JP2001252592A - Method and device for cleaning wafer storage chamber - Google Patents

Method and device for cleaning wafer storage chamber

Info

Publication number
JP2001252592A
JP2001252592A JP2001014065A JP2001014065A JP2001252592A JP 2001252592 A JP2001252592 A JP 2001252592A JP 2001014065 A JP2001014065 A JP 2001014065A JP 2001014065 A JP2001014065 A JP 2001014065A JP 2001252592 A JP2001252592 A JP 2001252592A
Authority
JP
Japan
Prior art keywords
wafer storage
fine particles
inert gas
wafer
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001014065A
Other languages
Japanese (ja)
Inventor
Toshiaki Fujii
敏昭 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2001014065A priority Critical patent/JP2001252592A/en
Publication of JP2001252592A publication Critical patent/JP2001252592A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrostatic Separation (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide safe and effective cleaning method and a device thereof for a wafer storage chamber for which the operation cost is inexpensive. SOLUTION: In the cleaning method for the wafer storage chamber in which inactive gas 20 is introduced, photoelectrons are discharged by irradiating an electronic discharge material 4 with ultraviolet rays 3 and/or radiation and fine particles in the wafer storage chamber are charged and caught 6 by photoelectrons, the inactive gas, particularly the inactive gas of the amount 5-10 times the capacity of the storage chamber is first introduced, and then the fine particles are charged by the photoelectrons to catch them, and nitrogen gas is preferably used as the inactive gas.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ウエハ保管庫の清
浄方法及び装置に係り、特に、水分、酸素、微粒子(粒
子状物質)が存在しない不活性な雰囲気を有するウエハ
保管庫の清浄方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for cleaning a wafer storage, and more particularly, to a method for cleaning a wafer storage having an inert atmosphere free of moisture, oxygen and fine particles (particulate matter). Related to the device.

【0002】[0002]

【従来の技術】従来の技術を半導体分野におけるクリー
ンルームで使用のウエハ保管庫(ストッカ)を例に図6
を用いて説明する。図6において、密閉空間であるウエ
ハ保管庫1には、高純度窒素ガスがN2 供給ボンベ2よ
り連続供給され、ウエハ保管庫1中は高清浄に保持され
る。このような方式の場合、N2 の供給を中断するとウ
エハ保管庫1にはクリーンルームからの空気(微粒子を
含む空気)が侵入し、ウエハ保管庫1中のウエハは汚染
されてしまう。即ち、保管庫1内には該保管庫が設置さ
れているクリーンルーム中の空気が拡散現象により容易
に浸入してしまう。
2. Description of the Related Art FIG. 6 shows an example of a conventional wafer storage (stocker) used in a clean room in the semiconductor field.
This will be described with reference to FIG. In FIG. 6, a high purity nitrogen gas is continuously supplied from a N 2 supply cylinder 2 to a wafer storage 1 which is a closed space, and the wafer storage 1 is kept highly pure. In the case of such a method, when the supply of N 2 is interrupted, air (air containing fine particles) from the clean room enters the wafer storage 1 and the wafers in the wafer storage 1 are contaminated. That is, the air in the clean room where the storage is installed easily enters the storage 1 due to the diffusion phenomenon.

【0003】このため、保管庫1を高清浄に保持するた
めには、N2 の連続供給を行う必要があった。N2 連続
供給は使用N2 が多量になるので、ランニングコスト高
や、安全上の問題が生じた。即ち、O2 を含まないN2
を連続使用するため、多量のN2 が作業者の近傍に存在
するので、緊急時の問題や安全上の問題が生じた。一
方、N2 の供給は、 洗浄直後のウエハの保管では、
2 が乾燥しているのでウエハの乾燥に効果的であるこ
と、 O2 を含まないのでO2 に敏感なウエハには使
用の意義があることから、N2 を用いる実用上有効な保
管方式の出現が期待されていた。
Therefore, in order to keep the storage 1 highly clean, it was necessary to continuously supply N 2 . Since N 2 continuous supply becomes large amount use N 2, the running cost and safety problems occur. That, N 2 containing no O 2
The for continuous use, since a large amount of N 2 is present in the vicinity of the operator, emergency problems and safety problems occur. On the other hand, the supply of N 2
Since N 2 is dry to be effective in drying the wafer, does not include the O 2 from the in-sensitive wafer O 2 is meaningful use, practically effective storage method using N 2 The appearance of was expected.

【0004】[0004]

【発明が解決しようとする課題】そこで、本発明は、上
記した問題点を解決し、運転費が安価で、安全で実用上
効果的なウエハ保管庫の清浄方法とその装置を提供する
ことを課題とする。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above-mentioned problems and to provide a safe and practically effective method for cleaning a wafer storage at a low operating cost and an apparatus therefor. Make it an issue.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、ウエハ保管庫内を、不活性ガスの導入
と、電場下で光電子放出材に紫外線及び/又は放射線を
照射することにより該ウエハ保管庫内に光電子を放出せ
しめ、該光電子により該ウエハ保管庫内の微粒子を荷電
・捕集することによるウエハ保管庫の清浄方法におい
て、前記ウエハ保管庫を開閉する毎に、まず、該ウエハ
保管庫内に不活性ガスを導入し、次いで、前記光電子に
より微粒子を荷電して捕集することとしたものである。
また、本発明では、ウエハ保管庫に、不活性ガス供給源
と開閉手段を介して接続された不活性ガス導入口と、紫
外線及び/又は放射線源と光電子放出材と電場設定及び
荷電微粒子捕集用電極とを有する微粒子の荷電・捕集装
置とを備えてなるウエハ保管庫の清浄装置において、前
記ウエハ保管庫を開閉する毎に、不活性ガスが該ウエハ
保管庫内に導入されるように前記不活性ガス供給源と開
閉手段を制御する制御手段と、不活性ガスの導入後に稼
働する荷電・捕集装置の制御手段とを有することとした
ものである。前記において、不活性ガスは窒素ガス(N
2 )であるのがよい。
In order to solve the above-mentioned problems, according to the present invention, an inert gas is introduced into a wafer storage and the photoelectron emitting material is irradiated with ultraviolet rays and / or radiation under an electric field. In the method of cleaning a wafer storage by discharging photoelectrons into the wafer storage by charging and collecting fine particles in the wafer storage by the photoelectrons, each time the wafer storage is opened and closed, An inert gas is introduced into the wafer storage, and then the fine particles are charged and collected by the photoelectrons.
Further, in the present invention, an inert gas inlet connected to an inert gas supply source via an opening / closing means, an ultraviolet and / or radiation source, a photoelectron emitting material, an electric field setting, and a collection of charged fine particles are connected to the wafer storage. In a cleaning apparatus for a wafer storage, comprising a device for charging and collecting fine particles having an electrode for use, an inert gas is introduced into the wafer storage each time the wafer storage is opened and closed. It has a control means for controlling the inert gas supply source and the opening / closing means, and a control means for a charging / collecting device which operates after the introduction of the inert gas. In the above, the inert gas is nitrogen gas (N
2 ) It is better.

