JP3187113B2 - 細胞増殖因子 - Google Patents

細胞増殖因子

Info

Publication number
JP3187113B2
JP3187113B2 JP03871792A JP3871792A JP3187113B2 JP 3187113 B2 JP3187113 B2 JP 3187113B2 JP 03871792 A JP03871792 A JP 03871792A JP 3871792 A JP3871792 A JP 3871792A JP 3187113 B2 JP3187113 B2 JP 3187113B2
Authority
JP
Japan
Prior art keywords
growth factor
cell growth
arg
amino acid
acid sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03871792A
Other languages
English (en)
Other versions
JPH05222096A (ja
Inventor
亨 田中
薫 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shionogi and Co Ltd
Original Assignee
Shionogi and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shionogi and Co Ltd filed Critical Shionogi and Co Ltd
Priority to JP03871792A priority Critical patent/JP3187113B2/ja
Publication of JPH05222096A publication Critical patent/JPH05222096A/ja
Application granted granted Critical
Publication of JP3187113B2 publication Critical patent/JP3187113B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、アンドロゲン誘導増殖
因子、該因子をコ−ドするDNA、該DNAを有するプラスミ
ド、該プラスミドを有する宿主細胞、該宿主細胞を用い
る該因子の製造方法、乳ガン細胞を用いる該因子の製造
法、該DNAとハイブリダイズするプロ−ブ、該プロ−ブ
を用いる該DNAの検出方法、および該因子を有する細胞
増殖剤に関する。
【0002】
【従来の技術】ガン細胞の自己増殖機構は、ガン細胞増
殖の中心概念のひとつとなっており、ガン遺伝子産物に
関連する種々の増殖因子および増殖因子受容体が報告さ
れ、それらはガン細胞内で自己増殖環を形成するものと
思われる。乳ガンや前立腺ガンのような性ホルモン標的
器官から発生するガンは、ホルモン反応性の増殖を特徴
としている。最も初期の乳ガンは、その増殖にホルモン
の刺激が必要である。乳ガン細胞のホルモン反応性の増
殖は、ホルモンの刺激により分泌される増殖因子を介す
るものとされてきた。このようなホルモン誘導増殖因子
の構造分析と特性化は、ホルモン反応性ガンの増殖機構
解明に必須である。
【0003】アンドロゲン反応性マウス乳ガン細胞、シ
オノギカルシノ−マ115(SC115)は、性ホルモン反応性ガ
ンとして広く認められている(Nonomuraら、Perspective
inAndrology (ed. Serino, M.) 431-438 (Raven, New
York, 1989))。その増殖はアンドロゲンによってのみ刺
激される。SC115腫瘍から得られたアンドロゲン依存性
無血清培養系(SC-3細胞株)(Nakamuraら、J. Steroid Bi
ochem. 27, 459-464(1987))は、性ホルモンがガン細胞
の増殖を促す分子機構の研究のための良いモデル系であ
る。SC-3細胞のアンドロゲン依存性の増殖は、自己増殖
機構中のヘパリン結合性増殖因子により仲介されること
が示唆されてきた(Nonomuraら、上記;Nakamuraら、上
記;Nonomuraら、Cancer Res. 48, 4904-4908 (198
8))。
【0004】
【発明が解決しようとする課題】上記のとおり、SC-3細
胞のアンドロゲン依存性の増殖は自己増殖機構中のヘパ
リン結合性増殖因子により仲介されることが示唆されて
いるが、未だこの因子は単離・同定されていない。ま
た、この因子をコ−ドするDNAも単離・同定されていな
い。該因子をコ−ドするDNAが得られれば、遺伝子工学
的手法を用いて該因子を大量生産することが可能にな
る。該因子を大量に得ることができれば、該因子の阻害
因子としての抗ガン物質を探索することができる。ま
た、該DNAとハイブリダイズするプロ−ブで該DNAを検出
できれば、ガンの診断に有用である。また、該因子の細
胞増殖作用から、該因子そのものも細胞増殖用試薬や医
薬として期待される。
【0005】
【課題を解決するための手段】本発明は、アンドロゲン
依存性マウス乳ガン細胞(SC-3細胞)から得られた、アン
ドロゲン誘導自己増殖因子のcDNAクロ−ニングと機
能的発現を初めて報告するものである。このアンドロゲ
ン誘導増殖因子(AIGF: andorogen-induced growth fact
or)は、新規なヘパリン結合性増殖因子であり、アンド
ロゲンにより顕著に誘導され、アンドロゲンの非存在下
でもSC-3細胞を増殖させる。
【0006】テストステロン刺激SC-3細胞から得られた
無血清調整培地は、SC-3細胞に対して顕著な増殖促進効
果を示した。増殖促進活性をヘパリン-Sepharoseに結合
させ、1.0-1.2 M 塩化ナトリウム濃度で溶出した。ヘパ
リン-Sepharoseクロマトグラフィ−を繰り返した後、生
理活性画分を逆相HPLCに付した(図1)。逆相HPLCから得
られた生理活性画分は、還元および非還元条件下で、SD
S-PAGE上でそれぞれ32kDaと28 kDaの2つの主要なタン
パク質を含んでいた。32 kDaと28 kDaのいずれのタンパ
ク質も同様の生物学的有効性を示した(図2)。いずれの
タンパク質のN末端もブロックされているが、逆相HPLC
でのリジルエンドペプチダ−ゼ消化後のペプチドマッピ
ングにより、この2つのタンパク質由来のほとんどのペ
プチドが同一であることが明らかになった。逆相HPLCで
のペプチド断片(図3)の配列を決定した。図3のペプチ
ドの配列から、推定縮合オリゴヌクレオチドプライマ−
