JP3184080B2 - How to clean enclosed space - Google Patents

How to clean enclosed space

Info

Publication number
JP3184080B2
JP3184080B2 JP31486695A JP31486695A JP3184080B2 JP 3184080 B2 JP3184080 B2 JP 3184080B2 JP 31486695 A JP31486695 A JP 31486695A JP 31486695 A JP31486695 A JP 31486695A JP 3184080 B2 JP3184080 B2 JP 3184080B2
Authority
JP
Japan
Prior art keywords
space
wafer
fine particles
storage
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31486695A
Other languages
Japanese (ja)
Other versions
JPH09131547A (en
Inventor
敏昭 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP31486695A priority Critical patent/JP3184080B2/en
Publication of JPH09131547A publication Critical patent/JPH09131547A/en
Application granted granted Critical
Publication of JP3184080B2 publication Critical patent/JP3184080B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Electrostatic Separation (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、密閉空間の清浄方
法及び装置に係り、特に、水分、酸素、微粒子(粒子状
物質)が存在しない不活性な雰囲気を有する密閉空間の
清浄方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and a device for cleaning a closed space, and more particularly to a method and a device for cleaning a closed space having an inert atmosphere free of moisture, oxygen and fine particles (particulate matter). .

【0002】[0002]

【従来の技術】従来の技術を半導体分野におけるクリー
ンルームで使用のウエハ保管庫(ストッカ)を例に図6
を用いて説明する。図6において、密閉空間であるウエ
ハ保管庫1には、高純度窒素ガスがN2 供給ボンベ2よ
り連続供給され、ウエハ保管庫1中は高清浄に保持され
る。このような方式の場合、N2 の供給を中断するとウ
エハ保管庫1にはクリーンルームからの空気(微粒子を
含む空気)が浸入し、ウエハ保管庫1中のウエハは汚染
されてしまう。即ち、保管庫1内には該保管庫が設置さ
れているクリーンルーム中の空気が拡散現象により容易
に浸入してしまう。
2. Description of the Related Art FIG. 6 shows an example of a conventional wafer storage (stocker) used in a clean room in the semiconductor field.
This will be described with reference to FIG. In FIG. 6, a high purity nitrogen gas is continuously supplied from a N 2 supply cylinder 2 to a wafer storage 1 which is a closed space, and the wafer storage 1 is kept highly pure. In the case of such a system, when the supply of N 2 is interrupted, air (air containing fine particles) from the clean room enters the wafer storage 1 and the wafers in the wafer storage 1 are contaminated. That is, the air in the clean room where the storage is installed easily enters the storage 1 due to the diffusion phenomenon.

【0003】このため、保管庫1を高清浄に保持するた
めには、N2 の連続供給を行う必要があった。N2 連続
供給は使用N2 が多量になるので、ランニングコスト高
や、安全上の問題が生じた。即ち、O2 を含まないN2
を連続使用するため、多量のN2 が作業者の近傍に存在
するので、緊急時の問題や安全上の問題が生じた。一
方、N2 の供給は、 洗浄直後のウエハの保管では、
2 が乾燥しているのでウエハの乾燥に効果的であるこ
と、 O2 を含まないのでO2 に敏感なウエハには使
用の意義があることから、N2 を用いる実用上有効な保
管方式の出現が期待されていた。
Therefore, in order to keep the storage 1 highly clean, it was necessary to continuously supply N 2 . Since N 2 continuous supply becomes large amount use N 2, the running cost and safety problems occur. That, N 2 containing no O 2
The for continuous use, since a large amount of N 2 is present in the vicinity of the operator, emergency problems and safety problems occur. On the other hand, the supply of N 2
Since N 2 is dry to be effective in drying the wafer, does not include the O 2 from the in-sensitive wafer O 2 is meaningful use, practically effective storage method using N 2 The appearance of was expected.

【0004】[0004]

【発明が解決しようとする課題】そこで、本発明は、上
記した問題点を解決し、運転費が安価で、安全で実用上
効果的な密閉空間の清浄方法とその装置を提供すること
を課題とする。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above-mentioned problems and to provide a safe and practically effective method for cleaning a closed space, which has a low operating cost, and a device therefor. And

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、密閉空間中に、電場下で光電子放出材
に紫外線及び/又は放射線を照射することにより光電子
を放出せしめ、該光電子により密閉空間中に含まれてい
る微粒子を荷電して捕集する密閉空間の清浄方法におい
て、前記密閉空間内に、窒素ガスを該密閉空間の開閉時
に該空間の容積の5〜10倍量導入することとしたもの
である。前記密閉空間の清浄方法において、該密閉空間
は、ウエハ保管庫とすることができる。
According to the present invention, in order to solve the above problems, a photoelectron emission material is irradiated with ultraviolet rays and / or radiation in an enclosed space under an electric field to emit photoelectrons. The method for cleaning a closed space in which fine particles contained in the closed space are charged and collected by the method described above, wherein nitrogen gas is introduced into the closed space when the closed space is opened and closed by 5% of the volume of the space. It is to be introduced in an amount of 10 to 10 times. In the method for cleaning an enclosed space,
Can be a wafer storage.

【0006】[0006]

【発明の実施の形態】本発明の特徴は、本発明者らが既
に提案した光電子を用いる密閉空間の清浄方法及び装置
(特開平4−171061号、特開平6−154650
号、特開平6−277558号各公報)において、不活
性ガスを該空間内に間欠的に導入して用いるものであ
る。これによって、不活性ガスを導入した密閉空間は、
微粒子の発生や侵入があっても、光電子による荷電捕集
により、該微粒子は容易に捕集除去される。そして、水
分、酸素(O2 )、微粒子(粒子状物質)が存在しない
安価で安全な実用上効果的な不活性な超清浄空間を創出
できる。次に、本発明の夫々の構成について詳細に説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The feature of the present invention is that a method and an apparatus for cleaning an enclosed space using photoelectrons which have already been proposed by the present inventors (Japanese Patent Laid-Open Nos. 4-171061, 6-154650).
No. 6-277558), an inert gas is intermittently introduced into the space. As a result, the enclosed space into which the inert gas has been introduced
Even if fine particles are generated or penetrated, the fine particles are easily collected and removed by charge collection by photoelectrons. In addition, it is possible to create an inexpensive, safe and practically effective inert ultra-clean space free of moisture, oxygen (O 2 ) and fine particles (particulate matter). Next, each configuration of the present invention will be described in detail.