【0006】[0006]

【発明の実施の形態】本発明の特徴は、本発明者らが既
に提案した光電子を用いる密閉空間の清浄方法及び装置
(特開平4−171061号、特開平6−154650
号、特開平6−277558号各公報)において、密閉
空間をウエハ保管庫に限定すると共に、該保管庫を開閉
する際に不活性ガスを該空間内に導入して用いるもので
ある。これによって、不活性ガスを導入したウエハ保管
庫は、微粒子の発生や侵入があっても、光電子による荷
電捕集により、該微粒子は容易に捕集除去される。そし
て、水分、酸素(O2 )、微粒子(粒子状物質)が存在
しない安価で安全な実用上効果的な不活性な超清浄空間
を創出できる。次に、本発明の夫々の構成について詳細
に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The feature of the present invention is that a method and an apparatus for cleaning an enclosed space using photoelectrons which have already been proposed by the present inventors (Japanese Patent Laid-Open Nos. 4-171061, 6-154650).
JP-A-6-277558), the closed space is limited to a wafer storage, and an inert gas is introduced into the space when the storage is opened and closed. As a result, in the wafer storage into which the inert gas has been introduced, even if fine particles are generated or penetrated, the fine particles are easily collected and removed by charge collection by photoelectrons. In addition, it is possible to create an inexpensive, safe and practically effective inert ultra-clean space free of moisture, oxygen (O 2 ) and fine particles (particulate matter). Next, each configuration of the present invention will be described in detail.

【0007】本発明では、実質的に密閉空間(密閉とみ
なせる空間)であるウエハ保管庫内に、不活性ガス供給
源(装置)から、不活性ガスが供給される。不活性ガス
は、水分、O2 を含まない気体を指し、N2 、Arなど
の周知の不活性ガスを用いることができる。この内、N
2 が実用上安価であること、取扱い容易で繁用性のガス
であることなどから好ましい。N2 は、液体窒素を気化
させて用いる方式、ボンベに充填して用いる方式、PS
Aによる方式など周知の方式を適宜に用いることができ
る。不活性ガスのウエハ保管庫内への導入は、空間がほ
ぼ完全に不活性ガスに置き代わる量、通常該空間の容積
の2〜50倍量、特に5〜10倍量導入する。該不活性
ガスの導入は空間の開閉時、ストッカを例に説明すると
ストッカへの物品(ウエハ)の出し入れ時に行う。ま
た、該空間の密閉性が悪い場合は、数時間毎に導入する
こともできる。
In the present invention, an inert gas is supplied from an inert gas supply source (apparatus) into a wafer storage, which is a substantially closed space (a space that can be regarded as a closed space). The inert gas refers to a gas containing neither moisture nor O 2 , and a known inert gas such as N 2 or Ar can be used. Of these, N
2 is preferred because it is practically inexpensive, easy to handle and a versatile gas. N 2 is a method in which liquid nitrogen is vaporized and used, a method in which cylinders are filled and used, PS
A known method such as the method according to A can be used as appropriate. The inert gas is introduced into the wafer storage in such a manner that the space is almost completely replaced by the inert gas, usually 2 to 50 times, especially 5 to 10 times the volume of the space. The introduction of the inert gas is performed at the time of opening and closing the space, and when taking a product (wafer) into and out of the stocker as an example of a stocker. In addition, when the airtightness of the space is poor, it can be introduced every several hours.

【0008】不活性ガスの種類や、そのグレード、該ガ
スの発生方法、ウエハ保管庫内への供給方式、被清浄空
間への導入量とその頻度は、用途、装置の形状、密閉
度、規模、要求性能、経済性、安全性、操作性などを考
慮し、適宜予備実験を行い決めることができる。次に、
電場下で、光電子放出材に紫外線及び/又は放射線を照
射し、ウエハ保管庫内に光電子を放出せしめ、該光電子
により、ウエハ保管庫内の微粒子を荷電させた後、該荷
電微粒子を除去する方法及び装置は、本発明者らが既に
提案した発明(特開平4−171061号、特開平5−
68910号、特開平5−107178号、特開平6−
154650号、特開平6−277558号各公報)を
適宜に用いることができる。
The type and grade of the inert gas, the method of generating the gas, the method of supply to the wafer storage, the amount and frequency of introduction into the space to be cleaned are determined by the use, the shape of the apparatus, the degree of sealing, and the scale. In consideration of required performance, economy, safety, operability, etc., it can be determined by conducting preliminary experiments as appropriate. next,
A method of irradiating a photoelectron emitting material with ultraviolet light and / or radiation in an electric field to emit photoelectrons into a wafer storage, and by using the photoelectrons to charge fine particles in the wafer storage, removing the charged fine particles. And the apparatus are disclosed in the inventions already proposed by the present inventors (Japanese Patent Laid-Open Nos.
68910, JP-A-5-107178, JP-A-6-107178
154650, JP-A-6-277558) can be appropriately used.

【0009】本発明において用いる光電子放出材は、紫
外線照射により光電子を放出するものであれば何れでも
良く、光電的な仕事関数が小さなもの程好ましい、効果
や経済性の面から、Ba,Sr,Ca,Y,Gd,L
a,Ce,Nd,Th,Pr,Be,Zr,Fe,N
i,Zn,Cu,Ag,Pt,Cd,Pb,Al,C,
Mg,Au,In,Bi,Nb,Si,Ti,Ta,
U,B,Eu,Sn,P,Wのいずれか又はこれらの化
合物又は合金又は混合物が好ましく、これらは単独で又
は二種以上を複合して用いられる。複合材としては、ア
マルガムの如く物理的な複合材も用いうる。
The photoelectron emitting material used in the present invention may be any material that emits photoelectrons by irradiating ultraviolet rays. The smaller the photoelectric work function, the better. From the viewpoints of effect and economy, Ba, Sr, Ca, Y, Gd, L
a, Ce, Nd, Th, Pr, Be, Zr, Fe, N
i, Zn, Cu, Ag, Pt, Cd, Pb, Al, C,
Mg, Au, In, Bi, Nb, Si, Ti, Ta,
Any of U, B, Eu, Sn, P, and W or a compound or alloy or a mixture thereof is preferable, and these are used alone or in combination of two or more. As the composite material, a physical composite material such as amalgam can be used.