を合成し、10-8M テストステロンの存在下で培養したSC
-3細胞の全RNA由来のランダムプライム化1本鎖cDNAを
用いてポリメラ−ゼチェインリアクションを行なった。
240 b.p. のDNAが1組のプライマ−セットから得られ、
AIGFをリジルエンドペプチダ−ゼ消化して得られた種々
のペプチド配列を含んでいた。このDNA断片を、哺乳類
細胞用発現プラスミドベクタ−pcDL-SRα296(Takebe
ら、N. Molec. Cell. Biol. 8, 466-472 (1988))と、テ
ストステロン刺激SC-3細胞のポリアデニル化RNA由来の
オリゴ(dT)プライム化2本鎖cDNAとを用いて構築された
cDNAライブラリ−のスクリ−ニングに、プロ−ブとして
用いた。4×104個のクロ−ンのスクリ−ニングにより40
個の陽性クロ−ンが得られ、そのうち20個をCOS-7細胞
に感染させた。8個のクロ−ンがSC-3細胞の増殖試験で
陽性を示した(図6)。全ての生理活性クロ−ンが1.0-1.
2 kb 挿入物を含んでいた。
【0007】これらクロ−ンのひとつ(pSC17)のヌクレ
オチド配列は、3’非翻訳配列と共に推定215アミノ酸残
基のオ−プンリ−ディングフレ−ムを有していた。ATG
開始コドンはヌクレオチド174位に位置し、その下流に
疎水性残基の推定シグナルペプ チドが続いている。停
止コドンはヌクレオチド819位に存在する。このオ−プ
ン リ−ディングフレ−ムは、1つの潜在的N-グリコシ
レイション部位を有する215 アミノ酸からなる配列をコ
−ドしている(図4)。リジルエンドペプチダ−ゼ消化で
得られたピ−ク7を除くすべてのペプチドがこの配列に
含まれていた(図4)。AIGFのペプチド配列の直接決定で
は、N-末端を検出できなかった。von Heijeの 規則(G.
Biochim. et Biophys. Acta 947, 307-333 (1988))に基
づけば、AIGFのN末端は、ピログルタミン化によるN末端
ブロックを引き起こすと思われる、アミノ酸23位のグル
タミン残基であると推定され、その成熟タンパク質の分
子量は約22 kDaである。しかし、別のクロ−ンpSC15の
ヌクレオチド配列を決定したとこ ろ、推定シグナル配
列に続く、pSC17クロ−ンの10アミノ酸(残基25-34、図
4)が、63アミノ酸残基で置換されており(図4)、別の
グリコシレイション部位を有する28 kDa の成熟タンパ
ク質の存在が示唆された。ペプチド7のペプチド配列は
pSC15に見出されたが、pSC17では見出されない(図4)。
これらのクロ−ンは、異 なってスプライシングされたA
IGF転写物からの産物であると思われる。SDS-PAGEでの3
2 kDaと28 kDaの2つの主要なタンパク質間の相違およ
び分子量の理論値とSDS-PAGEでの値の間の違いは、推定
されるN-グリコシレイション位置でのグリコシレイショ
ンと、上記の転写物のスプライシングの違いによるもの
と思われる。事実、エンドグリコシダ−ゼF処理により
AIGFのSDS-PAGEパタ−ンが変化し、32 kDaバンドが淡く
なる一方、28 kDaバンドの強度が強まり、23 kDaバンド
が現れた。これは、22 kDaおよび28 kDaのAIGFのグリコ
シレイションにより、それぞれ28 kDaおよび32 kDaのAI
GFが形成されることを示唆している。
【0008】AIGFと公知のタンパク質との相同性を調査
した結果、AIGFはFGFファミリ−に相同性を示すことが
明らかになった。全体として、int-2、hst-1、FGF-5、F
GF-6にコ−ドされるタンパク質はもちろん、塩基性FGF
およびKGFと30〜40 %の相同性を示した(Esch, F.ら、Pr
oc. Natl. Acad. Sci. U.S.A. 82, 6507-6511 (1985);
Finch, P.W.ら、Science 245, 752-755 (1989);Dickso
n, C.ら、Nature 326, 833 (1987);Taira, M.ら、Pro
c. Natl. Acad. Sci. U.S.A. 84, 2980-2984 (1987);Z
han, X.ら、Molec. Cell. Biol. 8, 3487-3495 (198
8);Marics, I.ら、Oncogene 4, 335-340 (1989))。FGF
ファミリ−では2つのシステイン残基の位置が良く保存
されているが、AIGFの配列では127位のシステイン残基
が保存されて いるのみである。塩基性FGFの受容体結合
部位(Eriksson, A.E.ら、Proc. Natl. Acad. Sci. U.S.
A. 88, 3441-3445 (1991))、マウスFGFのアミノ酸残基1
14〜123 は、AIGFの推定配列と44.4 %の相同性を示すの
みである。AIGFの信号伝達が、塩基性FGF受容体(Nonomu
ra, N.ら、Cancer. Res. 50, 2316-2321 (1990))を介す
るか、AIGF自体の異なる受容体を介するものであるかは
判明していない。FGF関連 ガン遺伝子にコ−ドされるタ
ンパク質は全て、N-末端シグナルペプチド配列を有す
る。シグナルペプチド配列の存在は、FGFファミリ−の
メンバ−が形質転換能 を有するか否かを決定する際
の、重要な要因となる。N-末端に免疫グロブリンシグナ
ルペプチド配列を有する塩基性FGFをコ−ドするcDNA
は、NIH 3T3細胞を形質転換することができる(Yayon,
A.ら、Proc. Natl. Acad. Sci. U.S.A.87, 5346-5350
(1990))。AIGFもシグナル配列を有しており、これはSC-
3細胞のガン性増 殖とAIGFの密接な関連を示唆してい
る。
【0009】AIGFのアンドロゲン誘導は、ノ−ザンブロ
ット分析により確認された。AIGFのmRNAは、テストステ
ロン非存在下のノ−ザンブロット分析では検出されなか
った(図5) 。AIGFのmRNAは、10-8 Mテストステロンに
よる刺激の後、6時間で出現し、24時間までに顕著に
増加した(図5)。
【0010】哺乳類細胞でのAIGF cDNAの発現により、A
IGFがアンドロゲンの非存在下でSC-3細胞の増殖を顕著
に促進することが明らかになった(図6)。さらに、AIGF
はSC-3細胞の形態を変化させ、これはテストステロンに
より刺激されたSC-3細胞にも見られるものであった(Tan
aka, A.ら、J. Steroid Biochem. Molec. Biol. 37,23-
29 (1990))。AIGFに刺激されたSC-3細胞はフィブロブラ
スト様態を示し、プラスミドベクタ−だけで形質転換さ