【0007】本発明では、実質的に密閉空間(密閉とみ
なせる空間)である被清浄空間に、間欠的に不活性ガス
供給源(装置)から、不活性ガスが供給される。不活性
ガスは、水分、O2 を含まない気体を指し、N2 、Ar
などの周知の不活性ガスを用いることができる。この
内、N2 が実用上安価であること、取扱い容易で繁用性
のガスであることなどから好ましい。N2 は、液体窒素
を気化させて用いる方式、ボンベに充填して用いる方
式、PSAによる方式など周知の方式を適宜に用いるこ
とができる。不活性ガスの被清浄空間への導入は、空間
がほぼ完全に不活性ガスに置き代わる量、通常該空間の
容積の2〜50倍量、特に5〜10倍量導入する。該不
活性ガスの導入は間欠的で良く、例えば、空間の開閉
時、ストッカを例に説明するとストッカへの物品(ウエ
ハ)の出し入れ時に行う。また、該空間の密閉性が悪い
場合は数時間毎に導入することができる。
In the present invention, an inert gas is intermittently supplied from an inert gas supply source (apparatus) to a space to be cleaned, which is a substantially closed space (a space that can be regarded as a closed space). Inert gas refers to a gas that does not contain moisture or O 2 , N 2 , Ar
A well-known inert gas such as can be used. Of these, N 2 is preferred because it is practically inexpensive, easy to handle and a versatile gas. As N 2 , a known method such as a method in which liquid nitrogen is vaporized, a method in which liquid nitrogen is charged into a cylinder, and a method using PSA can be used as appropriate. The inert gas is introduced into the space to be cleaned in such a manner that the space almost completely replaces the inert gas, usually 2 to 50 times, especially 5 to 10 times the volume of the space. The introduction of the inert gas may be intermittent, for example, when opening and closing a space, and when taking an article (wafer) into and out of the stocker as an example. In addition, when the hermeticity of the space is poor, it can be introduced every several hours.

【0008】不活性ガスの種類や、そのグレード、該ガ
スの発生方法、被清浄空間への供給方式、被清浄空間へ
の導入量とその頻度は、用途、装置の形状、密閉度、規
模、要求性能、経済性、安全性、操作性などを考慮し、
適宜予備実験を行い決めることができる。次に、電場下
で、光電子放出材に紫外線及び/又は放射線を照射し、
被清浄空間内に光電子を放出せしめ、該光電子により、
密閉空間内の微粒子を荷電させた後、該荷電微粒子を除
去する方法及び装置は、本発明者らが既に提案した発明
(特開平4−171061号、特開平5−68910
号、特開平5−107178号、特開平6−15465
0号、特開平6−277558号各公報)を適宜に用い
ることができる。
The type and grade of the inert gas, the method of generating the gas, the method of supplying the space to be cleaned, the amount and frequency of introduction into the space to be cleaned are determined by the use, the shape of the apparatus, the degree of sealing, the scale, Considering required performance, economy, safety, operability, etc.,
Preliminary experiments can be carried out as appropriate to determine. Next, under an electric field, the photoelectron emitting material is irradiated with ultraviolet rays and / or radiation,
Photoelectrons are emitted into the space to be cleaned, and the photoelectrons cause
The method and apparatus for removing the charged fine particles after charging the fine particles in the closed space are described in the inventions already proposed by the present inventors (JP-A-4-171610, JP-A-5-68910).
JP-A-5-107178, JP-A-6-15465
0, JP-A-6-277558) can be used as appropriate.

【0009】本発明において用いる光電子放出材は、紫
外線照射により光電子を放出するものであれば何れでも
良く、光電的な仕事関数が小さなもの程好ましい、効果
や経済性の面から、Ba,Sr,Ca,Y,Gd,L
a,Ce,Nd,Th,Pr,Be,Zr,Fe,N
i,Zn,Cu,Ag,Pt,Cd,Pb,Al,C,
Mg,Au,In,Bi,Nb,Si,Ti,Ta,
U,B,Eu,Sn,P,Wのいずれか又はこれらの化
合物又は合金又は混合物が好ましく、これらは単独で又
は二種以上を複合して用いられる。複合材としては、ア
マルガムの如く物理的な複合材も用いうる。
The photoelectron emitting material used in the present invention may be any material that emits photoelectrons by irradiating ultraviolet rays. The smaller the photoelectric work function, the better. From the viewpoints of effect and economy, Ba, Sr, Ca, Y, Gd, L
a, Ce, Nd, Th, Pr, Be, Zr, Fe, N
i, Zn, Cu, Ag, Pt, Cd, Pb, Al, C,
Mg, Au, In, Bi, Nb, Si, Ti, Ta,
Any of U, B, Eu, Sn, P, and W or a compound or alloy or a mixture thereof is preferable, and these are used alone or in combination of two or more. As the composite material, a physical composite material such as amalgam can be used.