【0010】例えば、化合物としては酸化物、ほう化
物、炭化物があり、酸化物にはBaO,SrO,Ca
O,Y25 ,Gd23 ,Nd23 ,ThO2 ,Z
rO2 ,Fe23 ,ZnO,CuO,Ag2 O,La
23 ,PtO,PbO,Al23 ,MgO,In2
3 ,BiO,NbO,BeOなどがあり、またほう化
物には、YB6 ,GdB6 ,LaB5 ,NdB6 ,Ce
6 ,EuB6 ,PrB6,ZrB2 などがあり、さら
に炭化物としてはUC,ZrC,TaC,TiC,Nb
C,WCなどがある。また、合金としては黄銅、青銅、
リン青銅、AgとMgとの合金(Mgが2〜20wt
%)、CuとBeとの合金(Beが1〜10wt%)及
びBaとAlとの合金を用いることができ、上記Agと
Mgとの合金、CuとBeとの合金及びBaとAlとの
合金が好ましい。酸化物は金属表面のみを空気中で加熱
したり、或いは薬品で酸化することによっても得ること
ができる。
For example, compounds include oxides, borides and carbides, and oxides include BaO, SrO, and Ca.
O, Y 2 O 5 , Gd 2 O 3 , Nd 2 O 3 , ThO 2 , Z
rO 2 , Fe 2 O 3 , ZnO, CuO, Ag 2 O, La
2 O 3 , PtO, PbO, Al 2 O 3 , MgO, In 2
O 3 , BiO, NbO, BeO, etc., and borides include YB 6 , GdB 6 , LaB 5 , NdB 6 , Ce
B 6, EuB 6, PrB 6 , ZrB 2 include, as a further carbide UC, ZrC, TaC, TiC, Nb
C and WC. In addition, brass, bronze,
Phosphor bronze, alloy of Ag and Mg (Mg is 2 to 20 wt.
%), An alloy of Cu and Be (Be is 1 to 10 wt%), an alloy of Ba and Al, and an alloy of Ag and Mg, an alloy of Cu and Be, and an alloy of Ba and Al. Alloys are preferred. The oxide can also be obtained by heating only the metal surface in air or oxidizing it with a chemical.

【0011】さらに他の方法としては使用前に加熱し、
表面に酸化層を形成して長期にわたって安定な酸化層を
得ることもできる。この例としてはMgとAgとの合金
を水蒸気中で300〜400℃の温度の条件下でその表
面に酸化膜を形成させることができ、この酸化薄膜は長
期間にわたって安定なものである。また、本発明者が、
すでに提案したように光電子放出材を多重構造としたも
のも好適に使用できる(特開平1−155857号公
報)。適宜の母材上に薄膜状に光電子を放出し得る物質
を付加し、使用することもできる。この例として、紫外
線透過性物質(母材)としての石英ガラス上に光電子を
放出し得る物質として、Auを薄膜状に付加したものが
ある(特開平4−171062号公報)。これらの材料
の使用形状は、板状、プリーツ状、曲面状、網状等何れ
の形状でもよいが、紫外線の照射面積及び処理空間との
接触面積の大きな形状のものが好ましい。
As another method, heating is performed before use,
An oxide layer can be formed on the surface to obtain a stable oxide layer over a long period of time. As an example, an oxide film can be formed on the surface of an alloy of Mg and Ag in water vapor at a temperature of 300 to 400 ° C., and this oxide thin film is stable for a long period of time. Also, the present inventor:
As already proposed, a photoelectron emitting material having a multi-layered structure can be preferably used (Japanese Patent Application Laid-Open No. 1-155857). A substance capable of emitting photoelectrons in the form of a thin film can be added to an appropriate base material and used. As an example of this, there is a substance in which Au is added in a thin film form as a substance capable of emitting photoelectrons on quartz glass as an ultraviolet transmitting substance (base material) (Japanese Patent Application Laid-Open No. Hei 4-171062). These materials may be used in any shape such as a plate shape, a pleated shape, a curved surface shape, and a net shape, but a shape having a large ultraviolet irradiation area and a large contact area with the processing space is preferable.

【0012】光電子放出材からの光電子の放出は、本発
明者がすでに提案したように、反射面、曲面状の反射面
等を適宜用いることで効果的に実施することが出来る
(特開昭63−100955号公報)。光電子放出材や
反射面の形状は、装置の形状、構造あるいは希望する効
率等により異なり、適宜決めることができる。紫外線の
種類は、その照射により光電子放出材が光電子を放出し
うるものであれば何れでも良く、適用分野によっては、
殺菌(滅菌)作用を併せてもつものが好ましい。紫外線
の種類は、適用分野、作業内容、用途、経済性などによ
り適宜決めることができる。例えば、バイオロジカル分
野においては、殺菌作用、効率の面から遠紫外線を併用
するのが好ましい。
The emission of photoelectrons from a photoelectron emitting material can be effectively implemented by appropriately using a reflecting surface, a curved reflecting surface, etc., as already proposed by the present inventor (Japanese Patent Application Laid-Open No. Sho 63). -100955 publication). The shape of the photoelectron emitting material and the shape of the reflecting surface vary depending on the shape and structure of the device, the desired efficiency, and the like, and can be determined as appropriate. The type of the ultraviolet light may be any as long as the photoelectron emitting material can emit photoelectrons by the irradiation, and depending on the application field,
Those which also have a bactericidal (sterilizing) action are preferred. The type of the ultraviolet ray can be appropriately determined depending on the application field, work content, application, economy, and the like. For example, in the biological field, it is preferable to use far ultraviolet rays in combination from the viewpoints of sterilization and efficiency.