れたCOS 7細胞の調整培地で処理されたSC-3細胞の上皮
様外観と対照的であった。
【0011】AIGFはシグナルペプチド配列を有する分泌
性ヘパリン結合性増殖因子であり、アンドロゲンに顕著
に誘導される。AIGFはアンドロゲンの非存在下でSC-3細
胞の増殖を促進し、SC-3細胞の形態を変化させる。これ
らの結果から、SC-3細胞のホルモン依存性ガン性増殖
は、ホルモンの刺激に反応してガン細胞自体により分泌
されるAIGFを介するものと結論付けられる。
【0012】乳ガンおよび前立腺ガンの増殖はホルモン
に影響される。本発明におけるAIGFの同定により、ホル
モン誘導自己増殖因子が乳ガンおよび前立腺ガンの増殖
において中枢的役割を演じ、そのようなガンのホルモン
治療の理論的根拠を提供するものであることが明らかに
なった。
【0013】以上から、まず本発明は、配列番号:1に
記載のアミノ酸配列のうち35位のHisから215位のArgま
でのアミノ酸配列を有する細胞増殖因子を提供するもの
である。該アミノ酸配列は、図4から明らかなように、
本発明で得られたpSC17およびpSC15クロ−ンに共通のも
のであり、本発明の増殖因子に必要充分なアミノ酸配列
であると考えられる。
【0014】本発明はさらに、配列番号:1に記載のア
ミノ酸配列のうち23位のGlnから215位のArgまでのアミ
ノ酸配列または配列番号:2に記載のアミノ酸配列のう
ち23位のGlnから268位のArgまでのアミノ酸配列を有す
る細胞増殖因子を提供する。配列番号:1および2のア
ミノ酸配列に共通な1位のMetから22位のAlaまではシグ
ナル配列と推定される。従って、配列番号:1および2
のアミノ酸配列からシグナル配列を除いたアミノ酸配列
を有する細胞増殖因子が本発明に包含される。
【0015】本発明はまた、配列番号:1に記載のアミ
ノ酸配列のうち2位のGlyから215位のArgまでのアミノ酸
配列または配列番号:2に記載のアミノ酸配列のうち2
位のGlyから268位のArgまでのアミノ酸配列を有する細
胞増殖因子を提供する。
【0016】本発明の細胞増殖因子は以下の性質を有す
る。 (1) アンドロゲンにより誘導される。 (2) ヘパリン結合性である。 (3) アンドロゲンの非存在下でSC-3細胞を増殖させる。 上記アミノ酸配列のうち、1個以上のアミノ酸残基が付
加、脱離、挿入、置換されたものでも、これらの性質を
有する限り本発明に包含される。
【0017】また、上記アミノ酸配列の解析から明らか
なように、本発明の細胞増殖因子はグリコシレイション
部位を有していることから、糖鎖を有しているものが好
ましいと考えられる。
【0018】本発明はまた、上記細胞増殖因子をコ−ド
するDNA、該DNAを有し当該細胞増殖因子を発現しうるプ
ラスミド、このプラスミドを有する宿主細胞を提供す
る。本発明の宿主細胞としては、大腸菌、枯草菌などの
原核細胞宿主、酵母、COS細胞、CHO細胞、Hela細胞、3T
3細胞、3T6細胞、Ltk-細胞などの真核細胞宿主など、本
遺伝子組換え技術分野において通常用いられる全ての宿
主細胞を用いることができる。本発明の細胞増殖因子は
糖鎖を有していると考えられることから、宿主としては
真核細胞宿主が好ましい。本発明のプラスミドとして
は、用いる宿主に応じ、通常の発現用プラスミド/ウイ
ルスベクタ−を用いればよく、真核細胞宿主を用いる場
合には、前記pcDL-SRα296の他、市販のpSVK3、pBPV、p
MSG、pMSG-CAT、pSVL、pCH110、pCaMVCN(ファルマシア)
を用いてもよい。
【0019】本発明は、上記宿主細胞を培養することを
特徴とする細胞増殖因子の製造法を提供する。本発明の
細胞増殖因子を発現しうる宿主細胞は、宿主細胞の性質
に応じて通常の方法で培養することができる。培養培地
から該増殖因子を得るためには、ヘパリンを用いるアフ
ィニティ−クロマトグラフィ−を必要回繰り返し、必要
に応じ逆相HPLCに付すことにより単離精製することがで
きる。
【0020】本発明の細胞増殖因子は、大量に低コスト
で安定して供給できる点から、上記製造法により製造さ
れるものが好ましいが、乳ガン細胞、好ましくはテスト
ステロン刺激されたSC-3細胞を含むアンドロゲン反応性
マウス乳ガン細胞を無血清調整培地に培養し、該培地か
ら上記の単離精製法により得ることもできる。
【0021】本発明はさらに、該細胞増殖因子をコ−ド
するDNAまたはRNAとハイブリダイズし、該DNAまたはRNA
を特異的に検出しうるプロ−ブを提供する。該プロ−ブ
は、通常用いられる酵素、放射性同位元素などにより標
識されたDNAプロ−ブであり、通常のノ−ザンまたはサ
ザンブロット分析において該細胞増殖因子をコ−ドする
DNAまたはRNAと特異的にハイブリダイズし、該DNAまた
はRNAを特異的に検出しうるものであれば如何なるもの
でもよいが、配列番号1または2に記載のDNA配列(ま
たはその相補的配列)の一部、特にpSC17クロ−ンのXho
I断片を有しているものが好ましい。
【0022】このプロ−ブを用いれば、通常のノ−ザン
またはサザンブロット分析などにより、該細胞増殖因子
をコ−ドするDNAもしくはRNA、またはこれと相同性の高
い遺伝子を検出することができる。
【0023】本発明の細胞増殖因子は、アンドロゲンの
非存在下でさえ、SC-3細胞を増殖させたことから、細胞
増殖剤として有用である。細胞増殖剤とするには、本発
明の細胞増殖因子に、通常のペプチド試薬の製剤化に用
いられる安定化剤、保存剤などを添加すればよい。
【0024】本発明の細胞増殖因子はガン細胞を増殖さ
せることから、本因子の阻害物質としての、抗ガン作用
を有する物質の探索に有用である。
【0025】
【実施例】AIGFの精製 10-8Mのテストステロンで刺激したSC-3細胞の無血清培
養物から得られた4Lの調整培地を10倍まで濃縮し、0.6
M NaCl、0.1 % CHAPS、2 mM PMSFおよび500 μg/mlのロ
イペプチンを含む10 mM Tris-HCl緩衝液(pH 7.0)で平衡
化したヘパリン-Sepharoseカラム(ゲル層体積;5 ml)に
付した。カラムを上記平衡緩衝液で洗浄し、吸着したタ
ンパク質を2 M NaClを含むゲル層体積の10倍量の平衡
緩衝液で溶出した。溶出画分をNaClを含まない平衡緩衝
液で希釈し、NaCl濃度を0.6 Mまで低下させ、ヘパリン-
Sepharoseカラム(ゲル層体積;0.5 ml)で同様の方法で
再分画した。溶出画分を、4.6 × 50 mm Cosmosil C4逆
相カラムに付し、0-60 %アセトニトリルの濃度勾配を用
い、0.1 % TFA中で、30分かけて1 ml/minの溶出速度で
