JPH11274082A - Group iii nitride semiconductor and fabrication thereof, and group iii nitride semiconductor device - Google Patents

Group iii nitride semiconductor and fabrication thereof, and group iii nitride semiconductor device

Info

Publication number
JPH11274082A
JPH11274082A JP7544198A JP7544198A JPH11274082A JP H11274082 A JPH11274082 A JP H11274082A JP 7544198 A JP7544198 A JP 7544198A JP 7544198 A JP7544198 A JP 7544198A JP H11274082 A JPH11274082 A JP H11274082A
Authority
JP
Japan
Prior art keywords
nitride semiconductor
group iii
iii nitride
substrate
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7544198A
Other languages
Japanese (ja)
Inventor
Shinji Ogino
慎次 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP7544198A priority Critical patent/JPH11274082A/en
Publication of JPH11274082A publication Critical patent/JPH11274082A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a group III nitride semiconductor having a flat epitaxial layer with few threading dislocations on an So substrate, a fabrication method therefor, and a group III nitride semiconductor device. SOLUTION: Methods for fabricating a group III nitride semiconductor and a group III nitride semiconductor device include a step of epitaxially growing a group III nitride semiconductor having a composition of Alx Gay In1-x-y (where 0<=x, y<=1, 0<=x+y<=1) on an Si substrate. In this case, a mask 2m of thermal Si oxide is formed on the Si substrate 1, selective epitaxial growth of the group III nitride semiconductor on an Si-exposed portion is initiated (the layer in the initial stage of film formation is a buffer layer 4), and the epitaxial growth is continued until the selectively epitaxially grown group III nitride semiconductor layer grows also horizontally to cover the mask until the surface of the group III nitride semiconductor layer 5 becomes flat.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】Si基板とその上にエピタキ
シャル成長された III族窒化物半導体およびこのIII族
窒化物半導体を構成要素とする特に発光素子などの III
族窒化物半導体半導体装置、およびそれらの製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention A Si substrate, a group III nitride semiconductor epitaxially grown thereon, and a group III nitride semiconductor including the group III nitride semiconductor, particularly a light emitting device.
The present invention relates to a group III nitride semiconductor device and a method for manufacturing the same.

【0002】[0002]

【従来の技術】直接遷移で、しかも光学エネルギーギャ
ップが1.9〜6.2eVの範囲で制御可能なAlx Ga
y In1-x-y N系材料用いたレーザーダイオードや発光
ダイオードが試作されている。Alx Gay In1-x-y
N系材料を使った上記発光素子は、格子や熱膨張係数の
整合性の良さから、主としてサファイア基板やスピネル
(MgAl2 4 )基板等が広く使われている。そし
て、シリコン(Si)やマグネシウム(Mg)を添加す
ることによるn型やp型の価電子制御や、Alx Gay
In1-x-y Nにおけるxやyの値を変えることによる光
学エネルギーギャップの制御が実現され、ダブルへテロ
(DH)構造のレーザが試作されている。しかし、絶縁
性基板を使用するので基板裏面に電極を取り付けること
ができないため、直列抵抗分が大きく、投入電力当たり
の発光効率が低く、信頼性も高くない。
2. Description of the Related Art Al x Ga which is a direct transition and whose optical energy gap can be controlled in the range of 1.9 to 6.2 eV.
Laser diodes and light-emitting diodes using y In 1-xy N-based materials have been experimentally manufactured. Al x Ga y In 1-xy
As the light emitting element using an N-based material, a sapphire substrate, a spinel (MgAl 2 O 4 ) substrate, or the like is widely used mainly because of good matching of lattice and thermal expansion coefficient. Then, silicon (Si) and n-type or p-type and the valence control by addition of magnesium (Mg), Al x Ga y
Control of the optical energy gap by changing the values of x and y in In 1-xy N has been realized, and a laser having a double hetero (DH) structure has been prototyped. However, since an insulating substrate is used, electrodes cannot be attached to the back surface of the substrate, so that the series resistance is large, the luminous efficiency per input power is low, and the reliability is not high.

【0003】また、炭化ケイ素(SiC)基板を使って
基板に電極を有するダブルへテロ(DH)構造のレーザ
が試作されているが、SiC基板は高価である。
Further, a laser having a double hetero (DH) structure having an electrode on a substrate using a silicon carbide (SiC) substrate has been experimentally manufactured, but the SiC substrate is expensive.

【0004】[0004]

【発明が解決しようとする課題】そこで、最も一般的で
基板の劈開により III族窒化物半導体の劈開面も出せ、
また熱膨張係数も近くしかも安価なSi基板上へGaN
などの III族窒化物からなるDH構造を形成することが
望まれている。Si基板上に形成された III族窒化物層
はその表面の結晶性の向上のため1ないし数μm 厚さが
必要である。しかしSi基板上に厚さが1μm 以上のエ
ピタキシャル膜を成長すると、割れが生じてしまう。そ
の原因として次の2点が考えられる。
Therefore, a cleavage plane of a group III nitride semiconductor can be obtained by cleavage of the most common substrate,
In addition, GaN is deposited on an inexpensive Si substrate with a close thermal expansion coefficient.
It is desired to form a DH structure made of a group III nitride such as The group III nitride layer formed on the Si substrate needs to be 1 to several μm thick in order to improve the crystallinity of the surface. However, when an epitaxial film having a thickness of 1 μm or more is grown on a Si substrate, cracks occur. The following two points can be considered as the cause.