【0013】該紫外線源としては、紫外線を発するもの
であれば何れも使用でき、適用分野、装置の形状、構
造、効果、経済性等により適宜選択し用いることができ
る。例えば、水銀灯、水素放電管、キセノン放電管、ラ
イマン放電管などを適宜使用できる。バイオロジカル分
野では、殺菌(滅菌)波長254nmを有する紫外線を
用いると、殺菌(滅菌)効果が併用でき好ましい。放射
線を用いる場合の線源も同様に、照射により光電子を放
出するものであれば良く、α線、β線、γ線などが用い
られ、照射手段としてコバルト60、セシウム137、
ストロンチウム90などの放射性同位元素、又は原子炉
内で生成する放射性廃棄物及びこれに適当な処理加工し
た放射性物質など適宜利用出来る。用途、装置の規模、
形状などによっては、本発明者が既に提案した紫外線源
を光電子放出材及び電極で囲み一体化してユニット化し
た装置を適宜に用いることができる(特開平5−689
10号公報)。
As the ultraviolet light source, any one that emits ultraviolet light can be used, and it can be appropriately selected and used depending on the application field, the shape, structure, effect, economy, etc. of the device. For example, a mercury lamp, a hydrogen discharge tube, a xenon discharge tube, a Lyman discharge tube and the like can be used as appropriate. In the biological field, it is preferable to use an ultraviolet ray having a sterilization (sterilization) wavelength of 254 nm because a sterilization (sterilization) effect can be used in combination. Similarly, the radiation source in the case of using radiation may be any one that emits photoelectrons by irradiation, and α-rays, β-rays, γ-rays, etc. are used, and cobalt 60, cesium 137,
Radioactive isotopes such as strontium 90, radioactive waste generated in a nuclear reactor, and radioactive materials appropriately processed and processed can be appropriately used. Applications, scale of equipment,
Depending on the shape or the like, an apparatus in which the ultraviolet light source already proposed by the present inventor is united by being surrounded by a photoelectron emitting material and an electrode can be appropriately used (Japanese Patent Laid-Open No. 5-689).
No. 10).

【0014】密閉空間であるウエハ保管庫内の微粒子
は、電場で光電子放出材に紫外線照射することで、効率
良く荷電される。電場における荷電については、本発明
者等がすでに提案している(例、特開昭61−1780
50号、特開昭62−244459号各公報、特願平1
−120653号)。本発明に用いる電場電圧は、本発
明においては気体が流動していないので、弱い電場でも
効果があり、該電場電圧は0.1V/cm〜2kV/c
mである。好適な電場の強さは、利用分野、条件、装置
形状、規模、効果、経済性等で適宜予備試験や検討を行
い決めることが出来る。
The fine particles in the wafer storage, which is a closed space, are efficiently charged by irradiating the photoelectron emitting material with ultraviolet light in an electric field. The present inventors have already proposed charging in an electric field (for example, see Japanese Patent Application Laid-Open No. 61-1780).
No. 50, JP-A-62-244449, Japanese Patent Application No. 1
-120563). The electric field voltage used in the present invention is effective even in a weak electric field because no gas flows in the present invention, and the electric field voltage is 0.1 V / cm to 2 kV / c.
m. A suitable electric field strength can be determined by appropriate preliminary tests and studies depending on the application field, conditions, apparatus shape, scale, effect, economy, and the like.

【0015】荷電微粒子捕集材は、荷電微粒子を確実に
捕集するものであればいずれでも良く、周知の捕集材が
使用できる。荷電微粒子の捕集材(集じん材)は、通常
の荷電装置における集じん板、集じん電極等各種電極材
や静電フィルター方式が一般的であるが、スチールウー
ル電極、タングステンウール電極のようなウール状構造
のものも有効である。エレクトレット材も好適に使用で
きる。また、本発明者がすでに提案したイオン交換フィ
ルター(又は繊維)を用いて捕集する方法も有効である
(特開昭63−54959号、同63−77557号、
同63−84656号各公報)。イオン交換フィルター
は、荷電微粒子の捕集に加えて、共存する酸性ガス、ア
ルカリ性ガス、臭気性ガス等も同時に捕集できるので実
用上好ましい。
As the charged particle collecting material, any material can be used as long as it can surely collect the charged fine particles, and a known collecting material can be used. As a material for collecting charged fine particles (dust collecting material), various electrode materials such as a dust collecting plate and a dust collecting electrode in an ordinary charging device and an electrostatic filter system are generally used. A wool-like structure is also effective. Electret materials can also be suitably used. In addition, a method of collecting using an ion exchange filter (or fiber) already proposed by the present inventors is also effective (Japanese Patent Application Laid-Open Nos. 63-54959 and 63-77557;
Nos. 63-84656, each). The ion exchange filter is practically preferable because it can collect not only the charged fine particles but also the coexisting acid gas, alkaline gas, odorous gas and the like.

【0016】使用するアニオン交換フィルター及びカチ
オン交換フィルターの種類、使用量及びその比率は、気
体中の荷電微粒子の荷電状態やその濃度、或いは同伴す
る酸性ガス、アルカリ性ガス、臭気性ガスの種類、濃度
等に応じて適宜決めることができる。例えば、アニオン
交換フィルターは負荷電微粒子や酸性ガスの捕集に、ま
たカチオン交換フィルターは正荷電の微粒子やアルカリ
性ガスの捕集に効果的である。フィルターの使用量やそ
の比率は、上述の捕集すべき物質の濃度や濃度比率に対
応して、これらに見合う量を、装置の適用分野、形状、
構造、効果、経済性等を考慮して適宜決めれば良い。捕
集は、これらの捕集方法を単独で、又はこれらの方法を
2種類以上組合せて適宜用いることが出来る。
The type, amount and ratio of the anion exchange filter and the cation exchange filter to be used depend on the charge state and concentration of the charged fine particles in the gas, or the type and concentration of the accompanying acidic gas, alkaline gas and odorous gas. It can be appropriately determined according to the conditions. For example, an anion exchange filter is effective for collecting negatively charged fine particles and acidic gas, and a cation exchange filter is effective for collecting positively charged fine particles and alkaline gas. The amount and ratio of the filter used correspond to the concentration and concentration ratio of the substance to be collected, and the amount corresponding to these is determined by the application field, shape,
It may be appropriately determined in consideration of the structure, effects, economy, and the like. For collection, these collection methods can be used alone or in combination of two or more of these methods.