【0010】例えば、化合物としては酸化物、ほう化
物、炭化物があり、酸化物にはBaO,SrO,Ca
O,Y2 5 ,Gd2 3 ,Nd2 3 ,ThO2 ,Z
rO2 ,Fe2 3 ,ZnO,CuO,Ag2 O,La
2 3 ,PtO,PbO,Al23 ,MgO,In2
3 ,BiO,NbO,BeOなどがあり、またほう化
物には、YB6 ,GdB6 ,LaB5 ,NdB6 ,Ce
6 ,EuB6 ,PrB6,ZrB2 などがあり、さら
に炭化物としてはUC,ZrC,TaC,TiC,Nb
C,WCなどがある。また、合金としては黄銅、青銅、
リン青銅、AgとMgとの合金(Mgが2〜20wt
%)、CuとBeとの合金(Beが1〜10wt%)及
びBaとAlとの合金を用いることができ、上記Agと
Mgとの合金、CuとBeとの合金及びBaとAlとの
合金が好ましい。酸化物は金属表面のみを空気中で加熱
したり、或いは薬品で酸化することによっても得ること
ができる。
For example, compounds include oxides, borides and carbides, and oxides include BaO, SrO, and Ca.
O, Y 2 O 5 , Gd 2 O 3 , Nd 2 O 3 , ThO 2 , Z
rO 2 , Fe 2 O 3 , ZnO, CuO, Ag 2 O, La
2 O 3 , PtO, PbO, Al 2 O 3 , MgO, In 2
O 3 , BiO, NbO, BeO, etc., and borides include YB 6 , GdB 6 , LaB 5 , NdB 6 , Ce
B 6, EuB 6, PrB 6 , ZrB 2 include, as a further carbide UC, ZrC, TaC, TiC, Nb
C and WC. In addition, brass, bronze,
Phosphor bronze, alloy of Ag and Mg (Mg is 2 to 20 wt.
%), An alloy of Cu and Be (Be is 1 to 10 wt%), an alloy of Ba and Al, and an alloy of Ag and Mg, an alloy of Cu and Be, and an alloy of Ba and Al. Alloys are preferred. The oxide can also be obtained by heating only the metal surface in air or oxidizing it with a chemical.

【0011】さらに他の方法としては使用前に加熱し、
表面に酸化層を形成して長期にわたって安定な酸化層を
得ることもできる。この例としてはMgとAgとの合金
を水蒸気中で300〜400℃の温度の条件下でその表
面に酸化膜を形成させることができ、この酸化薄膜は長
期間にわたって安定なものである。また、本発明者が、
すでに提案したように光電子放出材を多重構造としたも
のも好適に使用できる(特開平1−155857号公
報)。適宜の母材上に薄膜状に光電子を放出し得る物質
を付加し、使用することもできる。この例として、紫外
線透過性物質(母材)としての石英ガラス上に光電子を
放出し得る物質として、Auを薄膜状に付加したものが
ある(特開平4−171062号公報)。これらの材料
の使用形状は、板状、プリーツ状、曲面状、網状等何れ
の形状でもよいが、紫外線の照射面積及び処理空間との
接触面積の大きな形状のものが好ましい。
As another method, heating is performed before use,
An oxide layer can be formed on the surface to obtain a stable oxide layer over a long period of time. As an example, an oxide film can be formed on the surface of an alloy of Mg and Ag in water vapor at a temperature of 300 to 400 ° C., and this oxide thin film is stable for a long period of time. Also, the present inventor:
As already proposed, a photoelectron emitting material having a multi-layered structure can be preferably used (Japanese Patent Application Laid-Open No. 1-155857). A substance capable of emitting photoelectrons in the form of a thin film can be added to an appropriate base material and used. As an example of this, there is a substance in which Au is added in a thin film form as a substance capable of emitting photoelectrons on quartz glass as an ultraviolet transmitting substance (base material) (Japanese Patent Application Laid-Open No. Hei 4-171062). These materials may be used in any shape such as a plate shape, a pleated shape, a curved surface shape, and a net shape, but a shape having a large ultraviolet irradiation area and a large contact area with the processing space is preferable.

【0012】光電子放出材からの光電子の放出は、本発
明者がすでに提案したように、反射面、曲面状の反射面
等を適宜用いることで効果的に実施することが出来る
(特開昭63−100955号公報)。光電子放出材や
反射面の形状は、装置の形状、構造あるいは希望する効
率等により異なり、適宜決めることができる。紫外線の
種類は、その照射により光電子放出材が光電子を放出し
うるものであれば何れでも良く、適用分野によっては、
殺菌(滅菌)作用を併せてもつものが好ましい。紫外線
の種類は、適用分野、作業内容、用途、経済性などによ
り適宜決めることができる。例えば、バイオロジカル分
野においては、殺菌作用、効率の面から遠紫外線を併用
するのが好ましい。
The emission of photoelectrons from a photoelectron emitting material can be effectively implemented by appropriately using a reflecting surface, a curved reflecting surface, etc., as already proposed by the present inventor (Japanese Patent Application Laid-Open No. Sho 63). -100955 publication). The shape of the photoelectron emitting material and the shape of the reflection surface differ depending on the shape and structure of the device or the desired efficiency, and can be determined as appropriate. The type of the ultraviolet light may be any as long as the photoelectron emitting material can emit photoelectrons by the irradiation, and depending on the application field,
Those which also have a bactericidal (sterilizing) action are preferred. The type of the ultraviolet ray can be appropriately determined depending on the application field, work content, application, economy, and the like. For example, in the biological field, it is preferable to use far ultraviolet rays in combination from the viewpoints of sterilization and efficiency.

【0013】該紫外線源としては、紫外線を発するもの
であれば何れも使用でき、適用分野、装置の形状、構
造、効果、経済性等により適宜選択し用いることができ
る。例えば、水銀灯、水素放電管、キセノン放電管、ラ
イマン放電管などを適宜使用できる。バイオロジカル分
野では、殺菌(滅菌)波長254nmを有する紫外線を
用いると、殺菌(滅菌)効果が併用でき好ましい。放射
線を用いる場合の線源も同様に、照射により光電子を放
出するものであれば良く、α線、β線、γ線などが用い
られ、照射手段としてコバルト60、セシウム137、
ストロンチウム90などの放射性同位元素、又は原子炉
内で生成する放射性廃棄物及びこれに適当な処理加工し
た放射性物質など適宜利用出来る。用途、装置の規模、
形状などによっては、本発明者が既に提案した紫外線源
を光電子放出材及び電極で囲み一体化してユニット化し
た装置を適宜に用いることができる(特開平5−689
10号公報)。
As the ultraviolet light source, any one that emits ultraviolet light can be used, and it can be appropriately selected and used depending on the application field, the shape, structure, effect, economy, etc. of the device. For example, a mercury lamp, a hydrogen discharge tube, a xenon discharge tube, a Lyman discharge tube and the like can be used as appropriate. In the biological field, it is preferable to use an ultraviolet ray having a sterilization (sterilization) wavelength of 254 nm because a sterilization (sterilization) effect can be used in combination. Similarly, the radiation source in the case of using radiation may be any one that emits photoelectrons by irradiation, and α-rays, β-rays, γ-rays, etc. are used, and cobalt 60, cesium 137,
Radioactive isotopes such as strontium 90, radioactive waste generated in a nuclear reactor, and radioactive materials appropriately processed and processed can be appropriately used. Applications, scale of equipment,
Depending on the shape or the like, an apparatus in which the ultraviolet light source already proposed by the present inventor is united by being surrounded by a photoelectron emitting material and an electrode can be appropriately used (Japanese Patent Laid-Open No. 5-689).
No. 10).

