JP3184717B2 - GaN single crystal and method for producing the same - Google Patents

GaN single crystal and method for producing the same

Info

Publication number
JP3184717B2
JP3184717B2 JP24296794A JP24296794A JP3184717B2 JP 3184717 B2 JP3184717 B2 JP 3184717B2 JP 24296794 A JP24296794 A JP 24296794A JP 24296794 A JP24296794 A JP 24296794A JP 3184717 B2 JP3184717 B2 JP 3184717B2
Authority
JP
Japan
Prior art keywords
single crystal
gan single
gan
crystal
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24296794A
Other languages
Japanese (ja)
Other versions
JPH07165498A (en
Inventor
一行 只友
信一 渡部
和政 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26536014&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3184717(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP24296794A priority Critical patent/JP3184717B2/en
Publication of JPH07165498A publication Critical patent/JPH07165498A/en
Application granted granted Critical
Publication of JP3184717B2 publication Critical patent/JP3184717B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、青色発光ダイオード等
のGaN単結晶基板として好適に用いることができる高
品質なGaN単結晶、および、その製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high quality GaN single crystal which can be suitably used as a GaN single crystal substrate for a blue light emitting diode or the like, and a method for producing the same.

【0002】[0002]

【従来の技術】発光ディスプレイ等における多色化の要
求や、通信・記録等におけるデータ密度向上の要求によ
って、青色から紫外線波長領域に至る短波長の発光が可
能な半導体デバイスの出現が強く求められている。この
青色〜紫外発光デバイス用の半導体材料として、 III−
V系化合物半導体では最もバンドギャップの広い窒化物
であるGaN系単結晶が着目されている。GaNは、直
接遷移型バンド構造を有するため高効率の発光が可能で
あり、かつ、室温でのバンドギャップが約3.4eVと
大きいため青色〜紫外発光を呈し、上記半導体デバイス
の要求に好適な材料である。しかし、GaNは、結晶成
長温度が高く、また結晶成長温度付近での窒素の平衡蒸
気圧が高いため、融液から高品質で大型の単結晶を製造
することは極めて困難である。従って、GaN系単結晶
の成長は、耐熱性に優れたサファイア基板またはSiC
基板上への、MOVPE(Metal Organic Vapor Phase
Epitaxy )またはMBE(Molecular Beam Epitaxy)に
よる非平衡反応に基づくヘテロエピタキシャル成長法に
よって行われていた。これに対して、近年、ZnOをバ
ッファ層としてサファイア基板上に成膜した上にGaN
単結晶を成長させる方法が開示され(例えば、Applied
physics letter Vol.61 (1992) p.2688 )、GaN基板
の作製が可能になった。このGaN基板上に同質のGa
N系単結晶薄膜を成長させることによって、上記サファ
イア基板上への直接的な結晶成長にくらべGaN系単結
晶薄膜の品質は向上した。
2. Description of the Related Art The demand for multicolor display in light-emitting displays and the like and the demand for higher data density in communication and recording have led to a strong demand for semiconductor devices capable of emitting light of short wavelengths from the blue to the ultraviolet wavelength region. ing. As a semiconductor material for this blue to ultraviolet light emitting device, III-
Among V-based compound semiconductors, GaN-based single crystals, which are nitrides having the widest band gap, have been receiving attention. GaN has a direct transition-type band structure and therefore can emit light with high efficiency, and has a large band gap at room temperature of about 3.4 eV, and emits blue to ultraviolet light, which is suitable for the requirements of the semiconductor device. Material. However, since GaN has a high crystal growth temperature and a high equilibrium vapor pressure of nitrogen near the crystal growth temperature, it is extremely difficult to produce a high-quality large single crystal from a melt. Therefore, a GaN-based single crystal is grown on a sapphire substrate or SiC having excellent heat resistance.
MOVPE (Metal Organic Vapor Phase)
Epitaxy) or heteroepitaxial growth based on non-equilibrium reaction by MBE (Molecular Beam Epitaxy). On the other hand, in recent years, a GaN film was formed on a sapphire substrate using ZnO as a buffer layer.
Methods for growing single crystals are disclosed (eg, Applied
physics letter Vol.61 (1992) p.2688), making GaN substrates possible. On this GaN substrate, homogeneous Ga
By growing the N-based single-crystal thin film, the quality of the GaN-based single-crystal thin film was improved as compared with the direct crystal growth on the sapphire substrate.

【0003】[0003]

【発明が解決しようとする課題】ところが、上記ZnO
をバッファ層として用いる従来の方法では、サファイア
基板上へのZnOの成膜がスパッタリング法によるもの
であるため、該ZnO層は高品質の単結晶とはならず、
この結晶構造の品質が次のGaN単結晶層に影響するた
めに高品質なGaN単結晶が得られないという問題があ
った。また、従来知られていたGaN単結晶の結晶品質
は、最も高品質なものであっても、2結晶法X線ロッキ
ングカーブの半値全幅(full width at half-maximumof
the double-crystal X-ray rocking curve)が100
sec程度、室温でのMobility は600cm2 /VS
程度であったが、結晶を成長させる方法がMOVPEで
あるために膜厚が5μm程度しか得られず非常に薄いの
で、GaN単結晶をもとの基板から分離し、例えば半導
体発光素子の基板として、単独に用いることは困難であ
った。このため、GaN単結晶を利用する場合は、もと
の基板上に形成された状態のまま用いることを余儀なく
されていたのである。以下、本明細書では、「2結晶法
X線ロッキングカーブの半値全幅」を単に「半値全幅」
という。また、上記のようにZnOバッファ層上に、H
VPE(Hydride Vapor PhaseEpitaxy )によって成長
させたGaN単結晶は、基板としては十分な厚みのもの
が得られていたが、その品質は半値全幅が300sec
以上の低品質のものであった。即ち、良好な品質と十分
な厚みとを同時に有するGaN単結晶はなかったのであ
る。
However, the above-mentioned ZnO
In the conventional method using as a buffer layer, the ZnO film is formed on a sapphire substrate by a sputtering method, so that the ZnO layer does not become a high-quality single crystal,
There is a problem that a high-quality GaN single crystal cannot be obtained because the quality of the crystal structure affects the next GaN single crystal layer. In addition, the crystal quality of a conventionally known GaN single crystal, even at the highest quality, is the full width at half-maximum of the X-ray rocking curve of the two-crystal method.
the double-crystal X-ray rocking curve) is 100
Mobility at room temperature is about 600cm 2 / VS
However, since the method for growing the crystal is MOVPE, the film thickness is only about 5 μm and is very thin. Therefore, the GaN single crystal is separated from the original substrate, and is used as a substrate for a semiconductor light emitting device, for example. , It was difficult to use it alone. For this reason, when a GaN single crystal is used, it must be used as it is formed on the original substrate. Hereinafter, in this specification, the “full width at half maximum of the two-crystal method X-ray rocking curve” is simply referred to as “full width at half maximum”.
That. Further, as described above, H
A GaN single crystal grown by VPE (Hydride Vapor Phase Epitaxy) had a sufficient thickness as a substrate, but its quality was such that the full width at half maximum was 300 sec.
These were of low quality. That is, there was no GaN single crystal having both good quality and sufficient thickness at the same time.