【0005】1)Siの格子定数は0.5431nmであ
り、Si{1,1,1 }面上での原子間隔は0.3840nm
(=5.431/√2)となる。これに対して、GaN
の格子定数は0.3189nmであり、格子間隔はGaN
の方が狭く、約17%の格子不整合が存在し、Si{1,
1,1 }面上にヘテロエピタキシャル成長したGaN膜に
は引っ張り応力が発生する。 2)線膨張係数はSiが2.6×10-6-1であるのに
対して、GaNは5.6×10-6-1と大きく、温度を
下げるとGaNの収縮の方が大きく、成長温度から室温
に降温する際にGaNに引っ張り応力が発生する。
1) The lattice constant of Si is 0.5431 nm, and the atomic spacing on the Si {1,1,1} plane is 0.3840 nm.
(= 5.4311 / √2). In contrast, GaN
Has a lattice constant of 0.3189 nm and a lattice spacing of GaN.
Are narrower, there is a lattice mismatch of about 17%, and Si {1,
A tensile stress is generated in the GaN film heteroepitaxially grown on the 1,1} plane. 2) The coefficient of linear expansion of Si is 2.6 × 10 −6 K −1 , whereas that of GaN is 5.6 × 10 −6 K −1. When the temperature is decreased from the growth temperature to room temperature, tensile stress is generated in GaN.

【0006】さらにSi基板上にエピタキシャル成長し
たGaNエピタキシャル膜には、Si基板とGaN層と
の格子不整合によって生じた、基板に垂直方向に成長す
る貫通転位がデバイス特性を劣化させるという問題点も
ある。本発明の目的は、Si基板を用いても、貫通転位
が少なく、表面が平坦であり、また割れの生じていない
厚さ1μm 以上のエピタキシャル層を有する III族窒化
物半導体およびその製造方法および III族窒化物半導体
装置を提供することにある。
Further, the GaN epitaxial film epitaxially grown on the Si substrate has a problem that threading dislocations growing in a direction perpendicular to the substrate caused by lattice mismatch between the Si substrate and the GaN layer deteriorate device characteristics. . SUMMARY OF THE INVENTION An object of the present invention is to provide a group III nitride semiconductor having an epitaxial layer having a thickness of 1 μm or more which has a small number of threading dislocations, has a flat surface, and has no crack even when a Si substrate is used. An object of the present invention is to provide a group III nitride semiconductor device.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、Si基板上へのAlx Gay In1-x-y N(但
し、0≦x,y≦1、0≦x+y≦1)からなる III族
窒化物半導体のエピタキシャル成長工程を含む III族窒
化物半導体および半導体装置の製造方法において、前記
Si基板上にSiの熱酸化膜からなるマスクを形成し、
Siの露出部に前記 III族窒化物半導体の選択エピタキ
シャル成長を開始し、選択エピタキシャル成長した III
族窒化物層が横方向にも成長して前記マスクを被覆し、
III族窒化物半導体層の表面が平坦になるまでエピタキ
シャル成長を続けることとする。
To achieve the above object, according to the solution to ## from Al x Ga y In 1-xy N on Si substrate (where, 0 ≦ x, y ≦ 1,0 ≦ x + y ≦ 1) In the method for manufacturing a group III nitride semiconductor and a semiconductor device including a step of epitaxially growing a group III nitride semiconductor, a mask made of a thermal oxide film of Si is formed on the Si substrate,
Selective epitaxial growth of the group III nitride semiconductor is started on the exposed portion of Si,
A group-nitride layer also grows laterally to cover the mask,
Epitaxial growth is continued until the surface of the group III nitride semiconductor layer becomes flat.

【0008】前記エピタキシャル成長は、MOVPEま
たはHVPEにより行われると良い。前記 III族窒化物
層の表面の平坦度は、表面の凹凸は10nmオーダー以下
であると良い。前記マスクは互いに平行に配置された短
冊状であると良い。
The epitaxial growth is preferably performed by MOVPE or HVPE. Regarding the flatness of the surface of the group III nitride layer, the surface irregularities are preferably on the order of 10 nm or less. The masks are preferably strip-shaped arranged in parallel with each other.

【0009】前記Si基板面は{1,1,1 }面であり、前
記短冊状のマスクの長手方向は前記Si基板の<1,1,0>
方向であると良い。III族窒化物半導体は上記の III族
窒化物半導体の製造方法により製造されると良い。ま
た、 III族窒化物半導体装置は上記の III族窒化物半導
体を有すると良い。
The surface of the Si substrate is a {1,1,1} plane, and the longitudinal direction of the strip-shaped mask is <1,1,0> of the Si substrate.
The direction should be good. The group III nitride semiconductor is preferably manufactured by the method for manufacturing a group III nitride semiconductor described above. Further, the group III nitride semiconductor device preferably includes the above group III nitride semiconductor.