展開した(図1)。各画分のSC-3細胞における[3H]チミジ
ン取り込み活性を、Yamanishiらの方法(Yamanishi, H.
ら、Cancer Res. 51, 3006-3010 (1991))で検定した。
生物活性を有する画分を凍結乾燥し、還元(図2)および
非還元条件下で、0.1 % SDSを含む10-20 %濃度勾配アク
リルアミドゲルに付し、銀染色した。非還元条件下で展
開された隣接レ−ンの同一サンプルを、38個の等しい画
分に分けた。0.1 % CHAPSを含む10 mM Tris-HCl (pH 7.
5)中で、4℃で1夜撹拌することにより、タンパク質を
溶出した。溶出物は、[3H]チミジン取り込み活性につき
検定した(図2)。精製AIGFを室温で2時間70%蟻酸で変性
させ、50 mM Hepes緩衝液(pH 7.6)中で、500 ngのリジ
ルエンドペプチダ−ゼ(和光純薬)で37℃5時間消化し
た。消化したサンプルを、直接、3.9 × 150 mm μ-Bon
dasphere C18逆相カラム に付した(図3)。ペプチド
は、1 ml/minの溶出速度で、60分間かけて0-60%アセト
ニトリル直線濃度勾配で分離し、異なるピ−クを採取し
た。配列分析は、オンラインABI 120A PTH 分析機を用
いたABI 477A プロテインシ−クエンサ−(Applied Bios
ystems, Foster city, CA)で行なった。
【0026】AIGFの構造 SC-3細胞(3 × 105/100 mm ディッシュ)をデキストラン
被膜活性炭で処理した2 %牛胎児血清および10-8 Mテス
トステロンを含む10 mlのMEMに入れた。次の日(第0日)
に培地を一度交換した。第2日に、ほぼコンフルエント
に達したSC-3細胞(約4 × 106細胞/ディッシュ)を集
め、全細胞RNAを、酸グアニジニウムチオシアネイト-フ
ェノ−ル-クロロホルム抽出法(Chomczynski, P.ら、N.
Analyt. Biochem. 162, 156-159 (1987))により調製し
た。ランダムプライム化1本鎖cDNAを、逆転写酵素(Sup
erscript, Bethesda Research Laboratories, Gaithers
burg,MD)を用いて、10-8Mテストステロンの存在下で培
養したSC-3細胞の全RNAから合成した。オリゴヌクレオ
チドプライマ−は、得られたアミノ酸配列に従い合成し
た。種々のプライマ−セットのうち、5’>ATHAAYGCIATG
GCIGARGAYGG<3’(配列番号:3)および5’>GCCATRTACCA
ICCYTCRTA<3’(配列番号:4)(但し、HはAまたはCまた
はT、YはTまたはC、RはGまたはAを表わす。)のセットを
用いた時、ポリメラ−ゼチェインリアクションで1つの
DNAバンドが得られた。ポリメラ−ゼチェインリアクシ
ョンは、1本鎖cDNA、合成オリゴヌクレオチド、Ampli
Taq(商標)組換えTaq DNA ポリメラ−ゼ(PERKIN-ELMER C
ETUS Instrument, Norwalk, CT)を用いて、94℃90秒、3
7℃90秒、72℃180秒の反応を30回繰り返して行なっ
た。増幅されたcDNAのヌクレオチド配列は、ジデオキシ
ヌクレオチド鎖終止法(Sanger, F.ら、Proc. Natl. Aca
d. Sci. U.S.A. 74, 5463-5467 (1977))により決定し
た。cDNAライブラリ−は、10-8Mテストステロンの存在
下に培養したSC-3細胞のポリアデニル化RNAから構築し
た。ポリアデニル化RNAはオリゴ(dT)ラテックスを用い
て単離した。オリゴ(dT)プライム化2本鎖cDNAは、cDNA
合成システム(Bethesda Research Laboratories)によ
り合成し、BstXIリンカ−を用いてプラスミドベクタ−p
cDL-SRα296に結合した。ハイブリダイゼイションは、
1.5 × SSPE、1.0 % SDS、0.5 % Blotto中65℃で、ポリ
メラ−ゼチェインリアクションにより得られた32P標識
プロ−ブを用いて行ない、2 × SSC、0.1 % SDSで50℃3
0分、続いて、0.1 × SSC、1.0 % SDSで37℃30分間洗浄
した。20個の陽性クロ−ンをCOS 7細胞の感染に用い
た。生理活性クロ−ンの1つ(pSC17)の配列を決定し
た。
【0027】図4にAIGFのヌクレオチド配列と推定アミ
ノ酸配列を示す。AIGF cDNA (pSC17クロ−ン)は215アミ
ノ酸のタンパク質をコ−ドする。下線部分は、リジルエ
ンドペプチダ−ゼ消化により得られたペプチド配列(図
3、No. 1〜10)である。2つのペプチドが図3のピ−ク
10に含まれるものであった。陰を施した部分は、ポリメ
ラ−ゼチェインリアクションに用いられた2つのプライ
マ−部分である。四角で囲んだ部分は、2つの異なるク
ロ−ンpSC17とpSC15の間で置換されているアミノ酸残基
である。N-グリコシレイションが起こり得る部分は太下
線を施してある。
【0028】テストステロンによるAIGF mRNAの誘導 SC-3細胞(8 × 105/100 mm ディッシュ)を、テストステ
ロンの非存在下でデキストラン被覆活性炭で処理した2
%牛胎児血清を含む10 mlのMEMに入れた。次の日、細胞
をPBSで洗浄し、血清含有MEM中で、10-8Mテストステロ
ンの存在または非存在下でさらに培養した。図5に示し
た時間にポリアデニル化RNAを単離した。2 μgのポリア
デニル化RNAを、0.66 M ホルムアルデヒドを含む1 %ア
ガロ−スゲル中で電気泳動し、ナイロン膜上に移した。
ハイブリダイゼイションは、1.5 × SSPE、1.0 % SDS、
0.5 % Blotto中で、65℃18時間行なった。ブロットは、
2 × SSC、0.1 % SDSで50℃30分、続いて、0.1 × SS
C、1.0 % SDSで37℃30分洗浄し た。オ−トラジオグラ
フィ−は-70℃で48時間行なった。
【0029】図5に、pSC17クロ−ンのXhoI断片を32
標識したAIGF cDNAプロ−ブと、ブロットをハイブリダ
イズさせた結果を示す。図中、リボゾ−ムRNAの移動位
置を左に示している。
【0030】哺乳類細胞中でのAIGF cDNAの発現 COS 7細胞をカルシウムリン酸沈殿法により10μgのcDNA
に感染させた。感染の48時間後、培地を採取し、SC-3細
胞の[3H]チミジン取り込みにつき検定した。ベクタ−プ
ラスミドのみもCOS 7細胞に感染させ、その調整培地も
コントロ−ルとして生物活性を検定した。
【0031】図6に、AIGF cDNA (pSC17)を含むベクタ
