-aqueous electrolyte secondary battery and battery pack
JP6672755B2 (en) * 2014-12-08 2020-03-25 三菱ケミカル株式会社 Carbon materials and non-aqueous secondary batteries
JP6759586B2 (en) * 2015-03-27 2020-09-23 三菱ケミカル株式会社 Carbon material and non-aqueous secondary battery
EP3291343B1 (en) * 2015-05-01 2022-07-27 Eliiy Power Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode, and secondary battery
JPWO2021107094A1 (en) * 2019-11-29 2021-06-03
EP4277011A3 (en) * 2020-04-02 2024-01-17 Contemporary Amperex Technology Co., Limited Secondary battery and device comprising secondary battery
WO2024080171A1 (en) * 2022-10-12 2024-04-18 株式会社堀場製作所 Battery performance estimation method, battery performance estimation device, and battery performance estimation program

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8999580B2 (en) 2005-12-21 2015-04-07 Show A Denko K.K. Composite graphite particles and lithium rechargeable battery using the same
US8399131B2 (en) 2007-06-01 2013-03-19 Panasonic Corporation Composite negative electrode active material and non-aqueous electrolyte secondary battery
WO2010100764A1 (en) * 2009-03-02 2010-09-10 Showa Denko K.K. Composite graphite particles and lithium secondary battery using the same
JP2012519124A (en) * 2009-03-02 2012-08-23 昭和電工株式会社 Composite graphite particles and lithium secondary battery using the same
WO2014057690A1 (en) 2012-10-12 2014-04-17 昭和電工株式会社 Composite carbon particle and lithium-ion secondary cell using same
US9614218B2 (en) 2012-10-12 2017-04-04 Showa Denko K.K. Composite carbon particle and lithium-ion secondary cell using same

Also Published As

Publication number Publication date
JPH1154123A (en) 1999-02-26

Similar Documents

Publication Publication Date Title
JP3193342B2 (en) Non-aqueous electrolyte secondary battery
KR100483126B1 (en) Nonaqueous electrolyte secondary battery
JP3534391B2 (en) Carbon material for electrode and non-aqueous secondary battery using the same
JP5431729B2 (en) Composite negative electrode active material for non-aqueous electrolyte secondary battery, process for producing the same, and non-aqueous electrolyte secondary battery using the same
JP3436033B2 (en) Non-aqueous electrolyte secondary battery
JP3499584B2 (en) Lithium secondary battery
KR20110054619A (en) Anode mixture for lithium secondary battery and lithium secondary battery using the same
JP2009295465A (en) Positive electrode active material for lithium secondary battery and manufacturing method
US11784314B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery including the same
KR100530910B1 (en) Nonaqueous electrolyte secondary battery and method for manufacturing negative electrode of the same
JP3311104B2 (en) Lithium secondary battery
JP5002872B2 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, lithium secondary battery, and method for producing positive electrode active material for lithium secondary battery
JP4184479B2 (en) Nonaqueous electrolyte secondary battery and method for producing the negative electrode
JP2003272630A (en) Manufacturing method of negative electrode active material
JP2000090930A (en) Non-aqueous electrolyte secondary battery and manufacture of negative electrode thereof
JP4150087B2 (en) Non-aqueous electrolyte secondary battery
JP2004299944A (en) Graphite particle, its producing method, lithium ion secondary battery and negative electrode material for it
US6083646A (en) Non-aqueous electrolyte secondary battery and method for producing cathode material
JP2002164051A (en) Lithium secondary battery and negative electrode material
JP3406843B2 (en) Lithium secondary battery
JP2005056581A (en) Carbon material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using it
JPH07235327A (en) Nonaqueous electrolyte secondary battery
JP3787943B2 (en) Non-aqueous electrolyte secondary battery
JP3568247B2 (en) Non-aqueous electrolyte secondary battery
JP4080110B2 (en) Non-aqueous electrolyte battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090525

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090525

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term