【0010】前記 III族窒化物半導体装置は発光ダイオ
ードまたはレーザダイオードであると良い。本発明の製
造方法によれば、 III族窒化物半導体は露出しているS
i基板表面に選択成長を始め、成長して厚さが増加する
と熱酸化膜の上で基板表面に平行な方向(横方向)への
成長を始める。選択成長部には貫通転移が生じるが、熱
酸化膜の上の横方向成長部には貫通転移は生じない。横
方向成長が進みマスクが被覆され尽くすと、エピタキシ
ャル成長は全体を平坦化するように進む。こうして、1
μm 以上の厚さに達すると、表面は平坦化され、転移の
平均密度は小さくなり、例えば発光素子等の III族窒化
物半導体装置の形成に適した状態になっている。
The group III nitride semiconductor device is preferably a light emitting diode or a laser diode. According to the manufacturing method of the present invention, the group III nitride semiconductor is exposed
Selective growth is started on the i-substrate surface, and when the thickness is increased by growth, the growth starts on the thermal oxide film in a direction (lateral direction) parallel to the substrate surface. A threading dislocation occurs in the selective growth portion, but no threading dislocation occurs in the lateral growth portion on the thermal oxide film. As the lateral growth progresses and the mask is completely covered, the epitaxial growth proceeds to planarize the whole. Thus, 1
When the thickness reaches μm or more, the surface is flattened, and the average density of dislocations becomes small, which is suitable for forming a group III nitride semiconductor device such as a light emitting element.

【0011】このようなエピタキシャル成長には有機金
属気相エピタキシー(MOVPE)またはハイドライド
気相エピタキシー(HVPE)などが適している。ま
た、熱酸化膜のマスクはSi基板全面に形成しやすく、
短冊状のマスクは長方形の場合が多い半導体装置の形成
には適しており、特にマスクの長手方向が前記Si基板
の<1,1,0> 方向であれば、これは劈開面の法線と一致し
ており劈開面を利用する III族窒化物半導体の発光素子
には適している。
For such epitaxial growth, metal organic vapor phase epitaxy (MOVPE) or hydride vapor phase epitaxy (HVPE) is suitable. In addition, the thermal oxide film mask is easily formed on the entire surface of the Si substrate,
The strip-shaped mask is suitable for forming a semiconductor device that is often rectangular, and particularly when the longitudinal direction of the mask is the <1,1,0> direction of the Si substrate, this is the normal to the cleavage plane. This is consistent, and is suitable for a group III nitride semiconductor light emitting device using a cleavage plane.

【0012】[0012]

【発明の実施の形態】実施例1 図1は本発明に係るSi基板上への III族窒化物半導体
の製造工程後の断面図であり、(a)は熱酸化工程後、
(b)は酸化膜のパターニング工程後であり、(c)は
III族窒化物半導体のエピタキシャル成長後である。
Embodiment 1 FIG. 1 is a cross-sectional view after a manufacturing process of a group III nitride semiconductor on a Si substrate according to the present invention, and FIG.
(B) after the oxide film patterning step, (c)
After the epitaxial growth of the group III nitride semiconductor.

【0013】Si基板1の基板表面は (1,1,1)面であ
り、断面はSi基板1の (1,0,0)面である。先ず、Si
基板1の全面を熱酸化して厚さ100nmの熱酸化膜2を
形成した(図1(a))。フォトリソグラフィにより、
フッ酸溶液エッチングを行い、互いに平行な幅5μm 、
間隔14μm の短冊状の熱酸化膜のマスク2aをパター
ニングした(図1(b))。
The substrate surface of the Si substrate 1 is the (1,1,1) plane, and the cross section is the (1,0,0) plane of the Si substrate 1. First, Si
The entire surface of the substrate 1 was thermally oxidized to form a thermal oxide film 2 having a thickness of 100 nm (FIG. 1A). By photolithography,
Perform hydrofluoric acid solution etching, width 5 μm parallel to each other,
A strip-shaped thermal oxide film mask 2a with an interval of 14 μm was patterned (FIG. 1B).