【0004】本発明の目的は、高品質な単結晶で、か
つ、単独で基板として用いることが可能なほど十分な厚
みを有する、GaN単結晶を提供することである。本発
明の他の目的は、高品質な単結晶で、かつ、単独で基板
として用いることが可能なほど十分な厚みを有するGa
N単結晶の製造が可能な、GaN単結晶の製造方法を提
供することである。
[0004] It is an object of the present invention to provide a GaN single crystal that is a high-quality single crystal and has a thickness sufficient to be used alone as a substrate. Another object of the present invention is to provide a single crystal of high quality and having a thickness sufficient to be able to be used alone as a substrate.
An object of the present invention is to provide a method for producing a GaN single crystal, capable of producing an N single crystal.

【0005】[0005]

【課題を解決するための手段】本発明者等は、GaN単
結晶が従来の製造方法による低品質の結晶構造であって
も、あるいはサファイア基板等のようなGaN以外の結
晶であっても、これらを最初の結晶基板として、この上
にGaN単結晶との格子整合性が良好な物質を薄膜成長
させてバッファ層とし、この上にGaNを結晶成長させ
ることによって、より高品質のGaN単結晶が得られる
こと、および当該GaN単結晶を新たな基板とし、再び
この上にバッファ層・GaN単結晶を成長させるという
ように、バッファ層物質とGaNとを交互にエピタキシ
ャル成長させることを繰り返すに応じてGaN単結晶が
より高品質化され、十分な厚みに形成し得ることを見出
し本発明を完成した。
Means for Solving the Problems The present inventors have determined whether a GaN single crystal has a low-quality crystal structure by a conventional manufacturing method or a crystal other than GaN such as a sapphire substrate. Using these as the first crystal substrate, a material having good lattice matching with the GaN single crystal is grown thereon as a thin film to form a buffer layer, and GaN crystal is grown thereon, thereby obtaining a higher quality GaN single crystal. Is obtained, and the buffer layer material and GaN are alternately epitaxially grown such that the GaN single crystal is used as a new substrate and the buffer layer / GaN single crystal is grown thereon again. The present inventors have found that GaN single crystals can be formed with higher quality and can be formed to a sufficient thickness, and have completed the present invention.

【0006】本発明のGaN単結晶およびその製造方法
は次の特徴を有するものである。 (1) 2結晶法X線ロッキングカーブの半値全幅が5〜2
50secであり、かつ、厚みが80μm以上であっ
て、GaN系半導体結晶層を成長させるための基板とな
GaN単結晶。 (2) 少なくとも表面がGaN単結晶である基板上にGa
N単結晶との格子整合性の良好な物質を薄膜成長させて
バッファ層とした上にGaNを結晶成長させてGaN単
結晶を得る工程を有する、前記GaN系半導体結晶層を
成長させるための基板となるGaN単結晶の製造方法。 (3) 少なくとも表面がGaN単結晶である基板上にGa
N単結晶との格子整合性の良好な物質を薄膜成長させて
バッファ層とした上にGaNを結晶成長させてGaN単
結晶を得る工程を1回の結晶成長サイクルとし、得られ
たGaN単結晶上に上記結晶成長サイクルを少なくとも
1サイクル繰り返して積層物を形成させた後に各バッフ
ァ層を除去し、GaN単結晶を得ることを特徴とするG
aN単結晶の製造方法。 (4) 少なくとも表面がGaN単結晶である基板上にGa
N単結晶との格子整合性の良好な物質を薄膜成長させて
バッファ層とした上にGaNを結晶成長させてGaN単
結晶を得る工程を1回の結晶成長サイクルとし、得られ
たGaN単結晶を新たな基板として上記結晶成長サイク
ルを少なくとも1サイクル繰り返し、かつ1サイクル毎
にバッファ層を除去し、GaN単結晶を得ることを特徴
とするGaN単結晶の製造方法。
The GaN single crystal and the method for producing the same according to the present invention have the following features. (1) The full width at half maximum of the two-crystal method X-ray rocking curve is 5-2.
Is 50 sec, and there in a thickness of 80μm or more
Thus, it becomes a substrate for growing a GaN-based semiconductor crystal layer.
That GaN single crystal. (2) Ga on a substrate having at least a surface of GaN single crystal
Forming a buffer layer by growing a thin film of a substance having good lattice matching with the N single crystal to obtain GaN single crystal by growing GaN on the buffer layer;
A method for producing a GaN single crystal serving as a substrate for growth . (3) On a substrate having at least a surface made of GaN single crystal,
A process of growing a GaN single crystal by growing a GaN crystal on a thin film of a substance having good lattice matching with the N single crystal to form a buffer layer is defined as one crystal growth cycle. The above crystal growth cycle is repeated at least one cycle to form a laminate, and then each buffer layer is removed to obtain a GaN single crystal.
Manufacturing method of aN single crystal. (4) Ga on a substrate having at least a surface made of GaN single crystal
A process of growing a GaN single crystal by growing a GaN crystal on a thin film of a substance having good lattice matching with the N single crystal to form a buffer layer is defined as one crystal growth cycle. A GaN single crystal obtained by repeating the crystal growth cycle at least one cycle using a new substrate as a new substrate and removing the buffer layer every cycle.

【0007】[0007]

【作用】本発明のGaN単結晶は、基板上にバッファ層
の成膜とGaNの結晶成長とを交互に、また、サイクル
的に繰り返すことによって形成される。基板中に存在し
ている多くの転位、積層欠陥などは、GaNの結晶成長
層内、バッファ層内、または基板とバッファ層との界
面、またはバッファ層とGaN結晶成長層との界面で消
滅する。従って、該結晶成長サイクルを1回行なう毎
に、GaNの単結晶構造の品質は向上し、これを限りな
く繰り返せば、成長条件で規定されるような単結晶構造
に漸近的に収束するものと思われる。本発明の製造方法
によって得られるGaN単結晶は品質が良好であり、ま
た、必要ならば80μm以上の厚みにまで形成すること
が可能であり、特に半導体発光素子の基板として好まし
いものとなる。
The GaN single crystal of the present invention is formed by alternately repeating the film formation of the buffer layer and the crystal growth of GaN on the substrate, or by repeating the same in a cyclic manner. Many dislocations, stacking faults, etc. existing in the substrate disappear in the GaN crystal growth layer, in the buffer layer, at the interface between the substrate and the buffer layer, or at the interface between the buffer layer and the GaN crystal growth layer. . Therefore, each time the crystal growth cycle is performed, the quality of the GaN single crystal structure is improved, and if this is repeated indefinitely, the GaN single crystal structure asymptotically converges to the single crystal structure defined by the growth conditions. Seem. The GaN single crystal obtained by the production method of the present invention has good quality and can be formed to a thickness of 80 μm or more if necessary, and is particularly preferable as a substrate of a semiconductor light emitting device.