【0017】電場用電極材は、通常の荷電装置に使用さ
れているものが好適に使用できる。すなわち、周知のも
のが使用できる。電場用電極材は、荷電微粒子捕集材
(集じん材)と兼ねてあるいは一体化し、用いることが
できる。例えば、上述荷電微粒子捕集材の内、集じん板
や集じん電極あるいはスチールウール電極、タングステ
ンウール電極のようなウール状電極材等の各種電極材
は、電場用電極と、荷電微粒子の捕集を兼ねてできるの
で好ましい。また、上述適宜の電場用電極材にエレクト
レット材あるいはイオン交換フィルタなど電極材以外の
材料(微粒子の捕集に特徴がある材料)を一体化し用い
ることができる。
As the electrode material for the electric field, those used in ordinary charging devices can be suitably used. That is, a well-known thing can be used. The electrode material for an electric field can be used also as an integrated with or integrated with a charged fine particle collecting material (dust collecting material). For example, among the above-mentioned charged particle collecting materials, various kinds of electrode materials such as a dust collecting plate, a dust collecting electrode or a wool-shaped electrode material such as a steel wool electrode and a tungsten wool electrode are used as an electrode for an electric field and for collecting charged fine particles. It is preferable because it can also serve as In addition, a material other than the electrode material such as an electret material or an ion-exchange filter (a material characteristic of collecting fine particles) can be integrated with the above-described appropriate electric field electrode material and used.

【0018】光電子放出材からの光電子放出のための照
射源は、照射により光電子を放出するものであればいず
れでも良い。紫外線の他に電磁波、レーザ、放射線が適
宜に適用分野、装置規模、形状、効果等で選択し、使用
できる。この内、効果、操作面の面で、紫外線及び/又
は放射線が通常好ましい。紫外線を照射する代りに放射
線の照射によっても、同様に微粒子に荷電せしめ、同様
の効果を得ることができる。放射線の照射については、
本発明者がすでに提案している(特開昭62−2445
9号公報)。荷電及び荷電微粒子の捕集における各構成
材、器具等(照射源、光電子放出材、電極、荷電微粒子
捕集材)は、適用分野、装置規模等により適宜の位置に
設置できる。
The irradiation source for emitting photoelectrons from the photoelectron emitting material may be any source that emits photoelectrons upon irradiation. In addition to ultraviolet rays, electromagnetic waves, lasers, and radiations can be appropriately selected and used depending on the application field, device scale, shape, effect, and the like. Of these, ultraviolet rays and / or radiation are usually preferred in terms of effects and operation surface. Irradiation of radiation instead of irradiation of ultraviolet rays can similarly charge the fine particles and achieve the same effect. About irradiation of radiation,
The present inventor has already proposed (Japanese Patent Laid-Open No. 62-2445).
No. 9). Each component, tool, etc. (irradiation source, photoelectron emitting material, electrode, charged particle collecting material) for collecting charged and charged fine particles can be installed at an appropriate position according to the application field, the scale of the apparatus, and the like.

【0019】[0019]

【実施例】以下、本発明を実施例により具体的に説明す
る。 実施例1 半導体工場のクリーンルームの設置したウエハ保管庫に
おける空間清浄を、図1に示した本発明の基本構成図を
用いて説明する。密閉空間であるウエハ保管庫10中の
空間(ウエハ収納空間)の清浄は、ウエハ保管庫10の
外側に設置されたN2 供給源20からの供給N2 、ウエ
ハ保管庫10の片側に設置された紫外線ランプ3、石英
ガラスにAuを被覆した光電子放出材4、荷電用電場設
置電極5、荷電微粒子捕集電極6、紫外線の反射面7に
て実施される。すなわち、ウエハ保管庫10に、洗浄直
後のウエハが収納されると、バルブ8 -1、8-2の開放に
よりN2 供給源20から高純度N2 が30分間(保管庫
10の容積の10倍容積)該保管庫10内に供給された
後、N2 の供給が停止される。これにより、洗浄直後の
ウエハは乾燥され、保管庫10内も清浄化される。
The present invention will be described below in more detail with reference to examples.
You. Example 1 In a wafer storage in a clean room of a semiconductor factory
The basic structure of the present invention shown in FIG.
It will be described using FIG. In the wafer storage 10 which is a closed space
The cleaning of the space (wafer storage space)
N installed outsideTwo Supply N from supply source 20Two , Ue
UV lamp 3 installed on one side of storage 10; quartz
Photo-emissive material 4 coated with Au on glass, electric field for charging
Electrode 5, charged particle collecting electrode 6, and ultraviolet reflecting surface 7.
Implemented. That is, the wafer storage 10 is
When the later wafer is stored, the valve 8 -1, 8-2To open
More NTwo High purity N from source 20Two For 30 minutes
10 times the volume of 10) was supplied into the storage 10
Later, NTwo Supply is stopped. As a result,
The wafer is dried, and the inside of the storage 10 is also cleaned.

【0020】一方、ウエハ保管庫10においては、光電
子放出材4に紫外線ランプ3からの紫外線が照射される
ことにより光電子が放出される。ウエハの保管中(収納
中)において、微粒子がウエハ保管庫中に発生(例え
ば、保管庫10の壁面やウエハキャリア11の表面、裏
面などからのはく離微粒子、クリーンルームからの侵入
微粒子がある)した場合、該微粒子は直ちに光電子によ
り荷電され、荷電微粒子捕集電極6に捕集され、保管庫
10中は微粒子が存在しない高清浄な空間が維持され
る。11は、ウエハキャリア、12はウエハである。こ
のようにして、ウエハ保管庫10中の微粒子(粒子状物
質)は捕集・除去され、ウエハ保管庫は清浄環境が維持
される。上記において、光電子放出材4への紫外線の照
射は、曲面状の反射面7を用い、紫外線ランプ3からの
紫外線を板状の光電子放出材4に効率よく照射してい
る。
On the other hand, in the wafer storage 10, photoelectrons are emitted by irradiating the photoelectron emitting material 4 with ultraviolet rays from the ultraviolet lamp 3. When fine particles are generated in the wafer storage during storage of the wafer (during storage) (for example, there are fine particles separated from the wall surface of the storage 10 or the front and back surfaces of the wafer carrier 11 and fine particles entering from the clean room). The fine particles are immediately charged by the photoelectrons and are collected by the charged fine particle collecting electrode 6, so that a high-purity space free of the fine particles in the storage 10 is maintained. 11 is a wafer carrier and 12 is a wafer. In this way, the fine particles (particulate matter) in the wafer storage 10 are collected and removed, and the wafer storage maintains a clean environment. In the above description, the irradiation of the ultraviolet rays to the photoelectron emitting material 4 uses the curved reflecting surface 7 and efficiently irradiates the ultraviolet rays from the ultraviolet lamp 3 to the plate-shaped photoelectron emitting material 4.