【0014】次に有機金属気相エピタキシー(MOVP
E)によりGaNのエピタキシャル成長を行った。キャ
リアガスとして水素とチッ素の混合ガスを用いた。先
ず、トリメチルアルミニウム(以下TMAと略記する)
とアンモニア(NH3 )で厚さ20nmのAlN層を基板
温度600℃で形成しバッファ層4とした。このとき、
Si基板1表面の窒化を防止するためにTMAをNH3
の導入よりも先行して流し始めた。バッファ層4は薄く
してあり、Siの露出した部分のみに選択的に成長させ
た。次に基板を1050℃に昇温し、トリメチルガリウ
ム(以下TMGと略記する)とNH3 を流して、 III族
窒化物膜5としてGaNを形成した(図1(c))。T
MAやTMGは熱酸化膜上では分解しないので、バッフ
ァ層4上でのみ選択成長が開始され、エピタキシャル成
長が進むと縦方向と同時に基板面に平行に(横方向に)
エピタキシャル成長も進むので、厚さ4μm 程度の成長
を行うと熱酸化膜のマスク2aの上で段差のない平坦な
表面を有するエピタキシャル層5が得られた。また全面
に亀裂は生じなかった。基板面に垂直方向の貫通転移の
密度は約107 /cm2 個であった。
Next, metal organic vapor phase epitaxy (MOVP)
E) epitaxial growth of GaN was performed. A mixed gas of hydrogen and nitrogen was used as a carrier gas. First, trimethyl aluminum (hereinafter abbreviated as TMA)
And an AlN layer having a thickness of 20nm was formed buffer layer 4 at a substrate temperature of 600 ° C. with ammonia (NH 3). At this time,
In order to prevent nitriding of the surface of the Si substrate 1, TMA is NH 3
Began to flow before the introduction of. The buffer layer 4 was made thin, and was selectively grown only on exposed portions of Si. Next, the temperature of the substrate was raised to 1050 ° C., and trimethylgallium (hereinafter abbreviated as TMG) and NH 3 were flowed to form GaN as the group III nitride film 5 (FIG. 1C). T
Since MA and TMG do not decompose on the thermal oxide film, selective growth is started only on the buffer layer 4, and as epitaxial growth proceeds, the epitaxial growth proceeds in the vertical direction and at the same time as the substrate surface (in the horizontal direction).
Since the epitaxial growth proceeds, the epitaxial layer 5 having a flat surface with no steps was obtained on the thermal oxide film mask 2a when the growth was performed to a thickness of about 4 μm. No cracks were formed on the entire surface. The density of threading dislocations in the direction perpendicular to the substrate surface was about 10 7 / cm 2 .

【0015】比較のため、熱酸化膜の形成されていない
Si基板面全面に同じ条件で成膜したところ、GaNの
厚さが1μm 程度に達すると亀裂が生じた。また、基板
面に垂直方向の貫通転移の密度は約1010/cm2 個であ
り、本発明に係るエピタキシャル層では1/1000程
度に減少していることが判った。従って、このような貫
通転移密度の低いGaN膜は発光素子に限らずどのよう
な半導体装置にも用いることができる。 実施例2 図3は本発明に係るSi基板上への III族窒化物半導体
の形成のための短冊状の熱酸化膜の斜視図である。この
場合、短冊状の熱酸化膜マスク2mの長手方向はSi基
板1の[1/2,1/2,1] 方向Nに平行であり、GaNの劈開
方向[2,-1,-1,0] と一致するSiの劈開方向[1,1,0] に
対して垂直となるようにした。また、マスク2mの間隔
(Si基板面の露出幅)を5μm とした。この上に、実
施例1と同じ条件で、エピタキシャル成長させたバッフ
ァ層4上の厚さ3μm のGaN膜(次の図3ではコンタ
クト層5aとなる)上に、さらに次の各層をエピタキシ
ャル成長させ、ダブルヘテロ構造を作製した。
For comparison, when a film was formed under the same conditions on the entire surface of the Si substrate on which the thermal oxide film was not formed, cracks occurred when the thickness of GaN reached about 1 μm. In addition, the density of threading dislocations in the direction perpendicular to the substrate surface was about 10 10 / cm 2 , which was found to be reduced to about 1/1000 in the epitaxial layer according to the present invention. Therefore, such a GaN film having a low threading dislocation density can be used not only for a light emitting element but also for any semiconductor device. Example 2 FIG. 3 is a perspective view of a strip-shaped thermal oxide film for forming a group III nitride semiconductor on a Si substrate according to the present invention. In this case, the longitudinal direction of the strip-shaped thermal oxide film mask 2m is parallel to the [1 / 2,1 / 2,1] direction N of the Si substrate 1, and the GaN cleavage direction [2, -1, -1,1]. 0] and perpendicular to the cleavage direction [1,1,0] of Si. The interval between the masks 2 m (the exposed width of the Si substrate surface) was set to 5 μm. On this, under the same conditions as in Example 1, the following layers are further epitaxially grown on a 3 μm-thick GaN film on the buffer layer 4 (which will be the contact layer 5a in FIG. 3) on the epitaxially grown buffer layer 4, and A heterostructure was fabricated.

【0016】図3は本発明に係る外部狭窄構造のレーザ
ダイオードの劈開面での断面図である。層構成は、上記
のGaNのコンタクト層上の、厚さ300nmのn型Al
0.2Ga0.8 Nからなる第1のクラッド層5b、厚さ5
0nmのIn0.1 Ga0.9 Nからなる活性層5c、厚さ3
00nmのp型Al0.2 Ga0.8 Nからなる第2のクラッ
ド層5dおよび厚さ300nmのp型GaNからなるコン
タクト層5eである。
FIG. 3 is a sectional view of a laser diode having an external confinement structure according to the present invention, taken along a cleavage plane. The layer structure is 300 nm thick n-type Al on the GaN contact layer.
First cladding layer 5b of 0.2 Ga 0.8 N, thickness 5
Active layer 5c made of 0nm of In 0.1 Ga 0.9 N, a thickness of 3
A second cladding layer 5d of p-type Al 0.2 Ga 0.8 N of 00 nm and a contact layer 5e of p-type GaN of 300 nm thickness.