【0008】[0008]

【実施例】以下、実施例を挙げて本発明をより詳細に説
明する。本発明のGaN単結晶は、上記したように、そ
の半値全幅が5〜250secの値を示す高品質なもの
であり、かつ、単独で基板として用いることができる
程、充分な厚み80μm以上を有するものである。本発
明では、GaN単結晶の品質を数値で表すための方法と
してX線回折法を用い、この方法によって示される半値
全幅の値をもってGaN単結晶の品質とした。X線回折
法は、結晶に照射されたX線の回折を利用する方法であ
る。そのなかでも、本発明では、その測定精度を向上さ
せるために、2結晶を用いる方法によって測定をおこな
った。2結晶を用いるX線回折法は、試料の格子定数を
精密に評価し、その半値幅から結晶の完全性を評価する
方法である。本発明におけるGaN単結晶の品質評価に
おいては、X線源から入射したX線を第1結晶により高
度に単色化して、第2結晶である試料のGaN単結晶に
照射し、この試料から回折するX線のピークを中心とす
るFWHM(full width athalf-maximum)を測定し
た。X線源にはCukα1 を用い、30kV、10mA
でX線を発生させた。単色化のための第1結晶には、G
e(400)を用いた。測定は、GaN(0002)の
回折ピークについて行い、測定のステップ間隔は0.0
02°で行うものとした。
The present invention will be described below in more detail with reference to examples. As described above, the GaN single crystal of the present invention is a high-quality one whose full width at half maximum indicates a value of 5 to 250 sec, and has a sufficient thickness of 80 μm or more such that it can be used alone as a substrate. Things. In the present invention, an X-ray diffraction method is used as a method for expressing the quality of a GaN single crystal by a numerical value, and the value of the full width at half maximum indicated by this method is used as the quality of the GaN single crystal. The X-ray diffraction method is a method that utilizes the diffraction of X-rays applied to a crystal. Among them, in the present invention, in order to improve the measurement accuracy, the measurement was performed by a method using two crystals. The X-ray diffraction method using two crystals is a method of precisely evaluating the lattice constant of a sample and evaluating the integrity of the crystal from its half-value width. In the quality evaluation of the GaN single crystal in the present invention, the X-ray incident from the X-ray source is made highly monochromatic by the first crystal, irradiated to the GaN single crystal of the sample as the second crystal, and diffracted from this sample. The FWHM (full width at half-maximum) centered on the X-ray peak was measured. Using CuKa 1 is the X-ray source, 30 kV, 10 mA
Produced X-rays. The first crystal for monochromaticization has G
e (400) was used. The measurement is performed on the diffraction peak of GaN (0002), and the measurement step interval is 0.0
02 °.

【0009】本発明によるGaN単結晶の品質の実験値
については後述するものとし、次にこのような品質のG
aN単結晶を得ることが可能な製造方法を説明する。図
1は本発明の製造方法によるGaN単結晶の形成工程の
一例を模式的に示す図である。本発明のGaN単結晶の
製造方法は、最も簡単には、同図工程1に示すように、
少なくとも表面がGaN単結晶である最初の基板P0
にGaN単結晶との格子整合性が良好な物質を堆積させ
てバッファ層B1 とした上にGaNを結晶成長させてG
aN単結晶を得るものである。
The experimental value of the quality of the GaN single crystal according to the present invention will be described later.
A manufacturing method capable of obtaining an aN single crystal will be described. FIG. 1 is a diagram schematically showing an example of a step of forming a GaN single crystal according to the manufacturing method of the present invention. The method for producing a GaN single crystal of the present invention is most simply described as shown in Step 1 in FIG.
A material having good lattice matching with the GaN single crystal is deposited on the first substrate P 0 having at least a surface of a GaN single crystal to form a buffer layer B 1, and GaN crystal is grown thereon.
An aN single crystal is obtained.

【0010】本発明のGaN単結晶の製造方法は、ま
た、同図工程2に示すように、工程1で形成された積層
体の基板P1 上にGaN単結晶との格子整合性が良好な
物質を薄膜成長させてバッファ層B2 を形成した上にG
aNを結晶成長させGaN単結晶よりなる基板P2 を形
成させる。この様な工程を、工程1を1回目と数えてサ
イクル的にn回繰り返すことによって最上層にGaN単
結晶Pn が成長した後に、それまで累積した各バッファ
層を一度に除去し、GaN単結晶P1 〜Pn を分離して
多数枚のGaN単結晶とする方法である。上記方法で
は、サイクル数を増やす毎に、得られるGaNの結晶品
質は向上するが、結晶品質の向上が平衡状態に達した後
は、むしろ多数枚の基板作製技術として有用なものとな
る。
[0010] method of manufacturing a GaN single crystal of the present invention, and as shown in FIG step 2, a good lattice matching with GaN single crystal on the substrate P 1 of the laminate formed in step 1 The substance is grown on a thin film to form a buffer layer B 2 and then G
The aN to form the substrate P 2 of GaN single crystals by crystal growth. By repeating this process n times in a cycle by counting Step 1 as the first time, after the GaN single crystal Pn is grown on the uppermost layer, each buffer layer accumulated so far is removed at a time, and the GaN single crystal is removed. In this method, the crystals P 1 to P n are separated into a large number of GaN single crystals. In the above method, the crystal quality of the obtained GaN is improved each time the number of cycles is increased. However, after the improvement of the crystal quality reaches an equilibrium state, it becomes rather useful as a technique for manufacturing a large number of substrates.

【0011】本発明のGaN単結晶の製造方法は、さら
に、同図工程3に示すように、工程1のバッファ層B1
を除去してGaN単結晶P0 ,P1 を分離し、GaN単
結晶の単独基板P1 を得、当該基板P1 上にGaN単結
晶との格子整合性が良好な物質を薄膜成長させてバッフ
ァ層B2 を形成した上にGaNを結晶成長させ、バッフ
ァ層B2 を除去してGaN単結晶P1 ,P2 を分離す
る。この様な工程を、工程1を1回目と数えてサイクル
的にn回繰り返すことによってGaN単結晶Pnが得ら
れる。即ち、本方法は新たに得られるGaN単結晶が結
晶成長する度に、その結晶成長の基礎となったバッファ
層を1サイクル毎に除去し、新たに得られるGaN単結
晶を常にGaN単独の単結晶とする方法である。この方
法においても上記工程2と同様に、結晶品質の向上が平
衡状態に達した後は、バッファ層を除去して分離される
2つのGaN単結晶は、製品材料として利用する他に、
各々次のGaN結晶成長サイクルの基板として再び利用
してもよい。
[0011] method of manufacturing a GaN single crystal of the present invention, further, as shown in FIG. Step 3, the buffer layer B 1 of step 1
To separate the GaN single crystals P 0 and P 1 to obtain a single substrate P 1 of GaN single crystal, and a thin film of a substance having good lattice matching with the GaN single crystal is grown on the substrate P 1. the GaN is crystal grown on the formation of the buffer layer B 2, to separate the GaN single crystal P 1, P 2 to remove the buffer layer B 2. Such a process is repeated n times in a cycle, counting Step 1 as the first time, to obtain a GaN single crystal Pn . That is, every time a newly obtained GaN single crystal grows, the present method removes the buffer layer on which the crystal growth is based every cycle, and always replaces the newly obtained GaN single crystal with a single GaN single crystal. This is a method of forming crystals. In this method, similarly to the above-described step 2, after the improvement of the crystal quality reaches an equilibrium state, the two GaN single crystals separated by removing the buffer layer are used as product materials,
Each may be reused as a substrate for the next GaN crystal growth cycle.