【0014】密閉空間中微粒子は、電場で光電子放出材
に紫外線照射することで、効率良く荷電される。電場に
おける荷電については、本発明者等がすでに提案してい
る(例、特開昭61−178050号、特開昭62−2
44459号各公報、特願平1−120653号)。本
発明に用いる電場電圧は、本発明においては気体が流動
していないので、弱い電場でも効果があり、該電場電圧
は0.1V/cm〜2kV/cmである。好適な電場の
強さは、利用分野、条件、装置形状、規模、効果、経済
性等で適宜予備試験や検討を行い決めることが出来る。
The fine particles in the closed space are efficiently charged by irradiating the photoelectron emitting material with ultraviolet light in an electric field. The inventors of the present invention have already proposed charging in an electric field (eg, JP-A-61-178050, JP-A-62-2).
No. 44449, Japanese Patent Application No. 1-120653). The electric field voltage used in the present invention is effective even in a weak electric field because the gas does not flow in the present invention, and the electric field voltage is 0.1 V / cm to 2 kV / cm. A suitable electric field strength can be determined by appropriate preliminary tests and studies depending on the application field, conditions, device shape, scale, effect, economy, and the like.

【0015】荷電微粒子捕集材は、荷電微粒子を確実に
捕集するものであればいずれでも良く、周知の捕集材が
使用できる。荷電微粒子の捕集材(集じん材)は、通常
の荷電装置における集じん板、集じん電極等各種電極材
や静電フィルター方式が一般的であるが、スチールウー
ル電極、タングステンウール電極のようなウール状構造
のものも有効である。エレクトレット材も好適に使用で
きる。また、本発明者がすでに提案したイオン交換フィ
ルター(又は繊維)を用いて捕集する方法も有効である
(特開昭63−54959号、同63−77557号、
同63−84656号各公報)。イオン交換フィルター
は、荷電微粒子の捕集に加えて、共存する酸性ガス、ア
ルカリ性ガス、臭気性ガス等も同時に捕集できるので実
用上好ましい。
As the charged particle collecting material, any material can be used as long as it can surely collect the charged fine particles, and a known collecting material can be used. As a material for collecting charged fine particles (dust collecting material), various electrode materials such as a dust collecting plate and a dust collecting electrode in an ordinary charging device and an electrostatic filter system are generally used. A wool-like structure is also effective. Electret materials can also be suitably used. In addition, a method of collecting using an ion exchange filter (or fiber) already proposed by the present inventors is also effective (Japanese Patent Application Laid-Open Nos. 63-54959 and 63-77557;
Nos. 63-84656, each). The ion exchange filter is practically preferable because it can collect not only the charged fine particles but also the coexisting acid gas, alkaline gas, odorous gas and the like.

【0016】使用するアニオン交換フィルター及びカチ
オン交換フィルターの種類、使用量及びその比率は、気
体中の荷電微粒子の荷電状態やその濃度、或いは同伴す
る酸性ガス、アルカリ性ガス、臭気性ガスの種類、濃度
等に応じて適宜決めることができる。例えば、アニオン
交換フィルターは負荷電微粒子や酸性ガスの捕集に、ま
たカチオン交換フィルターは正荷電の微粒子やアルカリ
性ガスの捕集に効果的である。フィルターの使用量やそ
の比率は、上述の捕集すべき物質の濃度や濃度比率に対
応して、これらに見合う量を、装置の適用分野、形状、
構造、効果、経済性等を考慮して適宜決めれば良い。捕
集は、これらの捕集方法を単独で、又はこれらの方法を
2種類以上組合せて適宜用いることが出来る。
The type, amount and ratio of the anion exchange filter and the cation exchange filter to be used depend on the charge state and concentration of the charged fine particles in the gas, or the type and concentration of the accompanying acidic gas, alkaline gas and odorous gas. It can be appropriately determined according to the conditions. For example, an anion exchange filter is effective for collecting negatively charged fine particles and acidic gas, and a cation exchange filter is effective for collecting positively charged fine particles and alkaline gas. The amount and ratio of the filter used correspond to the concentration and concentration ratio of the substance to be collected, and the amount corresponding to these is determined by the application field, shape,
It may be appropriately determined in consideration of the structure, effects, economy, and the like. For collection, these collection methods can be used alone or in combination of two or more of these methods.

【0017】電場用電極材は、通常の荷電装置に使用さ
れているものが好適に使用できる。すなわち、周知のも
のが使用できる。電場用電極材は、荷電微粒子捕集材
(集じん材)と兼ねてあるいは一体化し、用いることが
できる。例えば、上述荷電微粒子捕集材の内、集じん板
や集じん電極あるいはスチールウール電極、タングステ
ンウール電極のようなウール状電極材等の各種電極材
は、電場用電極と、荷電微粒子の捕集を兼ねてできるの
で好ましい。また、上述適宜の電場用電極材にエレクト
レット材あるいはイオン交換フィルタなど電極材以外の
材料(微粒子の捕集に特徴がある材料)を一体化し用い
ることができる。
As the electrode material for the electric field, those used in ordinary charging devices can be suitably used. That is, a well-known thing can be used. The electrode material for an electric field can be used also as an integrated with or integrated with a charged fine particle collecting material (dust collecting material). For example, among the above-mentioned charged particle collecting materials, various kinds of electrode materials such as a dust collecting plate, a dust collecting electrode or a wool-shaped electrode material such as a steel wool electrode and a tungsten wool electrode are used as an electrode for an electric field and for collecting charged fine particles. It is preferable because it can also serve as In addition, a material other than the electrode material such as an electret material or an ion-exchange filter (a material characteristic of collecting fine particles) can be integrated with the above-described appropriate electric field electrode material and used.