−プラスミドを感染させたCOS 7細胞の調整培地(右)と
ベクタ−プラスミドのみを感染させたもの(左)の、SC-3
細胞における[3H]チミジン取り込み活性を示す。
【配列表】
【0032】配列番号:1 配列の長さ:997 配列の型:核酸 配列 CGCGCGCGGC GAGCACGACA TTCCACCGGA CCCGCCGAGC CGCGTCGGGA TAGCCGCTGG 60 CCTCCCGCAC CCCGACCTCC CTCAGCCTCC GCACCTTCGG CTTGTCCCCC CGCGGCCTCC 120 AGTGGGACGG CGTGACCCCG CTCGGGCTCT CAGTGCTCCC GGGGCCGCGC GCC ATG 176 Met 1 GGC AGC CCC CGC TCC GCG CTG AGC TGC CTG CTG TTG CAC TTG CTG GTT 224 Gly Ser Pro Arg Ser Ala Leu Ser Cys Leu Leu Leu His Leu Leu Val 5 10 15 CTC TGC CTC CAA GCC CAG GTA ACT GTT CAG TCC TCA CCT AAT TTT ACA 272 Leu Cys Leu Gln Ala Gln Val Thr Val Gln Ser Ser Pro Asn Phe Thr 20 25 30 CAG CAT GTG AGG GAG CAG AGC CTG GTG ACG GAT CAG CTC AGC CGC CGC 320 Gln His Val Arg Glu Gln Ser Leu Val Thr Asp Gln Leu Ser Arg Arg 35 40 45 CTC ATC CGG ACC TAC CAG CTC TAC AGC CGC ACC AGC GGG AAG CAC GTG 368 Leu Ile Arg Thr Tyr Gln Leu Tyr Ser Arg Thr Ser Gly Lys His Val 50 55 60 65 CAG GTC CTG GCC AAC AAG CGC ATC AAC GCC ATG GCA GAA GAC GGA GAC 416 Gln Val Leu Ala Asn Lys Arg Ile Asn Ala Met Ala Glu Asp Gly Asp 70 75 80 CCC TTC GCG AAG CTC ATT GTG GAG ACC GAT ACT TTT GGA AGC AGA GTC 464 Pro Phe Ala Lys Leu Ile Val Glu Thr Asp Thr Phe Gly Ser Arg Val 85 90 95 CGA GTT CGC GGC GCA GAG ACA GGT CTC TAC ATC TGC ATG AAC AAG AAG 512 Arg Val Arg Gly Ala Glu Thr Gly Leu Tyr Ile Cys Met Asn Lys Lys 100 105 110 GGG AAG CTA ATT GCC AAG AGC AAC GGC AAA GGC AAG GAC TGC GTA TTC 560 Gly Lys Leu Ile Ala Lys Ser Asn Gly Lys Gly Lys Asp Cys Val Phe 115 120 125 ACA GAG ATC GTG CTG GAG AAC AAC TAC ACG GCG CTG CAG AAC GCC AAG 608 Thr Glu Ile Val Leu Glu Asn Asn Tyr Thr Ala Leu Gln Asn Ala Lys 130 135 140 145 TAC GAG GGC TGG TAC ATG GCC TTT ACC CGC AAG GGC CGG CCC CGC AAG 656 Tyr Glu Gly Trp Tyr Met Ala Phe Thr Arg Lys Gly Arg Pro Arg Lys 150 155 160 GGC TCC AAG ACG CGC CAG CAT CAG CGC GAG GTG CAC TTC ATG AAG CGC 704 Gly Ser Lys Thr Arg Gln His Gln Arg Glu Val His Phe Met Lys Arg 165 170 175 CTG CCG CGG GGC CAC CAC ACC ACC GAG CAG AGC CTG CGC TTC GAG TTC 752 Leu Pro Arg Gly His His Thr Thr Glu Gln Ser Leu Arg Phe Glu Phe 180 185 190 CTC AAC TAC CCG CCC TTC ACG CGC AGC CTG CGC GGC AGC CAG AGG ACT 800 Leu Asn Tyr Pro Pro Phe Thr Arg Ser Leu Arg Gly Ser Gln Arg Thr 195 200 205 TGG GCC CCG GAG CCC CGA TAGGCGCTCG CCCAGCTCCT CCCCACCCAG 848 Trp Ala Pro Glu Pro Arg 210 215 CCGGCCGAGG AATCCAGCGG GAGCTCGGCG GCACAGCAAA GGGGAGGGGC TGGGGAGCTG 908 CCTTCTAGTT GTGCATATTG TTTGCTGTTG GGTTTTTTTG TTTTTTGTTT TTTGTTTTTG 968 TTTTTTGTTT TTTAAACAAA AGAGAGGCG 997
【0033】配列番号:2 配列の長さ:1178 配列の型:核酸 配列 TCCAGCAGCG GCTCAGAGGG GTTCGGCGCG CGCGGCGAGC ACGACATTCC ACCGGACCCG 60 CCGAGCCGCG TCGGGATAGC CGCTGGCCTC CCGCACCCCG ACCTCCCTCA GCCTCCGCAC 120 CTTCGGCTTG TCCCCCCGCG GCCTCCAGTG GGACGGCGTG ACCCCGCTCG GGCTCTCAGT 180 GCTCCCGGGG CCGCGCGCC ATG GGC AGC CCC CGC TCC GCG CTG AGC TGC CTG 232 Met Gly Ser Pro Arg Ser Ala Leu Ser Cys Leu 1 5 10 CTG TTG CAC TTG CTG GTT CTC TGC CTC CAA GCC CAG GTA AGG AGC GCT 280 Leu Leu His Leu Leu Val Leu Cys Leu Gln Ala Gln Val