【0021】荷電用電極5は、微粒子の荷電を電場で行
うために設置している。すなわち、光電子放出材4と電
極5の間に電場を形成している。微粒子の荷電は、電場
において光電子放出材4に紫外線照射することにより効
率よく実施される。ここでの荷電用電場の電圧は、20
V/cm、また、後方の荷電微粒子捕集用電場の電圧は
200V/cmである。また、荷電微粒子の捕集は、主
に荷電微粒子捕集電極6を用いて行っている。本例にお
ける紫外線ランプ3は、殺菌ランプ(主波長:254n
m)である。
The charging electrode 5 is provided to charge the fine particles in an electric field. That is, an electric field is formed between the photoelectron emitting material 4 and the electrode 5. The charging of the fine particles is efficiently performed by irradiating the photoelectron emitting material 4 with ultraviolet light in an electric field. The voltage of the charging electric field here is 20
V / cm, and the voltage of the electric field for collecting charged fine particles at the rear is 200 V / cm. The collection of charged fine particles is mainly performed by using the charged fine particle collecting electrode 6. The ultraviolet lamp 3 in this example is a germicidal lamp (main wavelength: 254n).
m).

【0022】9-1、9-2は気流の流れ方向を示す。9-1
は入口の流れ、9-2は出口の流れである。該気流は、紫
外線ランプの照射により生ずる熱により自然に起こる流
れであり、これにより保管庫中の微粒子は、該気流によ
り効果的に光電子による荷電・捕集部に運ばれ荷電・捕
集される。N2 の保管庫10への供給は、ウエハ保管庫
を開閉する毎に30分間実施される。このようにして、
ウエハ保管庫中で発生した微粒子(粒子状物質)は効果
的に捕集・除去され、ウエハ保管庫内は超清浄化され
る。不活性な雰囲気の超清浄空間が確実に長時間安定し
て維持されるので、収納したウエハへの汚染防止、変質
防止が顕著となる。
9 -1 and 9 -2 indicate the flow direction of the air flow. 9 -1
Is the flow at the inlet and 9-2 is the flow at the outlet. The air flow is a flow naturally generated by heat generated by irradiation of the ultraviolet lamp, whereby the particles in the storage are effectively carried to the photoelectron charging / collecting unit by the air current and charged / collected. . The supply of N 2 to the storage 10 is performed for 30 minutes each time the wafer storage is opened and closed. In this way,
Fine particles (particulate matter) generated in the wafer storage are effectively collected and removed, and the inside of the wafer storage is ultra-cleaned. Since the ultra-clean space of the inert atmosphere is stably maintained for a long time, prevention of contamination and deterioration of stored wafers is remarkable.

【0023】実施例2 半導体工場のクリーンルームに設置したウエハ保管庫
(ウエハ収納ストッカ)における空間の清浄を、図2、
図3に示した本発明の基本構成図を用い説明する。本例
における光電子による空間の清浄は、紫外線源としての
紫外線ランプを光電子放出材及び電極で囲み一体化した
ユニット(微粒子捕集装置)30を用い行うものであ
る。
Example 2 The cleaning of the space in a wafer storage (wafer storage stocker) installed in a clean room of a semiconductor factory is shown in FIG.
This will be described with reference to the basic configuration diagram of the present invention shown in FIG. The cleaning of the space by photoelectrons in this example is performed using a unit (particle collecting device) 30 in which an ultraviolet lamp as an ultraviolet light source is surrounded by a photoelectron emitting material and electrodes and integrated.

【0024】図2は、ウエハ保管庫10の断面図であ
る。ウエハ保管庫10中の空間の清浄を次に説明する。
ウエハ保管庫10に、洗浄直後のウエハが収納される
と、バルブ8-1、8-2の開放によりN2 供給源20から
高純度N2 が30分間(保管庫の容積の5倍量)該保管
庫10内に供給された後、N2 の供給が停止される。こ
れにより、洗浄直後のウエハは、乾燥され、保管庫10
内も清浄化される。ウエハの保管中において、前述の実
施例1と同じ原因で発生した微粒子は、保管庫10中に
設置されたユニット30により、捕集・除去される。
FIG. 2 is a sectional view of the wafer storage 10. Next, the cleaning of the space in the wafer storage 10 will be described.
When the wafers immediately after cleaning are stored in the wafer storage 10, high-purity N 2 is supplied from the N 2 supply source 20 for 30 minutes by opening the valves 8 -1 and 8 -2 (5 times the storage volume). After being supplied into the storage 10, the supply of N 2 is stopped. As a result, the wafer immediately after cleaning is dried and stored in the storage 10.
The inside is also cleaned. During the storage of the wafer, the fine particles generated for the same reason as in the first embodiment are collected and removed by the unit 30 installed in the storage 10.

【0025】ユニット30は、図3に基本構成図を示し
たように、紫外線ランプ3、該ランプを囲む形状の石英
ガラス(筒状)にAuを被覆した光電子放出材4、荷電
用電場設定電極5、荷電微粒子捕集電極6より成る。9
-1、9-2は、気流の流れ方向を示す。9-1は入口の流
れ、9-2は出口の流れである。本例において、実施例1
と同じ記号は、同じ意味を示す。本例において、紫外線
ランプ3は、殺菌ランプ(主波長:254nm)、荷電
用の電場の電圧は50V/cm、荷電微粒子の捕集用電
場の電圧は250V/cmである。
As shown in FIG. 3, the unit 30 includes an ultraviolet lamp 3, a photoelectron emitting material 4 in which quartz glass (cylindrical shape) surrounding the lamp is coated with Au, and an electric field setting electrode for charging. 5, a charged particle collecting electrode 6. 9
-1 , 9-2 indicate the flow direction of the airflow. 9-1 is the flow at the inlet, and 9-2 is the flow at the outlet. In this example, the first embodiment
The same symbols as have the same meaning. In this example, the ultraviolet lamp 3 is a germicidal lamp (main wavelength: 254 nm), the voltage of the electric field for charging is 50 V / cm, and the voltage of the electric field for collecting charged fine particles is 250 V / cm.

【0026】実施例3 実施例2におけるユニット(微粒子捕集装置)30の別
の形態を図4の(a)と(b)に示す。夫々の特徴を示
す。(a)は、紫外線ランプ3の上に光電子放出材Au
4を被覆したものである。(b)は、紫外線ランプ3の
対向円筒が光電子放出材4であり、SUS材の上にAu
を被覆したものである。図4において、図3と同じ記号
は、同じ意味を示す。
Embodiment 3 FIGS. 4A and 4B show another embodiment of the unit (particle collecting device) 30 in Embodiment 2. FIG. Here are the characteristics of each. (A) is a photoelectron emitting material Au on an ultraviolet lamp 3.
4 is coated. In (b), the opposing cylinder of the ultraviolet lamp 3 is the photoelectron emitting material 4 and Au is placed on the SUS material.
Is coated. 4, the same symbols as those in FIG. 3 have the same meaning.