【0017】そして、コンタクト層5eには外部電流狭
窄層6としてSiO2 膜をパターニングした後、Au/
Niからなる上部電極7aを形成した。また、基板1の
裏面にはAl/Tiからなる下部電極7bを形成した。 実施例3 図4は本発明に係る他の実施例を示し、(a)は窒化ケ
イ素マスクパターニング工程後、(b)は熱酸化工程
後、(c)は窒化ケイ素マスク除去工程後であり、
(d)は III族窒化物半導体のエピタキシャル成長後で
ある。
After patterning a SiO 2 film as the external current confinement layer 6 on the contact layer 5e, Au /
An upper electrode 7a made of Ni was formed. A lower electrode 7b made of Al / Ti was formed on the back surface of the substrate 1. Example 3 FIG. 4 shows another example according to the present invention, wherein (a) is after a silicon nitride mask patterning step, (b) is after a thermal oxidation step, (c) is after a silicon nitride mask removing step,
(D) is after the epitaxial growth of the group III nitride semiconductor.

【0018】先ず、短冊状のチッ化ケイ素(Si
3 4 )層を形成し、パターニングしてマスク3mとし
た後(図4(a))、マスク3mの周縁に潜り込んだ段
差がなく勾配の付いた周縁部(この断面形状を一般にバ
ーズビークという)を有する熱酸化膜のマスク2nを選
択酸化により形成し(図4(b))、マスク3mを除去
した(図4(c))。そして、実施例1と同じくAlN
バッファ層4および III族窒化物膜5としてGaNをM
OVPEにより横方向のエピタキシャル成長を行った
(図4(d))。実施例1と同様に、貫通転位密度は低
く、厚さ4μm 程度までは亀裂は生じていなかった。
First, strip-shaped silicon nitride (Si)
After forming a 3N 4 ) layer and patterning it to form a mask 3m (FIG. 4 (a)), there is a stepped edge and a sloping edge portion which penetrates the edge of the mask 3m (this cross-sectional shape is generally called bird's beak). Is formed by selective oxidation (FIG. 4B), and the mask 3m is removed (FIG. 4C). Then, as in the first embodiment, AlN
GaN is used as the buffer layer 4 and the group III nitride film 5.
Lateral epitaxial growth was performed by OVPE (FIG. 4D). As in Example 1, the threading dislocation density was low, and no cracks occurred up to a thickness of about 4 μm.

【0019】[0019]

【発明の効果】本発明によれば、Si基板上へのAlx
Gay In1-x-y N(但し、0≦x,y≦1、0≦x+
y≦1)からなる III族窒化物半導体のエピタキシャル
成長工程を含む III族窒化物半導体および半導体装置の
製造方法において、前記Si基板上にSiの熱酸化膜か
らなるマスクを形成し、Siの露出部に前記 III族窒化
物半導体の選択エピタキシャル成長を開始し、選択エピ
タキシャル成長した III族窒化物層が横方向にも成長し
て前記マスクを被覆し、 III族窒化物半導体層の表面が
平坦になるまでエピタキシャル成長を続けるようにした
ため、 III族窒化物半導体はSi基板表面に選択成長
し、成長して厚さが増加すると熱酸化膜の上で基板表面
に平行な方向(横方向)への成長が始まる。選択成長部
には貫通転移が生じるが、熱酸化膜の上の横方向成長部
には貫通転移は生じない。横方向成長が進みマスクが被
覆され尽くすと、エピタキシャル成長は全体を平坦化す
るように進む。こうして、1μm 以上の厚さに達する
と、表面は平坦であり、転移の平均密度は小さくなり、
III族窒化物半導体装置の形成に適した状態になってい
る。その結果、DH構造や多重量子井戸構造などのレー
ザダイオードの試作が可能になった。
According to the present invention, Al x on Si substrate
Ga y In 1-xy N (where, 0 ≦ x, y ≦ 1,0 ≦ x +
In the method for manufacturing a group III nitride semiconductor and a semiconductor device, the method including a step of epitaxially growing a group III nitride semiconductor, wherein y ≦ 1), a mask made of a thermal oxide film of Si is formed on the Si substrate, Then, selective epitaxial growth of the group III nitride semiconductor is started, and the selectively epitaxially grown group III nitride layer also grows in the lateral direction to cover the mask, and is epitaxially grown until the surface of the group III nitride semiconductor layer becomes flat. The group III nitride semiconductor is selectively grown on the surface of the Si substrate, and when it grows and the thickness increases, growth in the direction parallel to the substrate surface (lateral direction) starts on the thermal oxide film. A threading dislocation occurs in the selective growth portion, but no threading dislocation occurs in the lateral growth portion on the thermal oxide film. As the lateral growth progresses and the mask is completely covered, the epitaxial growth proceeds to planarize the whole. Thus, when the thickness reaches 1 μm or more, the surface is flat and the average density of dislocations is low,
It is in a state suitable for forming a group III nitride semiconductor device. As a result, a prototype of a laser diode having a DH structure or a multiple quantum well structure has become possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るSi基板上への III族窒化物半導
体の製造工程後の断面図であり、(a)は熱酸化工程
後、(b)は酸化膜のパターニング工程後であり、
(c)は III族窒化物半導体のエピタキシャル成長後で
ある。
FIG. 1 is a cross-sectional view after a step of manufacturing a group III nitride semiconductor on a Si substrate according to the present invention, (a) after a thermal oxidation step, (b) after a patterning step of an oxide film,
(C) is after the epitaxial growth of the group III nitride semiconductor.