Arg Ser Ala 15 20 25 GCG CAG AAG CGG GGG CCG GGC GCG GGG AAC CCA GCT GAC ACT CTC GGG 328 Gln Gly His Glu Asp Arg Pro Phe Gly Gln Arg Ser Arg Ala Gly Lys 30 35 40 CAG GGA CAC GAG GAC CGA CCC TTC GGC CAG CGC AGC AGG GCT GGA AAG 376 Gln Gly His Glu Asp Arg Pro Phe Gly Gln Arg Ser Arg Ala Gly Lys 45 50 55 AAC TTT ACA AAT CCA GCC CCA AAC TAC CCC GAG GAG GGA TCT AAG GAA 424 Asn Phe Thr Asn Pro Ala Pro Asn Tyr Pro Glu Glu Gly Ser Lys Glu 60 65 70 75 CAG AGA GAC AGT GTC CTG CCT AAA GTC ACA CAG CGA CAT GTG AGG GAG 472 Gln Arg Asp Ser Val Leu Pro Lys Val Thr Gln Arg His Val Arg Glu 80 85 90 CAG AGC CTG GTG ACG GAT CAG CTC AGC CGC CGC CTC ATC CGG ACC TAC 520 Gln Ser Leu Val Thr Asp Gln Leu Ser Arg Arg Leu Ile Arg Thr Tyr 95 100 105 CAG CTC TAC AGC CGC ACC AGC GGG AAG CAC GTG CAG GTC CTG GCC AAC 568 Gln Leu Tyr Ser Arg Thr Ser Gly Lys His Val Gln Val Leu Ala Asn 110 115 120 AAG CGC ATC AAC GCC ATG GCA GAA GAC GGA GAC CCC TTC GCG AAG CTC 616 Lys Arg Ile Asn Ala Met Ala Glu Asp Gly Asp Pro Phe Ala Lys Leu 125 130 135 ATT GTG GAG ACC GAT ACT TTT GGA AGC AGA GTC CGA GTT CGC GGC GCA 664 Ile Val Glu Thr Asp Thr Phe Gly Ser Arg Val Arg Val Arg Gly Ala 140 145 150 155 GAG ACA GGT CTC TAC ATC TGC ATG AAC AAG AAG GGG AAG CTA ATT GCC 712 Glu Thr Gly Leu Tyr Ile Cys Met Asn Lys Lys Gly Lys Leu Ile Ala 160 165 170 AAG AGC AAC GGC AAA GGC AAG GAC TGC GTA TTC ACA GAG ATC GTG CTG 760 Lys Ser Asn Gly Lys Gly Lys Asp Cys Val Phe Thr Glu Ile Val Leu 175 180 185 GAG AAC AAC TAC ACG GCG CTG CAG AAC GCC AAG TAC GAG GGC TGG TAC 808 Glu Asn Asn Tyr Thr Ala Leu Gln Asn Ala Lys Tyr Glu Gly Trp Tyr 190 195 200 ATG GCC TTT ACC CGC AAG GGC CGG CCC CGC AAG GGC TCC AAG ACG CGC 856 Met Ala Phe Thr Arg Lys Gly Arg Pro Arg Lys Gly Ser Lys Thr Arg 205 210 215 CAG CAT CAG CGC GAG GTG CAC TTC ATG AAG CGC CTG CCG CGG GGC CAC 904 Gln His Gln Arg Glu Val His Phe Met Lys Arg Leu Pro Arg Gly His 220 225 230 235 CAC ACC ACC GAG CAG AGC CTG CGC TTC GAG TTC CTC AAC TAC CCG CCC 952 His Thr Thr Glu Gln Ser Leu Arg Phe Glu Phe Leu Asn Tyr Pro Pro 240 245 250 TTC ACG CGC AGC CTG CGC GGC AGC CAG AGG ACT TGG GCC CCG GAG CCC 1000 Phe Thr Arg Ser Leu Arg Gly Ser Gln Arg Thr Trp Ala Pro Glu Pro 255 260 265 CGA TAGGCGCTCG CCCAGCTCCT CCCCACCCAG CCGGCCGAGG AATCCAGCGG 1053 Arg 268 GAGCTCGGCG GCACAGCAAA GGGGAGGGGC TGGGGAGCTG CCTTCTAGTT GTGCATATTG 1113 TTTGCTGTTG GGTTTTTTTG TTTTTTGTTT TTTGTTTTTG TTTTTTGTTT TTTAAACAAA 1173 AGAGA 1178
【0034】配列番号:3 配列の長さ:23 配列の型:核酸 配列 ATHAAYGCiA TGGCiGARGA YGG 23
【0035】配列番号:4 配列の長さ:20 配列の型:核酸 配列 GCCATRTACC AiCCYTCRTA
【図面の簡単な説明】
【図1】逆相HPLCでのAIGFの溶出プロファイルを示す図
である。
【図2】逆相HPLCにより得られたAIGFのSDS-PAGEプロフ
ァイルを示す図である。
【図3】AIGFのリジルエンドペプチダ−ゼ消化後のペプ
チドマッピングを示す図である。
【図4】AIGFのヌクレオチド配列および推定アミノ酸配
列を示す図である。
【図5】テストステロンによるAIGF mRNAの誘導を示す
図である。
【図6】AIGF cDNAの発現を示す図である。
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI (C12P 21/02 C12R 1:91) (58)調査した分野(Int.Cl.7,DB名) C07K 14/00 - 14/825 C12N 15/00 - 15/90 GenBank/EMBL/DDBJ/G eneSeq SwissProt/PIR/GeneS eq