【0012】また、工程2,3に示した2つの方法を適
当に複合する方法として、結晶成長サイクルの任意の回
数kごとにバッファ層を除去する方法が考えられる。こ
の場合の任意の回数kは自由に選択してよい。
As a method of appropriately combining the two methods shown in Steps 2 and 3, a method of removing the buffer layer at an arbitrary number k of crystal growth cycles can be considered. The arbitrary number k in this case may be freely selected.

【0013】上記のように、本発明のGaN単結晶の製
造方法は、結晶成長サイクルを繰り返すことによって、
GaNの結晶構造が該結晶成長サイクルを1回行なう毎
に品質が向上し、所望の回数n回目に、極めて高品質な
GaN単結晶Pn が得られるというものである。
As described above, the method for producing a GaN single crystal of the present invention can be realized by repeating a crystal growth cycle.
The quality of the GaN crystal structure is improved each time the crystal growth cycle is performed, and an extremely high-quality GaN single crystal Pn can be obtained at a desired number n times.

【0014】バッファ層の薄膜成長は、公知の成膜法や
結晶成長法が用いられるが、特にエピタキシャル成長可
能な成膜法が、得られるGaN単結晶の品質向上に対し
て好ましい。また、バッファ層上へGaNを結晶成長さ
せる方法も、バッファ層の薄膜成長と同様に、エピタキ
シャル成長可能な成膜法が品質向上に対して好ましい。
For the growth of the thin film of the buffer layer, a known film forming method or a crystal growing method is used. In particular, a film forming method capable of epitaxial growth is preferable for improving the quality of the obtained GaN single crystal. In addition, as for the method of crystal-growing GaN on the buffer layer, a film-forming method capable of epitaxial growth is preferable for quality improvement, like the thin-film growth of the buffer layer.

【0015】エピタキシャル成長は、結晶基板上にこれ
と同一物質あるいは同一結晶構造の物質を、その結晶軸
の向きが基板の結晶軸の向きにそろった単結晶として成
長させる方法である。本発明においては、GaNやバッ
ファ層となる物質をエピタキシャル成長させる成膜法が
最も好ましく、特にVPE(Vapor Phase Epitaxy )、
HVPE、MOVPE、MBE、GS−MBE(Gas So
urse MBE)、CBE(Chemical beam Epitaxy )等
が挙げられる。
The epitaxial growth is a method of growing the same substance or a substance having the same crystal structure on a crystal substrate as a single crystal whose crystal axis is aligned with the crystal axis of the substrate. In the present invention, a film formation method for epitaxially growing GaN or a substance to be a buffer layer is most preferable, and in particular, VPE (Vapor Phase Epitaxy),
HVPE, MOVPE, MBE, GS-MBE (Gas So
urse MBE), CBE (Chemical beam Epitaxy) and the like.

【0016】上記結晶成長サイクルを繰り返す回数n
は、特に限定されるものではなく、求めるGaN結晶の
品質に応じて、また、必要とするGaN結晶基板の枚数
に応じてサイクル回数を決定してよいが、通常の半導体
デバイス用のGaN結晶基板として用いるには、2回〜
5回程度で十分な結晶品質となる。
Number n of repeating the crystal growth cycle
The number of cycles is not particularly limited, and the number of cycles may be determined according to the quality of the GaN crystal required and the number of required GaN crystal substrates. Twice to use as
Sufficient crystal quality is obtained in about 5 times.

【0017】上記、GaNの結晶成長の基礎となったバ
ッファ層を除去する方法は、得られたGaN単結晶を分
離しうる方法であればどのような方法であってもよい
が、酸等による化学的な除去方法が有効である。
The method of removing the buffer layer on which the GaN crystal growth is based may be any method as long as the obtained GaN single crystal can be separated. Chemical removal methods are effective.

【0018】上記バッファ層に用いられる物質は、Ga
N単結晶との格子整合性が良好なものが用いられる。G
aN単結晶と格子製合性の良好な物質とは、結晶格子に
おけるa軸の格子定数が、GaN単結晶のそれに対して
±10%以内、好ましくは±5%以内であるウルツァイ
ト型の結晶構造も持つものを言う。これを満足する物質
の好ましい例として、ZnOが挙げられる。ZnOのa
軸の格子定数(単位格子の長さ)は3.2496Åであ
り、GaNのa軸の格子定数3.189Åに対して+
1.9%と、非常に近似した格子定数を備えており、良
好なGaNの結晶成長が行い得るので望ましい。また、
ZnOは酸によるエッチング除去性が良好であり、この
点でも、バッファ層に用いる物質として好適である。バ
ッファ層の厚みは、0.01μm〜100μm程度が好
ましい。
The material used for the buffer layer is Ga
Those having good lattice matching with the N single crystal are used. G
The substance having good lattice compatibility with the aN single crystal is a wurtzite type crystal structure in which the lattice constant of the a-axis in the crystal lattice is within ± 10%, preferably ± 5% of that of the GaN single crystal. Say what you have. A preferable example of a material satisfying this is ZnO. A of ZnO
The lattice constant of the axis (the length of the unit cell) is 3.2496 °, and the lattice constant of the GaN a-axis of 3.189 ° is +2.8.
It has a very close lattice constant of 1.9%, which is desirable because good GaN crystal growth can be performed. Also,
ZnO has good etching removability with an acid, and in this respect, it is also suitable as a substance used for the buffer layer. The thickness of the buffer layer is preferably about 0.01 μm to 100 μm.