【0018】光電子放出材からの光電子放出のための照
射源は、照射により光電子を放出するものであればいず
れでも良い。紫外線の他に電磁波、レーザ、放射線が適
宜に適用分野、装置規模、形状、効果等で選択し、使用
できる。この内、効果、操作面の面で、紫外線及び/又
は放射線が通常好ましい。紫外線を照射する代りに放射
線の照射によっても、同様に微粒子に荷電せしめ、同様
の効果を得ることができる。放射線の照射については、
本発明者がすでに提案している(特開昭62−2445
9号公報)。荷電及び荷電微粒子の捕集における各構成
材、器具等(照射源、光電子放出材、電極、荷電微粒子
捕集材)は、適用分野、装置規模等により適宜の位置に
設置できる。
The irradiation source for emitting photoelectrons from the photoelectron emitting material may be any source that emits photoelectrons upon irradiation. In addition to ultraviolet rays, electromagnetic waves, lasers, and radiations can be appropriately selected and used depending on the application field, device scale, shape, effect, and the like. Of these, ultraviolet rays and / or radiation are usually preferred in terms of effects and operation surface. Irradiation of radiation instead of irradiation of ultraviolet rays can similarly charge the fine particles and achieve the same effect. About irradiation of radiation,
The present inventor has already proposed (Japanese Patent Laid-Open No. 62-2445).
No. 9). Each component, tool, etc. (irradiation source, photoelectron emitting material, electrode, charged particle collecting material) for collecting charged and charged fine particles can be installed at an appropriate position according to the application field, the scale of the apparatus, and the like.

【0019】[0019]

【実施例】以下、本発明を実施例により具体的に説明す
る。 実施例1 半導体工場のクリーンルームの設置したウエハ保管庫に
おける空間清浄を、図1に示した本発明の基本構成図を
用いて説明する。密閉空間であるウエハ保管庫10中の
空間(ウエハ収納空間)の清浄は、ウエハ保管庫10の
外側に設置されたN2 供給源20からの供給N2 、ウエ
ハ保管庫10の片側に設置された紫外線ランプ3、石英
ガラスにAuを被覆した光電子放出材4、荷電用電場設
置電極5、荷電微粒子捕集電極6、紫外線の反射面7に
て実施される。すなわち、ウエハ保管庫10に、洗浄直
後のウエハが収納されると、バルブ8-1、8-2の開放に
よりN2 供給源20から高純度N2 が30分間(保管庫
10の容積の10倍容積)該保管庫10内に供給された
後、N2 の供給が停止される。これにより、洗浄直後の
ウエハは乾燥され、保管庫10内も清浄化される。
The present invention will be described below in more detail with reference to examples. Embodiment 1 A description will be given of spatial cleaning in a wafer storage provided with a clean room in a semiconductor factory with reference to the basic configuration diagram of the present invention shown in FIG. Cleaning of a space (wafer storage space) in the wafer storage 10 which is a closed space is performed by supplying N 2 from an N 2 supply source 20 installed outside the wafer storage 10 and installed on one side of the wafer storage 10. The process is performed by using an ultraviolet lamp 3, a photoelectron emitting material 4 in which quartz glass is coated with Au, an electric field installation electrode 5 for charging, a charged particle collecting electrode 6, and an ultraviolet reflecting surface 7. That is, when the wafer immediately after cleaning is stored in the wafer storage 10, high-purity N 2 is supplied from the N 2 supply source 20 for 30 minutes by opening the valves 8 -1 and 8 -2 (10 times the capacity of the storage 10). After being supplied into the storage 10, the supply of N 2 is stopped. Thereby, the wafer immediately after the cleaning is dried, and the inside of the storage 10 is also cleaned.

【0020】一方、ウエハ保管庫10においては、光電
子放出材4に紫外線ランプ3からの紫外線が照射される
ことにより光電子が放出される。ウエハの保管中(収納
中)において、微粒子がウエハ保管庫中に発生(例え
ば、保管庫10の壁面やウエハキャップ11の表面、裏
面などからのはく離微粒子、クリーンルームからの侵入
微粒子がある)した場合、該微粒子は直ちに光電子によ
り荷電され、荷電微粒子捕集電極6に捕集され、保管庫
10中は微粒子が存在しない高清浄な空間が維持され
る。11は、ウエハキャリア、12はウエハである。こ
のようにして、ウエハ保管庫10中の微粒子(粒子状物
質)は捕集・除去され、ウエハ保管庫は清浄環境が維持
される。上記において、光電子放出材4への紫外線の照
射は、曲面状の反射面7を用い、紫外線ランプ3からの
紫外線を板状の光電子放出材4に効率よく照射してい
る。
On the other hand, in the wafer storage 10, photoelectrons are emitted by irradiating the photoelectron emitting material 4 with ultraviolet rays from the ultraviolet lamp 3. When fine particles are generated in the wafer storage during storage of the wafer (during storage) (for example, there are fine particles separated from the wall surface of the storage 10 or the front and back surfaces of the wafer cap 11 and fine particles entering from the clean room). The fine particles are immediately charged by the photoelectrons and are collected by the charged fine particle collecting electrode 6, so that a high-purity space free of the fine particles in the storage 10 is maintained. 11 is a wafer carrier and 12 is a wafer. In this way, the fine particles (particulate matter) in the wafer storage 10 are collected and removed, and the wafer storage maintains a clean environment. In the above description, the irradiation of the ultraviolet rays to the photoelectron emitting material 4 uses the curved reflecting surface 7 and efficiently irradiates the ultraviolet rays from the ultraviolet lamp 3 to the plate-shaped photoelectron emitting material 4.