Claims (12)

    (57)【特許請求の範囲】
  1. 【請求項1】配列番号:1に記載のアミノ酸配列のうち
    35位のHisから215位のArgまでのアミノ酸配列を含む
    胞増殖因子。
  2. 【請求項2】配列番号:1に記載のアミノ酸配列のうち
    23位のGlnから215位のArgまでのアミノ酸配列または配
    列番号:2に記載のアミノ酸配列のうち23位のGlnから2
    68位のArgまでのアミノ酸配列を含む請求項1記載の細
    胞増殖因子。
  3. 【請求項3】配列番号:1に記載のアミノ酸配列のうち
    2位のGlyから215位のArgまでのアミノ酸配列または配列
    番号:2に記載のアミノ酸配列のうち2位のGlyから268
    位のArgまでのアミノ酸配列を含む請求項1記載の細胞
    増殖因子。
  4. 【請求項4】以下の性質を有する請求項1記載の細胞増
    殖因子。 (1) アンドロゲンにより誘導される。 (2) ヘパリン結合性である。 (3) アンドロゲンの非存在下でSC-3細胞を増殖させる。
  5. 【請求項5】糖鎖を有する請求項1記載の細胞増殖因
    子。
  6. 【請求項6】請求項1〜5のいずれかに記載の細胞増殖
    因子をコ−ドするDNA。
  7. 【請求項7】請求項6に記載のDNAを有し請求項1〜5
    のいずれかに記載の細胞増殖因子を発現しうるプラスミ
    ド。
  8. 【請求項8】請求項7に記載のプラスミドを有する宿主
    細胞。
  9. 【請求項9】請求項8に記載の宿主細胞を培養すること
    を特徴とする請求項1〜5のいずれかに記載の細胞増殖
    因子の製造法。
  10. 【請求項10】請求項9に記載の製造法により製造され
    る請求項1〜5のいずれかに記載の細胞増殖因子。
  11. 【請求項11】乳ガン細胞を培養し、培養培地から請求
    項1〜5のいずれかに記載の細胞増殖因子を採取するこ
    とを特徴とする該細胞増殖因子の製造法。
  12. 【請求項12】請求項1〜5のいずれかに記載の細胞増
    殖因子を有する細胞増殖剤。
JP03871792A 1992-01-28 1992-01-28 細胞増殖因子 Expired - Lifetime JP3187113B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03871792A JP3187113B2 (ja) 1992-01-28 1992-01-28 細胞増殖因子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03871792A JP3187113B2 (ja) 1992-01-28 1992-01-28 細胞増殖因子