【0019】最初の基板P0 は、少なくとも表面がGa
N単結晶であるものを用いる。即ち、全体が実質的にG
aNだけからなるGaN単結晶の単独の基板、または、
GaN単結晶層をバッファ層形成側の表面に有するよう
な、表面だけがGaN単結晶であるような基板である。
後者の場合、GaN単結晶層を担持する基材物質として
は、GaN単結晶の成長温度(1000〜1100℃)
に対する耐熱性が良好なものが望ましく、例えばサファ
イア結晶基板、Si基板、水晶、ZnO基板、SiC基
板などが例示される。これら基材物質上へのGaN単結
晶層の形成は、MOVPE法、MBE法などによる非平
衡反応に基づくヘテロエピタキシャル成長法によって行
うことができる。
The first substrate P 0 has at least a surface of Ga
An N single crystal is used. That is, the whole is substantially G
a single substrate of GaN single crystal consisting only of aN, or
The substrate has a GaN single crystal layer only on the surface on the buffer layer formation side, such as a GaN single crystal.
In the latter case, the base material supporting the GaN single crystal layer may be a GaN single crystal growth temperature (1000-1100 ° C.)
A sapphire crystal substrate, a Si substrate, a quartz crystal, a ZnO substrate, a SiC substrate, etc. are exemplified. The formation of a GaN single crystal layer on these substrate materials can be performed by a heteroepitaxial growth method based on a non-equilibrium reaction such as a MOVPE method or an MBE method.

【0020】〔GaN単結晶の製造実験および品質確認
実験〕次に、本発明のGaN単結晶の製造方法によって
実際にGaN単結晶を製造し、その品質を確認した結果
を示す。 実験例1 本実験例では、上記本発明のGaN単結晶の製造方法に
おける結晶成長サイクルを繰り返す方法として、図1に
おける工程2に示すように、最初の基板P0 上にバッフ
ァ層およびGaN単結晶を順次成長させて積層し、最後
に各バッファ層を一度に除去してGaN単結晶を分離す
る方法とした。最初の基板P0 としては、サファイア結
晶基材上にMOVPE法によりGaN単結晶層をエピタ
キシャル成長させた基板を用いた。バッファ層は厚みを
0.2μm、材料をZnOとした。結晶成長サイクルは
5回繰り返すものとした。結晶成長サイクル各回に形成
されるGaN単結晶P1 〜P5 の厚みは全て300μm
を目標とした。最後に得られたGaN単結晶P5 の半値
全幅を測定したところ、29secであり、また、その
厚みは305μmであった。
[Manufacturing Experiment of GaN Single Crystal and Quality Confirmation Experiment] Next, the result of actually manufacturing a GaN single crystal by the method of manufacturing a GaN single crystal of the present invention and confirming the quality thereof will be described. In Experiment 1 In this experiment example, as a method of repeating the crystal growth cycle in the manufacturing method of the GaN single crystal of the present invention, as shown in step 2 in FIG. 1, the buffer layer and GaN single crystal on the first substrate P 0 Are sequentially grown and stacked, and finally, each buffer layer is removed at a time to separate a GaN single crystal. The first substrate P 0, using a substrate obtained by epitaxially growing a GaN single crystal layer by the MOVPE method on a sapphire crystal substrate. The buffer layer had a thickness of 0.2 μm and the material was ZnO. The crystal growth cycle was repeated five times. The thickness of each of the GaN single crystals P 1 to P 5 formed in each crystal growth cycle is 300 μm
Was targeted. Measurement of the finally obtained full width at half maximum of the GaN single crystal P 5, a 29Sec, also its thickness was 305 .mu.m.

【0021】実験例2 本実験例では、上記実験例1における結晶成長サイクル
を繰り返す方法に代えて、図1における工程3に示すよ
うに、GaN単結晶がエピタキシャル成長する度に、そ
の前のバッファ層を除去し、新たな基板を常に1枚のG
aN単独の単結晶とした以外は、実験例1と全く同様の
GaN単結晶の作製を行った。最後に得られたGaN単
結晶P5 の品質は、半値全幅が28secであり、ま
た、その厚みは289μmであった。
EXPERIMENTAL EXAMPLE 2 In this experimental example, instead of the method of repeating the crystal growth cycle in Experimental Example 1, as shown in step 3 in FIG. Is removed, and a new substrate is always
A GaN single crystal was produced in exactly the same manner as in Experimental Example 1, except that a single crystal of aN alone was used. Quality finally obtained GaN single crystal P 5 is full width at half maximum is 28Sec, also its thickness was 289μm.

【0022】実験例3 本実験例では、上記実験例2における最初の基板とし
て、サファイア基板と、AlN(窒化アルミニウム)の
バッファ層と、GaN単結晶とからなる3層の基板を用
いた以外は、実験例2と全く同様のGaN単結晶の作製
を行った。3層の基板の製作工程を簡単に説明する。厚
さ300μm、面積5cm×5cmのサファイア結晶基
板上に、バッファ層としてAlNをMOVPE法によっ
て厚み500Åまでエピタキシャル成長させ、その状態
のままで材料ガスを切替え、同じMOVPE法によって
GaN単結晶を厚み2μmまでエピタキシャル成長させ
て表層とし、サファイア結晶基板と、AlNバッファ層
と、GaN単結晶の表層とからなる総厚約302μmの
三層構造の基板を得た。本実験によって最後に得られた
GaN単結晶P5 の品質は、半値全幅が25secであ
り、また、その厚みは295μmであった。
Experimental Example 3 In this experimental example, a three-layer substrate composed of a sapphire substrate, an AlN (aluminum nitride) buffer layer, and a GaN single crystal was used as the first substrate in Experimental Example 2 above. A GaN single crystal was produced in exactly the same manner as in Experimental Example 2. The manufacturing process of a three-layer substrate will be briefly described. On a sapphire crystal substrate having a thickness of 300 μm and an area of 5 cm × 5 cm, AlN is epitaxially grown as a buffer layer to a thickness of 500 ° by MOVPE, and the material gas is changed in this state, and a GaN single crystal is grown to 2 μm by the same MOVPE. A three-layer substrate having a total thickness of about 302 μm, comprising a sapphire crystal substrate, an AlN buffer layer, and a GaN single crystal surface layer, was obtained by epitaxial growth to form a surface layer. Quality GaN single crystal P 5 obtained last by the present experiment, the full width at half maximum is 25 sec, also its thickness was 295μm.

【0023】実験例4 本実験例では、上記実験例2において、最初の基板P0
として実験例3と同様の3層の基板を用い、GaN単結
晶の結晶成長サイクルを繰り返す際の、各サイクルにお
けるバッファ層の材料として(BeO)0.13(ZnO)
0.87 を用いた以外は、実験例2と全く同様のGaN単
結晶の作製を行った。本実験によって最後に得られたG
aN単結晶P5 の品質は、半値全幅が28secであ
り、また、その厚みは301μmであった。
EXPERIMENTAL EXAMPLE 4 In this experimental example, the first substrate P 0 in Experimental Example 2 was used.
When the same three-layer substrate as in Experimental Example 3 is used, and the crystal growth cycle of the GaN single crystal is repeated, (BeO) 0.13 (ZnO) is used as the material of the buffer layer in each cycle.
Except that 0.87 was used, a GaN single crystal was produced in exactly the same manner as in Experimental Example 2. G finally obtained by this experiment
aN quality of the single crystal P 5 is full width at half maximum is 28Sec, also its thickness was 301μm.