【図2】本発明に係るSi基板上への III族窒化物半導
体の形成のための短冊状の熱酸化膜の斜視図である。
FIG. 2 is a perspective view of a strip-shaped thermal oxide film for forming a group III nitride semiconductor on a Si substrate according to the present invention.

【図3】本発明に係る外部狭窄構造のレーザダイオード
の劈開面での断面図である。
FIG. 3 is a cross-sectional view along a cleavage plane of a laser diode having an external constriction structure according to the present invention.

【図4】本発明に係る他の実施例の断面図を示し、
(a)は窒化ケイ素マスクパターニング工程後、(b)
は熱酸化工程後、(c)は窒化ケイ素マスク除去工程後
であり、(d)は III族窒化物半導体のエピタキシャル
成長後である。
FIG. 4 shows a sectional view of another embodiment according to the present invention,
(A) after the silicon nitride mask patterning step, (b)
Shows a state after the thermal oxidation step, (c) shows a state after the silicon nitride mask removing step, and (d) shows a state after the epitaxial growth of the group III nitride semiconductor.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 熱酸化膜 2m 熱酸化膜マスク 3m 窒化ケイ素膜マスク 4 バッファ層 5 III族窒化物層 5a コンタクト層 5b 第1のクラッド層 5c 活性層 5d 第2のクラッド層 5e キャップ層 6 外部狭窄層 7a 上部電極 7b 下部電極 N Si基板の[1,1,1] 方向 DESCRIPTION OF SYMBOLS 1 Silicon substrate 2 Thermal oxide film 2m Thermal oxide film mask 3m Silicon nitride film mask 4 Buffer layer 5 Group III nitride layer 5a Contact layer 5b First cladding layer 5c Active layer 5d Second cladding layer 5e Cap layer 6 External constriction Layer 7a Upper electrode 7b Lower electrode [1,1,1] direction of N Si substrate

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】Si基板上へのAlx Gay In1-x-y
(但し、0≦x,y≦1、0≦x+y≦1)からなる I
II族窒化物半導体のエピタキシャル成長工程を含む III
族窒化物半導体および半導体装置の製造方法において、
前記Si基板上にSiの熱酸化膜からなるマスクを形成
し、Siの露出部に前記 III族窒化物半導体の選択エピ
タキシャル成長を開始し、選択エピタキシャル成長した
III族窒化物層が横方向にも成長して前記マスクを被覆
し、 III族窒化物半導体層の表面が平坦になるまでエピ
タキシャル成長を続けることを特徴とする III族窒化物
半導体の製造方法。
1. A Si Al x Ga y In 1- xy N on a substrate
(Where 0 ≦ x, y ≦ 1, 0 ≦ x + y ≦ 1)
Including epitaxial growth process of group II nitride semiconductor III
In a method for manufacturing a group III nitride semiconductor and a semiconductor device,
A mask made of a thermal oxide film of Si was formed on the Si substrate, selective epitaxial growth of the group III nitride semiconductor was started on the exposed portion of Si, and selective epitaxial growth was performed.
A method for manufacturing a group III nitride semiconductor, comprising: growing a group III nitride layer in the lateral direction to cover the mask; and continuing epitaxial growth until the surface of the group III nitride semiconductor layer becomes flat.
【請求項2】前記エピタキシャル成長は、有機金属気相
エピタキシー(以下MOVPEと略記)またはハイドラ
イド気相エピタキシー(以下HVPEと略記)により行
われることを特徴とする請求項1に記載の III族窒化物
半導体の製造方法。
2. The group III nitride semiconductor according to claim 1, wherein said epitaxial growth is performed by metal organic vapor phase epitaxy (hereinafter abbreviated as MOVPE) or hydride vapor phase epitaxy (hereinafter abbreviated as HVPE). Manufacturing method.
【請求項3】前記 III族窒化物層の表面の平坦度は、表
面の凹凸は10nmオーダー以下であることを特徴とする
請求項1または2に記載の III族窒化物半導体の製造方
法。
3. The method of manufacturing a group III nitride semiconductor according to claim 1, wherein the surface flatness of the group III nitride layer is such that surface irregularities are on the order of 10 nm or less.
【請求項4】前記マスクは互いに平行に配置された短冊
状であることを特徴とする請求項1ないし3に記載の I
II族窒化物半導体の製造方法。
4. The method according to claim 1, wherein the mask has a strip shape arranged in parallel with each other.
A method for producing a group II nitride semiconductor.
【請求項5】前記Si基板面は{1,1,1 }面であり、前
記短冊状のマスクの長手方向は前記Si基板の<1,1,0>
方向であることを特徴とする請求項1ないし4に記載の
III族窒化物半導体の製造方法。
5. The Si substrate surface is a {1,1,1} plane, and the longitudinal direction of the strip-shaped mask is <1,1,0> of the Si substrate.
5. The method according to claim 1, wherein the direction is a direction.
A method for producing a group III nitride semiconductor.
【請求項6】請求項1ないし5に記載の III族窒化物半
導体の製造方法により製造されたことを特徴とする III
族窒化物半導体。
6. A group III nitride semiconductor manufactured by the method for manufacturing a group III nitride semiconductor according to claim 1.
Group nitride semiconductor.
【請求項7】請求項6に記載の III族窒化物半導体を有
することを特徴とする III族窒化物半導体装置。
7. A group III nitride semiconductor device comprising the group III nitride semiconductor according to claim 6.
【請求項8】前記 III族窒化物半導体装置は発光ダイオ
ードまたはレーザダイオードであることを特徴とする請
求項7に記載の III族窒化物半導体装置。
8. The group III nitride semiconductor device according to claim 7, wherein said group III nitride semiconductor device is a light emitting diode or a laser diode.
JP7544198A 1998-03-24 1998-03-24 Group iii nitride semiconductor and fabrication thereof, and group iii nitride semiconductor device Pending JPH11274082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7544198A JPH11274082A (en) 1998-03-24 1998-03-24 Group iii nitride semiconductor and fabrication thereof, and group iii nitride semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7544198A JPH11274082A (en) 1998-03-24 1998-03-24 Group iii nitride semiconductor and fabrication thereof, and group iii nitride semiconductor device