【0027】実施例4 図1に示したウエハ保管庫をクラス10,000のクリ
ーンルームに設置し洗浄後のウエハを収納し、ウエハ上
にCr膜を成膜し、Cr膜の付着力について調べた。ウ
エハ保管庫の作動は、ウエハ収納後直ちにN2 を300
リットルウエハ保管庫に導入し、ウエハ付着水分の脱離
(乾燥)、及び保管庫内をN2 で満たし、紫外線の点灯
及び電圧の印加を行った。
Example 4 The wafer storage shown in FIG. 1 was set in a class 10,000 clean room, the cleaned wafer was stored, a Cr film was formed on the wafer, and the adhesion of the Cr film was examined. . The operation of the wafer depot, the post-wafer storage immediately N 2 300
The wafer was introduced into a 1-liter wafer storage, and the water adhering to the wafer was removed (dried), the storage was filled with N 2 , and ultraviolet light was turned on and voltage was applied.

【0028】 保管庫大きさ ; 30リットル、 紫外線源 ; 10W、 光電子放出材 ; 石英ガラスに薄膜状Auを被覆したもの、 電極材 ; SUS製、 荷電用電場 ; 50V/cm、 荷電微粒子捕集電極 ; 200V/cm、 不活性ガス : N2 (99.9999%)、N2 の導入は、ウエハ収納 直後及びその後4時間毎に間欠で行った。 Cr膜 : スパッタリング法で成膜(膜厚300nm)、 Cr膜のウエハへの付着力 : 膜はく離荷重(測定:スクラッチ試験機)で 調べた。 洗浄法 : 溶剤洗浄後、純水で洗浄、Storage size: 30 liters, ultraviolet light source: 10 W, photoelectron emission material: quartz glass coated with thin film Au, electrode material: SUS, charging electric field: 50 V / cm, charged fine particle collecting electrode 200 V / cm, inert gas: N 2 (99.9999%), N 2 was introduced intermittently immediately after storing the wafer and every four hours thereafter. Cr film: Deposited by sputtering (thickness: 300 nm), Adhesion of Cr film to wafer: Film peeling load (measurement: measured by a scratch tester). Cleaning method: After washing with solvent, wash with pure water,

【0029】結果 保管庫への収納時間に対する膜剥離荷重を図5に示す。
本発明の測定値を〇印、比較として行ったN2 を導入し
ないものを●印、N2 の導入後光電子による微粒子の荷
電・捕集を行わないものを▲印で示す。図5中(●)
は、5mN以下を示す。保管庫中の微粒子濃度をパーテ
ィクルカウンター(光散乱式)で測定した。その結果を
表1に示す。
Results FIG. 5 shows the film peeling load with respect to the storage time in the storage.
Measured value .smallcircle of the present invention, shows what not to introduce N 2 was performed as a comparison mark ●, those that do not perform the charge-trapping of particles by the introduction halo electrons N 2 at ▲ mark. In Fig. 5 (●)
Indicates 5 mN or less. The concentration of the fine particles in the storage was measured by a particle counter (light scattering type). Table 1 shows the results.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【発明の効果】本発明によれば次のような効果を奏する
ことができる。 (1)密閉空間であるウエハ保管庫に不活性ガスをウエ
ハ保管庫の開閉時に導入し、光電子を該空間に放出する
ことにより、(a)水分、酸素、微粒子(粒子状物質)
が存在しない不活性な超清浄空間が長時間安定して創出
できた。すなわち、ウエハ保管庫へその開閉時に不活性
ガスの導入により、該空間は不活性な空間となり、該空
間に光電子を放出させることで、該空間内で発生した、
又は該空間外から侵入する微粒子が簡便に捕集・除去さ
れた。これにより、不活性な空間が長時間維持できた。
(b)不活性ガスの導入は、ウエハ保管庫の開閉時だけ
で良いので、使用する不活性ガスは少量となった。これ
により、ランニングコストが大幅に低減された。また、
2 を含まない不活性ガスの作業者近傍へのリークやた
れ流しがなくなったので実用上安全な空間が簡便にでき
た。
According to the present invention, the following effects can be obtained. (1) Inert gas is introduced into the closed space of the wafer storage when the wafer storage is opened and closed, and photoelectrons are emitted into the space, whereby (a) moisture, oxygen, fine particles (particulate matter)
An inactive, ultra-clean space free of sinters could be created stably for a long time. That is, by introducing an inert gas into the wafer storage at the time of opening and closing, the space becomes an inert space, and by emitting photoelectrons into the space, the space is generated in the space.
Alternatively, fine particles entering from outside the space were easily collected and removed. Thereby, an inert space could be maintained for a long time.
(B) Since the introduction of the inert gas is sufficient only when the wafer storage is opened and closed, the amount of the inert gas used is small. As a result, running costs have been significantly reduced. Also,
Since there was no leakage or dripping of the inert gas containing no O 2 to the vicinity of the worker, a practically safe space could be easily provided.

【0032】(c)収納物品(例、ウエハやガラス基
板)が、洗浄直後のように水分を多く含んでいる場合、
不活性ガスは通常乾燥しているので、不活性ガスを導入
することにより、該収納物品は乾燥されて安定な状態で
保持される。すなわち、水分は空間に収納されたウエハ
やガラス基板の表面状態によっては反応剤として作用す
るので、すみやかな除去が必要であった。 (2)上記により、実用上、有効な不活性(変質防止効
果)で安全かつ長時間安定した超清浄空間ができた。こ
の空間は、不活性ガスの使用が少ないので、地球資源の
有効利用の点でも有効な空間である。
(C) When a stored article (eg, a wafer or a glass substrate) contains a large amount of water, such as immediately after cleaning,
Since the inert gas is usually dry, by introducing the inert gas, the stored article is dried and kept in a stable state. That is, since water acts as a reactant depending on the surface condition of the wafer or the glass substrate housed in the space, it has to be removed promptly. (2) From the above, an ultra-clean space that is practically effective, is inert (effectively preventing deterioration), and is stable for a long time and stable. Since this space uses little inert gas, it is an effective space in terms of effective use of the earth resources.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のウエハ保管庫の清浄装置を示す断面構
成図。
FIG. 1 is a sectional configuration view showing a cleaning apparatus for a wafer storage according to the present invention.