【0024】実験例5 本実験例では、本発明によるGaN単結晶の品質と比較
するために、従来の製造方法によるGaN単結晶の品質
を調べた。厚さ300μm、面積5cm×5cmのサフ
ァイア結晶基板上に、スパッタリング法によってZnO
を材料とする厚さ0.6μmのバッファ層を成膜し、そ
の上にHVPEによってGaN単結晶を厚さ250μm
までエピタキシャル成長させた。このGaN単結晶の品
質は、半値全幅が420secであった。
Experimental Example 5 In this experimental example, the quality of a GaN single crystal by a conventional manufacturing method was examined in order to compare with the quality of a GaN single crystal according to the present invention. ZnO was formed on a sapphire crystal substrate having a thickness of 300 μm and an area of 5 cm × 5 cm by sputtering.
Is formed into a buffer layer having a thickness of 0.6 μm, and a GaN single crystal is formed thereon by HVPE to a thickness of 250 μm.
Until epitaxial growth. As for the quality of the GaN single crystal, the full width at half maximum was 420 sec.

【0025】上記実験結果で明らかなように、本発明の
GaN単結晶の製造方法は、従来には無い、高品質なG
aN単結晶を製造することが可能であり、かつ、GaN
単結晶を単独の基板として用いるのに十分な厚みに製造
することが可能であることが確認された。
As is evident from the above experimental results, the method for producing a GaN single crystal of the present invention has a high quality G
aN single crystal can be produced and GaN
It was confirmed that a single crystal could be manufactured to a thickness sufficient to be used as a single substrate.

【0026】本発明の製造方法によって得られる、この
ような高品質で厚いGaN単結晶は、発光ダイオード
(LED)、レーザーダイオード(LD)、スーパール
ミネッセンスダイオード等の半導体発光素子、電子デバ
イス等の用途に好ましく用いられる。半導体発光素子に
おいては、本発明のGaN単結晶を基板として用いるこ
とで、従来の赤色LED等と同じ電極部の構造を有する
LED、LD等の製造が可能となる。これらのなかでも
特に、青色発光するものは重要である。また、その半導
体発光素子の発光の効率はより高いものとなる。
Such a high-quality and thick GaN single crystal obtained by the manufacturing method of the present invention can be used for semiconductor light-emitting devices such as light-emitting diodes (LEDs), laser diodes (LDs), superluminescence diodes, and electronic devices. It is preferably used. In a semiconductor light emitting device, by using the GaN single crystal of the present invention as a substrate, it becomes possible to manufacture LEDs, LDs and the like having the same electrode structure as a conventional red LED and the like. Of these, those that emit blue light are particularly important. In addition, the light emitting efficiency of the semiconductor light emitting device becomes higher.

【0027】〔本発明によるGaN単結晶を用いたLE
Dの品質確認実験〕本発明の製造方法によって得られた
GaN単結晶を基板として用いたLEDを実際に製造
し、その品質を確認した。また、従来品質のGaN単結
晶、およびサファイア結晶を各々基板とするLEDを製
作し、本発明のGaN単結晶を基板とするLEDの品質
と比較した。従来品質のGaN単結晶としては、半値全
幅が300secのものを用いた。LEDの品質は、初
期の輝度と寿命について評価した。寿命は、温度85℃
湿度85%の雰囲気中において20mAの電流によって
2000時間連続発光させた後の輝度を測定し、その輝
度の初期の輝度に対する低下率を求め、低下率2%未満
をA、低下率2〜5未満%をB、低下率5〜10%をC
と、3つのランクに分けた。LEDの構造は、本発明の
製造方法によって得られたGaN単結晶を基板とし、該
基板上に、n−AlGaNクラッド層、アンドープのI
nGaN活性層、p−AlGaNクラッド層を順次成長
させてなるダブルヘテロ接合型の構成とした。本発明に
よるGaN単結晶の基板の品質は、半値全幅が30se
c、100sec、250secの3種類である。厚み
はすべて280μmである。また、活性層のInGaN
の組成比は、In0.15Ga0.85Nと、In0.25Ga0.75
Nの2種類とし、各々の組成比のInGaNについて、
発光素子を作成し実験を行った。この実験結果を次の表
1、2に示す。
[LE using GaN single crystal according to the present invention]
D. Quality Confirmation Experiment] An LED using the GaN single crystal obtained by the production method of the present invention as a substrate was actually manufactured and its quality was confirmed. In addition, LEDs using conventional quality GaN single crystals and sapphire crystals as substrates were manufactured, and compared with the quality of LEDs using the GaN single crystals of the present invention as substrates. As a conventional quality GaN single crystal, one having a full width at half maximum of 300 sec was used. The quality of the LEDs was evaluated for initial brightness and lifetime. Life is 85 ° C
The luminance after continuously emitting light for 2000 hours with a current of 20 mA in an atmosphere of a humidity of 85% is measured, and a decrease rate of the luminance with respect to the initial luminance is obtained. % For B, 5% to 10% for C
And divided into three ranks. The structure of the LED is such that a GaN single crystal obtained by the manufacturing method of the present invention is used as a substrate, and an n-AlGaN cladding layer and an undoped I
A double heterojunction type structure in which an nGaN active layer and a p-AlGaN cladding layer were sequentially grown was adopted. The quality of the GaN single crystal substrate according to the present invention is such that the full width at half maximum is 30 seconds.
c, 100 sec, and 250 sec. All thicknesses are 280 μm. In addition, the active layer InGaN
The composition ratio of In 0.15 Ga 0.85 N and In 0.25 Ga 0.75
N and two types of InGaN with respective composition ratios:
A light emitting device was prepared and an experiment was performed. The experimental results are shown in Tables 1 and 2 below.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】表1、2に示すように、本発明による高品
質なGaN単結晶を基板として用いたLEDは、初期の
輝度と寿命の点で、従来のものより優れたLEDである
ことがわかった。
As shown in Tables 1 and 2, it was found that the LED using the high-quality GaN single crystal according to the present invention as a substrate was superior to the conventional LED in terms of initial luminance and life. Was.