【0021】荷電用電極5は、微粒子の荷電を電場で行
うために設置している。すなわち、光電子放出材4と電
極5の間に電場を形成している。微粒子の荷電は、電場
において光電子放出材4に紫外線照射することにより効
率よく実施される。ここでの荷電用電場の電圧は、20
V/cm、また、後方の荷電微粒子捕集用電場の電圧は
200V/cmである。また、荷電微粒子の捕集は、主
に荷電微粒子捕集電極6を用いて行っている。本例にお
ける紫外線ランプ3は、殺菌ランプ(主波長:254n
m)である。
The charging electrode 5 is provided to charge the fine particles in an electric field. That is, an electric field is formed between the photoelectron emitting material 4 and the electrode 5. The charging of the fine particles is efficiently performed by irradiating the photoelectron emitting material 4 with ultraviolet light in an electric field. The voltage of the charging electric field here is 20
V / cm, and the voltage of the electric field for collecting charged fine particles at the rear is 200 V / cm. The collection of charged fine particles is mainly performed using the charged fine particle collecting electrode 6. The ultraviolet lamp 3 in this example is a germicidal lamp (main wavelength: 254n).
m).

【0022】9-1、9-2は気流の流れ方向を示す。9-1
は入口の流れ、9-2は出口の流れである。該気流は、紫
外線ランプの照射により生ずる熱により自然に起こる流
れであり、これにより保管庫中の微粒子は、該気流によ
り効果的に光電子による荷電・捕集部に運ばれ荷電・捕
集される。N2 の保管庫10への供給は、ウエハを開閉
する毎に30分間実施される。このようにして、ウエハ
保管庫中で発生した微粒子(粒子状物質)は効果的に捕
集・除去され、ウエハ保管庫内は超清浄化される。不活
性な雰囲気の超清浄空間が確実に長時間安定して維持さ
れるので、収納したウエハへの汚染防止、変質防止が顕
著となる。
9 -1 and 9 -2 indicate the flow direction of the air flow. 9 -1
Is the flow at the inlet and 9-2 is the flow at the outlet. The air flow is a flow naturally generated by heat generated by irradiation of the ultraviolet lamp, whereby the particles in the storage are effectively carried to the photoelectron charging / collecting unit by the air current and charged / collected. . The supply of N 2 to the storage 10 is performed for 30 minutes each time the wafer is opened and closed. In this way, fine particles (particulate matter) generated in the wafer storage are effectively collected and removed, and the inside of the wafer storage is ultra-cleaned. Since the ultra-clean space of the inert atmosphere is stably maintained for a long time, prevention of contamination and deterioration of stored wafers is remarkable.

【0023】実施例2 半導体工場のクリーンルームに設置したウエハ保管庫
(ウエハ収納ストッカ)における空間の清浄を、図2、
図3に示した本発明の基本構成図を用い説明する。本例
における光電子による空間の清浄は、紫外線源としての
紫外線ランプを光電子放出材及び電極で囲み一体化した
ユニット(微粒子捕集装置)30を用い行うものであ
る。
Example 2 The cleaning of the space in a wafer storage (wafer storage stocker) installed in a clean room of a semiconductor factory is shown in FIG.
This will be described with reference to the basic configuration diagram of the present invention shown in FIG. The cleaning of the space by photoelectrons in this example is performed using a unit (particle collecting device) 30 in which an ultraviolet lamp as an ultraviolet light source is surrounded by a photoelectron emitting material and electrodes and integrated.

【0024】図2は、ウエハ保管庫10の断面図であ
る。ウエハ保管庫10中の空間の清浄を次に説明する。
ウエハ保管庫10に、洗浄直後のウエハが収納される
と、バルブ8-1、8-2の開放によりN2 供給源20から
高純度N2 が30分間(保管庫の容積の5倍量)該保管
庫10内に供給された後、N2 の供給が停止される。こ
れにより、洗浄直後のウエハは、乾燥され、保管庫10
内も清浄化される。ウエハの保管中において、前述の実
施例1と同じ原因で発生した微粒子は、保管庫10中に
設置されたユニット30により、捕集・除去される。
FIG. 2 is a sectional view of the wafer storage 10. Next, the cleaning of the space in the wafer storage 10 will be described.
When the wafers immediately after cleaning are stored in the wafer storage 10, high-purity N 2 is supplied from the N 2 supply source 20 for 30 minutes by opening the valves 8 -1 and 8 -2 (5 times the storage volume). After being supplied into the storage 10, the supply of N 2 is stopped. As a result, the wafer immediately after cleaning is dried and stored in the storage 10.
The inside is also cleaned. During the storage of the wafer, the fine particles generated for the same reason as in the first embodiment are collected and removed by the unit 30 installed in the storage 10.

【0025】ユニット30は、図3に基本構成図を示し
たように、紫外線ランプ3、該ランプを囲む形状の石英
ガラス(筒状)にAuを被覆した光電子放出材4、荷電
用電場設定電極5、荷電微粒子捕集電極6より成る。9
-1、9-2は、気流の流れ方向を示す。9-1は入口の流
れ、9-2は出口の流れである。本例において、実施例1
と同じ記号は、同じ意味を示す。本例において、紫外線
ランプ3は、殺菌ランプ(主波長:254nm)、荷電
用の電場の電圧は50V/cm、荷電微粒子の捕集用電
場の電圧は250V/cmである。
As shown in FIG. 3, the unit 30 includes an ultraviolet lamp 3, a photoelectron emitting material 4 in which quartz glass (cylindrical shape) surrounding the lamp is coated with Au, and an electric field setting electrode for charging. 5, a charged particle collecting electrode 6. 9
-1 , 9-2 indicate the flow direction of the airflow. 9-1 is the flow at the inlet, and 9-2 is the flow at the outlet. In this example, the first embodiment
The same symbols as have the same meaning. In this example, the ultraviolet lamp 3 is a germicidal lamp (main wavelength: 254 nm), the voltage of the electric field for charging is 50 V / cm, and the voltage of the electric field for collecting charged fine particles is 250 V / cm.

【0026】実施例3 実施例2におけるユニット(微粒子捕集装置)30の別
の形態を図4の(a)(b)に示す。夫々の特徴を示
す。(a)は、紫外線ランプ3の上に光電子放出材Au
を被覆したものである。(b)は、紫外線ランプ3の対
向円筒4が光電子放出材4であり、SUS材の上にAu
を被覆したものである。図4において、図3と同じ記号
は、同じ意味を示す。
Embodiment 3 FIGS. 4A and 4B show another embodiment of the unit (particle collecting device) 30 in Embodiment 2. FIG. Here are the characteristics of each. (A) is a photoelectron emitting material Au on an ultraviolet lamp 3.
Is coated. (B), the opposing cylinder 4 of the ultraviolet lamp 3 is the photoelectron emitting material 4, and Au is placed on the SUS material.
Is coated. 4, the same symbols as those in FIG. 3 have the same meaning.