Publications (1)

Publication Number Publication Date
JPH11274082A true JPH11274082A (en) 1999-10-08

Family

ID=13576341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7544198A Pending JPH11274082A (en) 1998-03-24 1998-03-24 Group iii nitride semiconductor and fabrication thereof, and group iii nitride semiconductor device

Country Status (1)

Country Link
JP (1) JPH11274082A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6790279B2 (en) 1999-05-10 2004-09-14 Toyoda Gosei Co., Ltd. Method for manufacturing group III nitride compound semiconductor and a light-emitting device using group III nitride compound semiconductor
US6797532B2 (en) 2002-03-22 2004-09-28 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for manufacturing the same
US6818926B2 (en) 1999-07-27 2004-11-16 Toyoda Gosei Co., Ltd. Method for manufacturing gallium nitride compound semiconductor
US6830948B2 (en) 1999-12-24 2004-12-14 Toyoda Gosei Co., Ltd. Method for producing group III nitride compound semiconductor and group III nitride compound semiconductor device
US6844246B2 (en) 2001-03-22 2005-01-18 Toyoda Gosei Co., Ltd. Production method of III nitride compound semiconductor, and III nitride compound semiconductor element based on it
US6855620B2 (en) 2000-04-28 2005-02-15 Toyoda Gosei Co., Ltd. Method for fabricating Group III nitride compound semiconductor substrates and semiconductor devices
US6861305B2 (en) 2000-03-31 2005-03-01 Toyoda Gosei Co., Ltd. Methods for fabricating group III nitride compound semiconductors and group III nitride compound semiconductor devices
US6860943B2 (en) 2001-10-12 2005-03-01 Toyoda Gosei Co., Ltd. Method for producing group III nitride compound semiconductor
US6881651B2 (en) 1999-05-21 2005-04-19 Toyoda Gosei Co., Ltd. Methods and devices using group III nitride compound semiconductor
US6967122B2 (en) 2000-03-14 2005-11-22 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor and method for manufacturing the same
US6979584B2 (en) 1999-12-24 2005-12-27 Toyoda Gosei Co, Ltd. Method for producing group III nitride compound semiconductor and group III nitride compound semiconductor device
US7008839B2 (en) 2002-03-08 2006-03-07 Matsushita Electric Industrial Co., Ltd. Method for manufacturing semiconductor thin film
US7052979B2 (en) 2001-02-14 2006-05-30 Toyoda Gosei Co., Ltd. Production method for semiconductor crystal and semiconductor luminous element
US7141444B2 (en) 2000-03-14 2006-11-28 Toyoda Gosei Co., Ltd. Production method of III nitride compound semiconductor and III nitride compound semiconductor element
US7619261B2 (en) 2000-08-07 2009-11-17 Toyoda Gosei Co., Ltd. Method for manufacturing gallium nitride compound semiconductor
US8933485B2 (en) 2011-09-16 2015-01-13 Fujitsu Limited Compound semiconductor device and method of manufacturing the same

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6790279B2 (en) 1999-05-10 2004-09-14 Toyoda Gosei Co., Ltd. Method for manufacturing group III nitride compound semiconductor and a light-emitting device using group III nitride compound semiconductor
US6881651B2 (en) 1999-05-21 2005-04-19 Toyoda Gosei Co., Ltd. Methods and devices using group III nitride compound semiconductor
US6893945B2 (en) 1999-07-27 2005-05-17 Toyoda Gosei Co., Ltd. Method for manufacturing gallium nitride group compound semiconductor
US6818926B2 (en) 1999-07-27 2004-11-16 Toyoda Gosei Co., Ltd. Method for manufacturing gallium nitride compound semiconductor
US6835966B2 (en) 1999-07-27 2004-12-28 Toyoda Gosei Co., Ltd. Method for manufacturing gallium nitride compound semiconductor
US7176497B2 (en) 1999-07-27 2007-02-13 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor
US6930329B2 (en) 1999-07-27 2005-08-16 Toyoda Gosei Co., Ltd. Method for manufacturing gallium nitride compound semiconductor
US7560725B2 (en) 1999-12-24 2009-07-14 Toyoda Gosei Co., Ltd. Method for fabricating group III nitride compound semiconductors and group III nitride compound semiconductor devices
US6830948B2 (en) 1999-12-24 2004-12-14 Toyoda Gosei Co., Ltd. Method for producing group III nitride compound semiconductor and group III nitride compound semiconductor device
US6979584B2 (en) 1999-12-24 2005-12-27 Toyoda Gosei Co, Ltd. Method for producing group III nitride compound semiconductor and group III nitride compound semiconductor device
US7462867B2 (en) 2000-03-14 2008-12-09 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor devices and method for fabricating the same
US6967122B2 (en) 2000-03-14 2005-11-22 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor and method for manufacturing the same
US7141444B2 (en) 2000-03-14 2006-11-28 Toyoda Gosei Co., Ltd. Production method of III nitride compound semiconductor and III nitride compound semiconductor element
US6861305B2 (en) 2000-03-31 2005-03-01 Toyoda Gosei Co., Ltd. Methods for fabricating group III nitride compound semiconductors and group III nitride compound semiconductor devices
US7491984B2 (en) 2000-03-31 2009-02-17 Toyoda Gosei Co., Ltd. Method for fabricating group III nitride compound semiconductors and group III nitride compound semiconductor devices
US6855620B2 (en) 2000-04-28 2005-02-15 Toyoda Gosei Co., Ltd. Method for fabricating Group III nitride compound semiconductor substrates and semiconductor devices
US7619261B2 (en) 2000-08-07 2009-11-17 Toyoda Gosei Co., Ltd. Method for manufacturing gallium nitride compound semiconductor
US7052979B2 (en) 2001-02-14 2006-05-30 Toyoda Gosei Co., Ltd. Production method for semiconductor crystal and semiconductor luminous element
US6844246B2 (en) 2001-03-22 2005-01-18 Toyoda Gosei Co., Ltd. Production method of III nitride compound semiconductor, and III nitride compound semiconductor element based on it
US6860943B2 (en) 2001-10-12 2005-03-01 Toyoda Gosei Co., Ltd. Method for producing group III nitride compound semiconductor
US7008839B2 (en) 2002-03-08 2006-03-07 Matsushita Electric Industrial Co., Ltd. Method for manufacturing semiconductor thin film
US7713812B2 (en) 2002-03-08 2010-05-11 Panasonic Corporation Method for manufacturing semiconductor thin film
US6797532B2 (en) 2002-03-22 2004-09-28 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for manufacturing the same
US8933485B2 (en) 2011-09-16 2015-01-13 Fujitsu Limited Compound semiconductor device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP5146481B2 (en) Nitride-based III-V compound semiconductor device and method for manufacturing semiconductor device
JP3036495B2 (en) Method for manufacturing gallium nitride-based compound semiconductor
JP3587081B2 (en) Method of manufacturing group III nitride semiconductor and group III nitride semiconductor light emitting device
JP4055304B2 (en) Method for producing gallium nitride compound semiconductor
WO2003072856A1 (en) Process for producing group iii nitride compound semiconductor
JP2000232238A (en) Nitride semiconductor light-emitting element and manufacture thereof
JP2010232464A (en) Group iii nitride semiconductor light emitting element, method of manufacturing the same, and laser diode
JP2001313259A (en) Method for producing iii nitride based compound semiconductor substrate and semiconductor element
JPH11135832A (en) Gallium nitride group compound semiconductor and manufacture therefor
JP4204163B2 (en) Manufacturing method of semiconductor substrate
JPH11274082A (en) Group iii nitride semiconductor and fabrication thereof, and group iii nitride semiconductor device
JP2000232239A (en) Growth of nitride semiconductor film and nitride semiconductor element
JPH11145514A (en) Gallium nitride semiconductor device and manufacture thereof
JP3744155B2 (en) Method for manufacturing gallium nitride compound semiconductor substrate
JP2000223417A (en) Growing method of semiconductor, manufacture of semiconductor substrate, and manufacture of semiconductor device
JP2000174393A (en) Group iii nitride semiconductor, its manufacture and group iii nitride semiconductor device
JP3841537B2 (en) Gallium nitride compound semiconductor and manufacturing method thereof
JP2002353134A (en) Nitride based semiconductor element and method for forming nitride based semiconductor
JP4743989B2 (en) Semiconductor device, method for manufacturing the same, and method for manufacturing a semiconductor substrate
JP2003124576A (en) Nitride semiconductor substrate and its growing method
JP4055303B2 (en) Gallium nitride compound semiconductor and semiconductor device
JP2000174343A (en) Manufacture of nitride semiconductor and light-emitting element
JP4698053B2 (en) Method for producing group III nitride compound semiconductor
JP4140595B2 (en) Gallium nitride compound semiconductor
JP4232326B2 (en) Method for growing low-defect nitride semiconductor