【図2】本発明の他のウエハ保管庫の清浄装置を示す断
面構成図。
FIG. 2 is a cross-sectional configuration diagram showing another wafer storage cleaning apparatus of the present invention.

【図3】本発明に用いる微粒子捕集ユニットの断面構成
図。
FIG. 3 is a cross-sectional configuration diagram of a fine particle collection unit used in the present invention.

【図4】本発明に用いる他の微粒子捕集ユニットの断面
構成図。
FIG. 4 is a cross-sectional configuration diagram of another particle collecting unit used in the present invention.

【図5】収納時間による剥離荷重の変化を示すグラフ。FIG. 5 is a graph showing a change in peeling load according to storage time.

【図6】従来の清浄装置を示す概略構成図。FIG. 6 is a schematic configuration diagram showing a conventional cleaning device.

【符号の説明】[Explanation of symbols]

1、10:ウエハ保管庫、2、20:N2 供給ボンベ、
3:紫外線ランプ、4:光電子放出材、5:荷電用電場
設置電極、6:荷電微粒子捕集電極、7:反射面、8:
バルブ、9:気流の流れ、11:ウエハキャリア、1
2:ウエハ、30:微粒子捕集ユニット
1, 10: wafer storage, 2 , 20: N 2 supply cylinder,
3: UV lamp, 4: Photoelectron emission material, 5: Electrode for setting electric field for charging, 6: Electrode for collecting charged fine particles, 7: Reflecting surface, 8:
Valve, 9: air flow, 11: wafer carrier, 1
2: wafer, 30: particle collection unit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ウエハ保管庫内を、不活性ガスの導入
と、電場下で光電子放出材に紫外線及び/又は放射線を
照射することにより該ウエハ保管庫内に光電子を放出せ
しめ、該光電子により該ウエハ保管庫内の微粒子を荷電
・捕集することによるウエハ保管庫の清浄方法におい
て、前記ウエハ保管庫を開閉する毎に、まず、該ウエハ
保管庫内に不活性ガスを導入し、次いで、前記光電子に
より微粒子を荷電して捕集することを特徴とするウエハ
保管庫の清浄方法。
In the wafer storage, photoelectrons are emitted into the wafer storage by introducing an inert gas and irradiating a photoelectron emitting material with ultraviolet rays and / or radiation under an electric field, and the photoelectrons are released by the photoelectrons. In the method for cleaning a wafer storage by charging and collecting fine particles in the wafer storage, each time the wafer storage is opened and closed, first, an inert gas is introduced into the wafer storage, and then the A method for cleaning a wafer storage, wherein fine particles are charged and collected by photoelectrons.
【請求項2】 前記不活性ガスが、窒素ガスであること
を特徴とする請求項1記載のウエハ保管庫の清浄方法。
2. The method according to claim 1, wherein said inert gas is nitrogen gas.
【請求項3】 ウエハ保管庫に、不活性ガス供給源と開
閉手段を介して接続された不活性ガス導入口と、紫外線
及び/又は放射線源と光電子放出材と電場設定及び荷電
微粒子捕集用電極とを有する微粒子の荷電・捕集装置と
を備えてなるウエハ保管庫の清浄装置において、前記ウ
エハ保管庫を開閉する毎に、不活性ガスが該ウエハ保管
庫内に導入されるように前記不活性ガス供給源と開閉手
段を制御する制御手段と、不活性ガスの導入後に稼働す
る荷電・捕集装置の制御手段とを有することを特徴とす
るウエハ保管庫の清浄装置。
3. An inert gas supply port connected to an inert gas supply source via an opening / closing means, an ultraviolet and / or radiation source, a photoelectron emitting material, an electric field setting, and a collection of charged fine particles. A cleaning and cleaning device for a wafer storage, comprising: a device for charging / collecting fine particles having an electrode; wherein each time the wafer storage is opened and closed, an inert gas is introduced into the wafer storage. A cleaning device for a wafer storage, comprising: a control means for controlling an inert gas supply source and an opening / closing means; and a control means for a charging / collecting device which operates after introduction of an inert gas.
JP2001014065A 2001-01-23 2001-01-23 Method and device for cleaning wafer storage chamber Pending JP2001252592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001014065A JP2001252592A (en) 2001-01-23 2001-01-23 Method and device for cleaning wafer storage chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001014065A JP2001252592A (en) 2001-01-23 2001-01-23 Method and device for cleaning wafer storage chamber

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP31486695A Division JP3184080B2 (en) 1995-11-09 1995-11-09 How to clean enclosed space

Publications (1)

Publication Number Publication Date
JP2001252592A true JP2001252592A (en) 2001-09-18

Family

ID=18880806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001014065A Pending JP2001252592A (en) 2001-01-23 2001-01-23 Method and device for cleaning wafer storage chamber

Country Status (1)

Country Link
JP (1) JP2001252592A (en)

Similar Documents

Publication Publication Date Title
JP3405439B2 (en) How to clean solid surfaces
US5225000A (en) Method for cleaning closed spaces with ultraviolet rays
JP3184080B2 (en) How to clean enclosed space
JP2001252592A (en) Method and device for cleaning wafer storage chamber
JP3424778B2 (en) Method and apparatus for cleaning space
JP3460500B2 (en) Gas cleaning apparatus, method for cleaning closed space using the same, and closed space
JP3105445B2 (en) Vacuum space provided with method and apparatus for cleaning vacuum space
JP3696038B2 (en) Particulate matter collection device and collection method
JP3570612B2 (en) Negative ion generation method and device, fine particle charging method and trapping device
JP2000279904A (en) Method for washing surface of substrate
JP3424775B2 (en) Method and apparatus for cleaning space
JP3672077B2 (en) Method and apparatus for generating negative ions
JPH05107178A (en) Method and device for charging fine particle
JP3217562B2 (en) How to clean the work space
JP2670942B2 (en) Method and apparatus for electrically neutralizing charged fine particles in gas
JP3434651B2 (en) Method and apparatus for charging fine particles
JPH06154650A (en) Method and device for charging fine particles in space by photoelectron
JP3139590B2 (en) Method and apparatus for cleaning enclosed space
JPH0629373A (en) Stocker
JP2001252344A5 (en)
JP2722297B2 (en) Gas cleaning method and apparatus
JP3139591B2 (en) Method and apparatus for generating negative ions, method for charging fine particles, apparatus for collecting fine particles in gas, and stocker
JPH07256141A (en) Method for sterilizing inside of room and sterile room
JP3661835B2 (en) Method and apparatus for generating negative ions
JP2000153179A (en) Method and apparatus for generating anion