Publications (2)

Publication Number Publication Date
JPH05222096A JPH05222096A (ja) 1993-08-31
JP3187113B2 true JP3187113B2 (ja) 2001-07-11

Family

ID=12533079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03871792A Expired - Lifetime JP3187113B2 (ja) 1992-01-28 1992-01-28 細胞増殖因子

Country Status (1)

Country Link
JP (1) JP3187113B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5728546A (en) 1995-06-05 1998-03-17 Human Genome Sciences, Inc. Fibroblast growth factor 13
US6403557B1 (en) 1996-11-27 2002-06-11 Human Genome Sciences, Inc. Fibroblast growth factor-13

Also Published As

Publication number Publication date
JPH05222096A (ja) 1993-08-31

Similar Documents

Publication Publication Date Title
Raikhel et al. Isolation and characterization of a cDNA clone encoding wheat germ agglutinin
Watanabe-Fukunaga et al. The cDNA structure, expression, and chromosomal assignment of the mouse Fas antigen.
KR960002874B1 (ko) 재조합된 사람의 내피 세포 성장 인자의 제조방법
US6689580B1 (en) Growth factor
US20030092175A1 (en) Human proteins having transmembrane domains and dnas encoding these proteins
JP2634323B2 (ja) Tcf‐▲ii▼のアミノ酸配列をコードするdnaを含むプラスミド,形質転換細胞及びこれを用いて生理活性物質を生産する方法
JPH0724584B2 (ja) 卵胞刺激ホルモン
JPH022351A (ja) インターロイキン―1受容体
HUT77578A (hu) A 10-es számú fibroblaszt növekedési faktor (FGF-10)
CA2340616A1 (en) Secreted proteins and polynucleotides encoding them
WO1993025659A9 (en) Glycosaminoglycan specific sulfotransferases
JPH025865A (ja) ヒトの血小板由来の成長因子受容体
WO1996004396A1 (en) Neural cell adhesion molecules, nucleotide sequences encoding the molecules, and methods of use thereof
Hoffmann et al. Heat-shock proteins, Hsp84 and Hsp86, of mice and men: two related genes encode formerly identified tumour-specific transplantation antigens
WO1996000242A1 (en) Retinoic acid receptor epsilon
JP3187113B2 (ja) 細胞増殖因子
HU197939B (en) Process for producing deoxyribonucleic acid, or its precursor, determining human growth hormone releasing factor
US5874264A (en) Gibbon ape leukemia virus receptor
JP3081761B2 (ja) 顆粒球コロニー刺激因子受容体のcrh領域を含むリガンド結合領域の蛋白質をコードしているdna
JP3503928B2 (ja) 新規な癌抑制遺伝子およびそれによりコードされるタンパク質、それらの製造および使用の方法
EP1012177B1 (en) Estrogen receptor
JP3533699B2 (ja) 家蚕由来のプロフェノールオキシダーゼおよびフェノールオキシダーゼ
Torigoe et al. Localization of 67 exons on a YAC contig spanning 1.5 Mb around the multidrug resistance gene region of human chromosome 7q21. 1
JPH1036397A (ja) イヌインターロイキン12およびその製造法
JP2002247983A (ja) ヒト血管ibp様成長因子

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080511

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 11