【0027】実施例4 図1に示したウエハ保管庫をクラス10,000のクリ
ーンルームに設置し洗浄後のウエハを収納し、ウエハ上
にCr膜を成膜し、Cr膜の付着力について調べた。ウ
エハ保管庫の作動は、ウエハ収納後直ちにN2 を300
リットルウエハ保管庫に導入し、ウエハ付着水分の脱離
(乾燥)、及び保管庫内をN2 で満たし、紫外線の点灯
及び電圧の印加を行った。
Example 4 The wafer storage shown in FIG. 1 was set in a class 10,000 clean room, the cleaned wafer was stored, a Cr film was formed on the wafer, and the adhesion of the Cr film was examined. . The operation of the wafer depot, the post-wafer storage immediately N 2 300
The wafer was introduced into a 1-liter wafer storage, and the water adhering to the wafer was removed (dried), the storage was filled with N 2 , and ultraviolet light was turned on and voltage was applied.

【0028】 保管庫大きさ ; 30リットル、 紫外線源 ; 10W、 光電子放出材 ; 石英ガラスに薄膜状Auを被覆したもの、 電極材 ; SUS製、 荷電用電場 ; 50V/cm、 荷電微粒子捕集電極 ; 200V/cm、 不活性ガス : N2 (99.9999%)、N2 の導入は、ウエハ収納 直後及びその後4時間毎に間欠で行った。 Cr膜 : スパッタリング法で成膜(膜厚300nm)、 Cr膜のウエハへの付着力 : 膜はく離荷重(測定:スクラッチ試験機)で 調べた。 洗浄法 : 溶剤洗浄後、純水で洗浄、Storage size: 30 liters, ultraviolet light source: 10 W, photoelectron emission material: quartz glass coated with thin film Au, electrode material: SUS, charging electric field: 50 V / cm, charged fine particle collecting electrode 200 V / cm, inert gas: N 2 (99.9999%), N 2 was introduced intermittently immediately after storing the wafer and every four hours thereafter. Cr film: Deposited by sputtering (thickness: 300 nm), Adhesion of Cr film to wafer: Film peeling load (measurement: measured by a scratch tester). Cleaning method: After washing with solvent, wash with pure water,

【0029】結果 保管庫への収納時間に対する膜剥離荷重を図5に示す。
本発明の測定値を○印、比較として行ったN2を導入し
ないものを●印、N2の導入後光電子による微粒子の荷
電・捕集を行わないものを▲印で示す。図中(●)
は、5mN以下を示す。保管庫中の微粒子濃度をパーテ
ルカウンター(光散乱式)で測定した。その結果を
表1に示す。
Results FIG. 5 shows the film peeling load with respect to the storage time in the storage.
The measured values of the present invention are indicated by ○, the results obtained by comparison without introducing N 2 are indicated by ●, and the values obtained by introducing photoelectrons after introduction of N 2 are not indicated by ▲. In Fig. 5 (●)
Indicates 5 mN or less. The particulate concentration in the depot was measured by Pate <br/> I click Le counter (light scattering). Table 1 shows the results.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【発明の効果】本発明によれば次のような効果を奏する
ことができる。 (1)密閉空間中に不活性ガスを間欠的に導入し、光電
子を該空間に放出することにより、 (a)水分、酸素、微粒子(粒子状物質)が存在しない
不活性な超清浄空間が創出できた。すなわち、超清浄空
間への不活性ガスの間欠的導入により、該空間は不活性
な空間となり、該空間に光電子を放出させることで、該
空間内で発生した、又は該空間外から侵入する微粒子が
簡便に捕集・除去された。これにより、不活性な空間が
長時間維持できた。 (b)不活性ガスの導入は、間欠的で良いので、使用す
る不活性ガスは少量となった。これにより、ランニング
コストが大幅に低減された。また、O2 を含まない不活
性ガスの作業者近傍へのリークやたれ流しがなくなった
ので実用上安全な空間が簡便にできた。
According to the present invention, the following effects can be obtained. (1) An inert gas is intermittently introduced into a closed space, and photoelectrons are emitted into the space. (A) An inert ultra-clean space free of moisture, oxygen, and fine particles (particulate matter) is formed. Could be created. That is, the space becomes an inert space due to the intermittent introduction of the inert gas into the ultraclean space, and fine particles generated in the space or entering from outside the space by emitting photoelectrons into the space. Was easily collected and removed. Thereby, an inert space could be maintained for a long time. (B) Since the introduction of the inert gas may be intermittent, only a small amount of the inert gas is used. As a result, running costs have been significantly reduced. In addition, since there was no leakage or dripping of the inert gas containing no O 2 to the vicinity of the worker, a practically safe space could be easily provided.

【0032】(c)収納物品(例、ウエハやガラス基
板)が、洗浄直後のように水分を多く含んでいる場合、
不活性ガスは通常乾燥しているので、不活性ガスを導入
することにより、該収納物品は乾燥されて安定な状態で
保持される。すなわち、水分は空間に収納されたウエハ
やガラス基板の表面状態によっては反応剤として作用す
るので、すみやかな除去が必要であった。 (2)上記により、実用上、有効な不活性(変質防止効
果)で安全かつ長時間安定した超清浄空間ができた。こ
の空間は、不活性ガスの使用が少ないので、地球資源の
有効利用の点でも有効な空間である。
(C) When a stored article (eg, a wafer or a glass substrate) contains a large amount of water, such as immediately after cleaning,
Since the inert gas is usually dry, by introducing the inert gas, the stored article is dried and kept in a stable state. That is, since water acts as a reactant depending on the surface condition of the wafer or the glass substrate housed in the space, it has to be removed promptly. (2) From the above, an ultra-clean space that is practically effective, is inert (effectively preventing deterioration), and is stable for a long time and stable. Since this space uses little inert gas, it is an effective space in terms of effective use of the earth resources.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の密閉空間の清浄装置を示す断面構成
図。
FIG. 1 is a cross-sectional configuration diagram showing an apparatus for cleaning a closed space according to the present invention.