【0031】また、LDに関しては、次の現象が確認で
きた。サファイア結晶を基板とする従来のLDでは、サ
ファイア結晶が、へき開面の形成が困難な物質であるた
めに基板面が好ましい鏡面状態とはならず、その基板面
に形成されるGaN系化合物半導体層の面の状態は、基
板面の状態に従うため、LDにとって好ましい反射面は
形成することができなかった。しかし、本発明によるG
aN単結晶は高品質であり十分な厚みを有するため、G
aN単結晶を基板として、そのへき開面を得ることが容
易になった。また、従来のGaN系化合物半導体を用い
たLDでは、結晶品質が劣っているため、電流注入によ
る誘導放出が達成できなかったが、本発明による高品質
なGaN単結晶を基板として用いたファブリ・ペロー型
共振器のストライプレーザーを構成し実験したところ、
室温において誘導放出が確認された。
The following phenomena were confirmed for the LD. In a conventional LD using a sapphire crystal as a substrate, the sapphire crystal is a substance that is difficult to form a cleavage plane, so that the substrate surface does not have a desirable mirror state, and a GaN-based compound semiconductor layer formed on the substrate surface Since the state of the surface follows the state of the substrate surface, a favorable reflection surface for the LD could not be formed. However, G according to the invention
Since the aN single crystal is of high quality and has a sufficient thickness,
It became easy to obtain a cleaved surface using an aN single crystal as a substrate. Further, in the LD using the conventional GaN-based compound semiconductor, the crystal quality was inferior, so that the stimulated emission by current injection could not be achieved. However, a fabric using a high-quality GaN single crystal according to the present invention as a substrate. We constructed a Perot-type resonator stripe laser and performed experiments.
Stimulated release was observed at room temperature.

【0032】[0032]

【発明の効果】以上詳述したように、本発明のGaN単
結晶は、従来にはなかった結晶品質と充分な厚みを同時
に備えるものである。また、本発明の製造方法は、その
ような高品質で充分な厚みを同時に備えたGaN単結晶
を好適に提供することができる。従って、高効率の青色
発光を呈するLEDや、紫外線レーザーダイオード、ま
たは耐熱性の良好な半導体デバイスを得るために好適な
GaN単結晶の基板を提供することできる。また、本発
明の製造方法は、GaN単結晶の結晶品質の向上および
厚みの獲得だけでなく、高品質なGaN単結晶を効率良
く多数枚製造することが可能であり、工業的にも極めて
重要な技術である。
As described above in detail, the GaN single crystal of the present invention has both crystal quality and sufficient thickness which have not been obtained in the past. Further, the manufacturing method of the present invention can suitably provide a GaN single crystal having such high quality and sufficient thickness at the same time. Therefore, it is possible to provide a substrate of a GaN single crystal suitable for obtaining an LED that emits blue light with high efficiency, an ultraviolet laser diode, or a semiconductor device having good heat resistance. Further, the manufacturing method of the present invention not only improves the crystal quality and obtains the thickness of the GaN single crystal, but also enables efficient production of a large number of high-quality GaN single crystals, which is extremely important industrially. Technology.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるGaN単結晶の製造方法の工程の
一例を示す模式図である。
FIG. 1 is a schematic view showing an example of steps of a method for producing a GaN single crystal according to the present invention.

【符号の説明】[Explanation of symbols]

0 最初の基板 P1 〜Pn GaN単結晶 B1 〜Bn バッファ層P 0 First substrate P 1 -P n GaN single crystal B 1 -B n buffer layer

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭51−50899(JP,A) 特開 昭56−59700(JP,A) 特開 昭53−104598(JP,A) T.Detchprohm et a l.,”Hydride vapor phase epitaxial gr owth of a high qua lity GaN film usin g a ZnO buffer lay er”,Applied Physic s Letter,Vol.61,No. 22,Nov.30,1992,p.2688−2690 (58)調査した分野(Int.Cl.7,DB名) C30B 1/00 - 35/00 H01L 33/00 EPAT(QUESTEL)──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-51-50899 (JP, A) JP-A-56-59700 (JP, A) JP-A-53-104598 (JP, A) Detchprohm et al. , "Hydride vapor phase epitaxial growth of a high quality GaN film usin g a ZnO buffer layer", Applied Physics Letters, Vol. 61, No. 22, Nov. 30, 1992, p. 2688-2690 (58) Field surveyed (Int. Cl. 7 , DB name) C30B 1/00-35/00 H01L 33/00 EPAT (QUESTEL)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 2結晶法X線ロッキングカーブの半値全
幅が5〜250secであり、かつ、厚みが80μm以
上であって、GaN系半導体結晶層を成長させるための
基板となるGaN単結晶。
1. A two-crystal X-ray rocking curve having a full width at half maximum of 5 to 250 seconds and a thickness of 80 μm or more, which is used for growing a GaN-based semiconductor crystal layer.
GaN single crystal used as a substrate .
【請求項2】 少なくとも表面がGaN単結晶である基
板上にGaN単結晶との格子整合性の良好な物質を薄膜
成長させてバッファ層とした上にGaNを結晶成長させ
てGaN単結晶を得る工程を有する、GaN系半導体結
晶層を成長させるための基板となるGaN単結晶の製造
方法。
2. A GaN single crystal is obtained by growing a thin film of a material having good lattice matching with the GaN single crystal on a substrate having at least a surface of a GaN single crystal to form a buffer layer and then growing GaN on the buffer layer. GaN-based semiconductor bonding process
A method for producing a GaN single crystal serving as a substrate for growing a crystal layer.
【請求項3】 少なくとも表面がGaN単結晶である基
板上にGaN単結晶との格子整合性の良好な物質を薄膜
成長させてバッファ層とした上にGaNを結晶成長させ
てGaN単結晶を得る工程を1回の結晶成長サイクルと
し、得られたGaN単結晶上に上記結晶成長サイクルを
少なくとも1サイクル繰り返して積層物を形成させた後
に各バッファ層を除去し、GaN単結晶を得ることを特
徴とするGaN単結晶の製造方法。
3. A GaN single crystal is obtained by growing a thin film of a substance having good lattice matching with the GaN single crystal on a substrate having at least a surface of a GaN single crystal to form a buffer layer and then growing GaN on the substrate. The process is a single crystal growth cycle, and the above crystal growth cycle is repeated at least one cycle on the obtained GaN single crystal to form a laminate, and then each buffer layer is removed to obtain a GaN single crystal. A method for producing a GaN single crystal.
【請求項4】 少なくとも表面がGaN単結晶である基
板上にGaN単結晶との格子整合性の良好な物質を薄膜
成長させてバッファ層とした上にGaNを結晶成長させ
てGaN単結晶を得る工程を1回の結晶成長サイクルと
し、得られたGaN単結晶を新たな基板として上記結晶
成長サイクルを少なくとも1サイクル繰り返し、かつ1
サイクル毎にバッファ層を除去し、GaN単結晶を得る
ことを特徴とするGaN単結晶の製造方法。
4. A GaN single crystal is obtained by growing a thin film of a material having good lattice matching with the GaN single crystal on a substrate having at least a surface of a GaN single crystal to form a buffer layer and then growing GaN on the buffer layer. The process is a single crystal growth cycle, and the obtained crystal growth cycle is repeated at least one cycle using the obtained GaN single crystal as a new substrate;
A method for producing a GaN single crystal, comprising removing a buffer layer every cycle to obtain a GaN single crystal.
JP24296794A 1993-10-08 1994-10-06 GaN single crystal and method for producing the same Expired - Lifetime JP3184717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24296794A JP3184717B2 (en) 1993-10-08 1994-10-06 GaN single crystal and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP25309893 1993-10-08
JP5-253098 1993-10-08
JP24296794A JP3184717B2 (en) 1993-10-08 1994-10-06 GaN single crystal and method for producing the same

Publications (2)

Publication Number Publication Date
JPH07165498A JPH07165498A (en) 1995-06-27
JP3184717B2 true JP3184717B2 (en) 2001-07-09

Family

ID=26536014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24296794A Expired - Lifetime JP3184717B2 (en) 1993-10-08 1994-10-06 GaN single crystal and method for producing the same

Country Status (1)

Country Link
JP (1) JP3184717B2 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0942459B1 (en) 1997-04-11 2012-03-21 Nichia Corporation Method of growing nitride semiconductors
TW449937B (en) 1999-02-26 2001-08-11 Matsushita Electronics Corp Semiconductor device and the manufacturing method thereof
JP4465745B2 (en) 1999-07-23 2010-05-19 ソニー株式会社 Semiconductor laminated substrate, semiconductor crystal substrate, semiconductor element, and manufacturing method thereof
JP4618836B2 (en) * 2000-01-04 2011-01-26 シャープ株式会社 Nitride-based compound semiconductor substrate and method for manufacturing the same
JP2002241198A (en) * 2001-02-13 2002-08-28 Hitachi Cable Ltd GaN SINGLE CRYSTAL SUBSTRATE AND METHOD FOR PRODUCING THE SAME
JP3812368B2 (en) 2001-06-06 2006-08-23 豊田合成株式会社 Group III nitride compound semiconductor device and method for manufacturing the same
TWI277666B (en) 2001-06-06 2007-04-01 Ammono Sp Zoo Process and apparatus for obtaining bulk mono-crystalline gallium-containing nitride
PL207400B1 (en) 2001-06-06 2010-12-31 Ammono Społka Z Ograniczoną Odpowiedzialnością Method of and apparatus for obtaining voluminous, gallium containing, monocrystalline nitride
US6897138B2 (en) 2001-06-25 2005-05-24 Toyoda Gosei Co., Ltd. Method and apparatus for producing group III nitride compound semiconductor
JP4035971B2 (en) 2001-09-03 2008-01-23 豊田合成株式会社 Manufacturing method of semiconductor crystal
US7750355B2 (en) 2001-10-26 2010-07-06 Ammono Sp. Z O.O. Light emitting element structure using nitride bulk single crystal layer
CN1316070C (en) 2001-10-26 2007-05-16 波兰商艾蒙诺公司 Substrate for epitaxy
JP4416648B2 (en) 2002-05-17 2010-02-17 アンモノ・スプウカ・ジ・オグラニチョノン・オドポヴィエドニアウノシツィオン Method for manufacturing light emitting device
TWI274735B (en) 2002-05-17 2007-03-01 Ammono Sp Zoo Bulk single crystal production facility employing supercritical ammonia
JP3595829B2 (en) * 2003-03-19 2004-12-02 株式会社東北テクノアーチ GaN substrate manufacturing method
JP4600641B2 (en) 2004-01-27 2010-12-15 日立電線株式会社 Nitride semiconductor free-standing substrate and nitride semiconductor light emitting device using the same
JP4654611B2 (en) * 2004-06-15 2011-03-23 日亜化学工業株式会社 Method of growing nitride semiconductor layer
KR20070058465A (en) 2004-08-06 2007-06-08 미쓰비시 가가꾸 가부시키가이샤 Nitride semiconductor single crystal including ga, method for manufacturing the same, and substrate and device using the crystal
CN101248221B (en) 2005-08-25 2012-06-06 东北技术使者株式会社 Process for producing semiconductor substrate
KR100695118B1 (en) * 2005-12-27 2007-03-14 삼성코닝 주식회사 Fabrication method of multi-freestanding gan wafer
EP2045374A3 (en) 2007-10-05 2011-02-16 Sumitomo Electric Industries, Ltd. Method of manufacturing a GaN substrate and a GaN epitaxial wafer
JP5291499B2 (en) * 2009-03-10 2013-09-18 株式会社沖データ Manufacturing method of semiconductor composite device
JP2011254068A (en) * 2010-05-07 2011-12-15 Sumitomo Chemical Co Ltd Semiconductor substrate
WO2017221519A1 (en) * 2016-06-20 2017-12-28 ソニー株式会社 Nitride semiconductor element, nitride semiconductor substrate, method for manufacturing nitride semiconductor element, and method for manufacturing nitride semiconductor substrate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
T.Detchprohm et al.,"Hydride vapor phase epitaxial growth of a high quality GaN film using a ZnO buffer layer",Applied Physics Letter,Vol.61,No.22,Nov.30,1992,p.2688−2690

Also Published As

Publication number Publication date
JPH07165498A (en) 1995-06-27

Similar Documents

Publication Publication Date Title
JP3184717B2 (en) GaN single crystal and method for producing the same
US5770887A (en) GaN single crystal
JP3749498B2 (en) Crystal growth substrate and ZnO-based compound semiconductor device
JP5023318B2 (en) 3-5 nitride semiconductor multilayer substrate, 3-5 nitride semiconductor free-standing substrate manufacturing method, and semiconductor device
JP4939014B2 (en) Group III nitride semiconductor light emitting device and method for manufacturing group III nitride semiconductor light emitting device
JPH10247626A (en) Method of growing gallium nitride on spinel substrate
WO2005015617A1 (en) Semiconductor layer
JPH07273367A (en) Manufacture of semiconductor substrate and light-emitting device
JPH11135882A (en) Compound semiconductor substrate, manufacture thereof, and light-emitting element
JPH11274560A (en) Semiconductor element and manufacture thereof
JPH11274082A (en) Group iii nitride semiconductor and fabrication thereof, and group iii nitride semiconductor device
JPH07273048A (en) Manufacture method of compound semiconductor single crystal and single crystal substrate using such method
JP2002241198A (en) GaN SINGLE CRYSTAL SUBSTRATE AND METHOD FOR PRODUCING THE SAME
JP3289682B2 (en) Semiconductor light emitting device
JPH07267796A (en) Production of gallium nitride single crystal
JP3463736B2 (en) Semiconductor light emitting device and method of adjusting light emission intensity thereof
JP2000114599A (en) Semiconductor light emitting element
JP2003309071A (en) GaN SEMICONDUCTOR CRYSTAL BASE MATERIAL
JPH09283799A (en) Semiconductor light-emitting element
JP2004014587A (en) Nitride compound semiconductor epitaxial wafer and light emitting element
JP4786587B2 (en) Group III nitride semiconductor and method for manufacturing the same, substrate for manufacturing group III nitride semiconductor
JPH0794784A (en) Blue light-emitting device
JP2000012979A (en) Method for manufacturing nitride semiconductor substrate
JP3749454B2 (en) GaN single crystal manufacturing method
JPH09237938A (en) Iii-v group compound semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090427

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090427

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090427

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090427

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090427

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 13

EXPY Cancellation because of completion of term