【図2】本発明の他の密閉空間の清浄装置を示す断面構
成図。
FIG. 2 is a cross-sectional configuration diagram showing another apparatus for cleaning a closed space according to the present invention.

【図3】本発明に用いる微粒子捕集ユニットの断面構成
図。
FIG. 3 is a cross-sectional configuration diagram of a fine particle collection unit used in the present invention.

【図4】本発明に用いる他の微粒子捕集ユニットの断面
構成図。
FIG. 4 is a cross-sectional configuration diagram of another particle collecting unit used in the present invention.

【図5】収納時間による剥離荷重の変化を示すグラフ。FIG. 5 is a graph showing a change in peeling load according to storage time.

【図6】従来の清浄装置を示す概略構成図。FIG. 6 is a schematic configuration diagram showing a conventional cleaning device.

【符号の説明】[Explanation of symbols]

1、10:ウエハ保管庫、2、20:N2 供給ボンベ、
3:紫外線ランプ、4:光電子放出材、5:荷電用電場
設置電極、6:荷電微粒子捕集電極、7:反射面、8:
バルブ、9:気流の流れ、11:ウエハキャリヤ、1
2:ウエハ、30:微粒子捕集ユニット
1, 10: wafer storage, 2 , 20: N 2 supply cylinder,
3: UV lamp, 4: Photoelectron emission material, 5: Electrode for setting electric field for charging, 6: Electrode for collecting charged fine particles, 7: Reflecting surface, 8:
Valve, 9: air flow, 11: wafer carrier, 1
2: wafer, 30: particle collection unit

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B03C 3/00 - 3/88 H01L 21/68 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) B03C 3/00-3/88 H01L 21/68

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 密閉空間中に、電場下で光電子放出材に
紫外線及び/又は放射線を照射することにより光電子を
放出せしめ、該光電子により密閉空間中に含まれている
微粒子を荷電して捕集する密閉空間の清浄方法におい
て、前記密閉空間内に、窒素ガスを該密閉空間の開閉時
に該空間の容積の5〜10倍量導入することを特徴とす
る密閉空間の清浄方法。
1. A photoelectron emission material is irradiated with ultraviolet light and / or radiation in an enclosed space under an electric field to emit photoelectrons, and the photoelectrons charge and collect fine particles contained in the enclosed space. A method for cleaning a closed space, wherein nitrogen gas is introduced into the closed space in an amount of 5 to 10 times the volume of the space when opening and closing the closed space. .
【請求項2】 前記密閉空間は、ウエハ保管庫であるこ2. The closed space is a wafer storage.
とを特徴とする請求項1記載の密閉空間の清浄方法。The method for cleaning an enclosed space according to claim 1, wherein:
JP31486695A 1995-11-09 1995-11-09 How to clean enclosed space Expired - Fee Related JP3184080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31486695A JP3184080B2 (en) 1995-11-09 1995-11-09 How to clean enclosed space

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31486695A JP3184080B2 (en) 1995-11-09 1995-11-09 How to clean enclosed space

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001014065A Division JP2001252592A (en) 2001-01-23 2001-01-23 Method and device for cleaning wafer storage chamber

Publications (2)

Publication Number Publication Date
JPH09131547A JPH09131547A (en) 1997-05-20
JP3184080B2 true JP3184080B2 (en) 2001-07-09

Family

ID=18058569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31486695A Expired - Fee Related JP3184080B2 (en) 1995-11-09 1995-11-09 How to clean enclosed space

Country Status (1)

Country Link
JP (1) JP3184080B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200484431Y1 (en) * 2015-07-24 2017-09-13 (주)스마트어플라이언스 Solar chargeable lantern
US11635182B2 (en) 2016-11-04 2023-04-25 Luminaid Lab, Llc Solar light with port

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200484431Y1 (en) * 2015-07-24 2017-09-13 (주)스마트어플라이언스 Solar chargeable lantern
US11635182B2 (en) 2016-11-04 2023-04-25 Luminaid Lab, Llc Solar light with port
US11927322B2 (en) 2016-11-04 2024-03-12 Luminaid Lab, Llc Solar light with port

Also Published As

Publication number Publication date
JPH09131547A (en) 1997-05-20

Similar Documents

Publication Publication Date Title
JP3405439B2 (en) How to clean solid surfaces
US5225000A (en) Method for cleaning closed spaces with ultraviolet rays
JP3184080B2 (en) How to clean enclosed space
JP3888806B2 (en) Photoelectron emitting material and negative ion generator using the same
JP3460500B2 (en) Gas cleaning apparatus, method for cleaning closed space using the same, and closed space
JP3424778B2 (en) Method and apparatus for cleaning space
JP2001252592A (en) Method and device for cleaning wafer storage chamber
JP3105445B2 (en) Vacuum space provided with method and apparatus for cleaning vacuum space
JP3696038B2 (en) Particulate matter collection device and collection method
JP3570612B2 (en) Negative ion generation method and device, fine particle charging method and trapping device
JP2000279904A (en) Method for washing surface of substrate
JP3434651B2 (en) Method and apparatus for charging fine particles
JP3139590B2 (en) Method and apparatus for cleaning enclosed space
JP3424775B2 (en) Method and apparatus for cleaning space
JP2001252344A5 (en)
JP3672077B2 (en) Method and apparatus for generating negative ions
JPH05107178A (en) Method and device for charging fine particle
JP2722297B2 (en) Gas cleaning method and apparatus
JP2670942B2 (en) Method and apparatus for electrically neutralizing charged fine particles in gas
JPH06154650A (en) Method and device for charging fine particles in space by photoelectron
JPH0629373A (en) Stocker
JP3217562B2 (en) How to clean the work space
JP3139591B2 (en) Method and apparatus for generating negative ions, method for charging fine particles, apparatus for collecting fine particles in gas, and stocker
JPH07256141A (en) Method for sterilizing inside of room and sterile room
JPH07121369B2 (en) Particle charging device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees