JP3183396B2 - Nonvolatile semiconductor memory device and method of manufacturing the same - Google Patents

Nonvolatile semiconductor memory device and method of manufacturing the same

Info

Publication number
JP3183396B2
JP3183396B2 JP31975397A JP31975397A JP3183396B2 JP 3183396 B2 JP3183396 B2 JP 3183396B2 JP 31975397 A JP31975397 A JP 31975397A JP 31975397 A JP31975397 A JP 31975397A JP 3183396 B2 JP3183396 B2 JP 3183396B2
Authority
JP
Japan
Prior art keywords
floating gate
gate electrode
film
semiconductor
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31975397A
Other languages
Japanese (ja)
Other versions
JPH11154712A (en
Inventor
健一 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP31975397A priority Critical patent/JP3183396B2/en
Priority to KR1019980049874A priority patent/KR19990045444A/en
Publication of JPH11154712A publication Critical patent/JPH11154712A/en
Application granted granted Critical
Publication of JP3183396B2 publication Critical patent/JP3183396B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823481MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type isolation region manufacturing related aspects, e.g. to avoid interaction of isolation region with adjacent structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Non-Volatile Memory (AREA)
  • Read Only Memory (AREA)
  • Semiconductor Memories (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、不揮発性半導体記
憶装置およびその製造方法に係わり、特にフラッシュメ
モリのメモリセル、およびその製造方法に好適に用いら
れる不揮発性半導体記憶装置およびその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nonvolatile semiconductor memory device and a method of manufacturing the same, and more particularly to a memory cell of a flash memory and a nonvolatile semiconductor memory device suitably used in the method of manufacturing the same.

【0002】[0002]

【従来の技術】不揮発性シリコン記憶装置としては情報
の消去および書き込みが可能なEPROM、フラッシュ
メモリ等が知られているが、これら不揮発性シリコン記
憶装置は、従来、シリコン基板表面にトンネル酸化膜、
電荷蓄積を目的とした浮遊ゲート電極層、電極間絶縁
膜、各メモリセルのワード線となる制御ゲート電極層を
形成し、積層構造のゲート電極に加工した後に、ソース
・ドレイン拡散層およびチャネル領域を形成し、その
後、各電極への金属配線を形成していた。
2. Description of the Related Art As non-volatile silicon storage devices, EPROMs and flash memories capable of erasing and writing information are known. However, these non-volatile silicon storage devices are conventionally provided with a tunnel oxide film,
After forming a floating gate electrode layer for charge storage, an inter-electrode insulating film, and a control gate electrode layer serving as a word line of each memory cell, and processing into a stacked gate electrode, a source / drain diffusion layer and a channel region are formed. After that, a metal wiring to each electrode was formed.

【0003】この構造を有するフラッシュメモリセルと
して例えば、Masataka Kato et.al.“A 0.4-μm Self-A
ligned Contactless Memory Cell Technology Suitable
for256-Mbit Flash Memories" 1994 IEDM Tech.Digest
pp.921-923に示されているような、データ書き込み・
データ消去の動作時にファウラー・ノルドハイム(F
N)現象を利用して、トンネル酸化膜中の電子の通過を
実現する、いわゆるFN型のフラッシュメモリセルが提
案されている。
As a flash memory cell having this structure, for example, Masataka Kato et.al. “A 0.4-μm Self-A
ligned Contactless Memory Cell Technology Suitable
for256-Mbit Flash Memories "1994 IEDM Tech.Digest
Data writing and writing as shown in pp.921-923
Fowler Nordheim (F
N) A so-called FN type flash memory cell has been proposed which realizes the passage of electrons in a tunnel oxide film by utilizing the phenomenon.

【0004】このFN型メモリセルの構造及び製造方法
を図6に示す。まず、シリコン基板1上にトンネル酸化
膜2を形成し、この基板上に第1の浮遊ゲート電極用多
結晶シリコン膜3およびシリコン酸化膜4を形成する。
次に、フォトリソグラフィーとドライエッチング技術を
用い、シリコン酸化膜4,シリコン膜3を第1の浮遊ゲ
ート電極形状に加工する。その後、シリコン窒化膜5を
堆積し、シリコン窒化膜5をエッチバックすることで、
図6(a)に示す構造を形成する。
FIG. 6 shows a structure and a manufacturing method of the FN type memory cell. First, a tunnel oxide film 2 is formed on a silicon substrate 1, and a first polysilicon film 3 for a floating gate electrode and a silicon oxide film 4 are formed on the substrate.
Next, the silicon oxide film 4 and the silicon film 3 are processed into a first floating gate electrode shape by using photolithography and dry etching technology. After that, a silicon nitride film 5 is deposited, and the silicon nitride film 5 is etched back.
The structure shown in FIG. 6A is formed.

【0005】次に、シリコン窒化膜5をマスク材料にし
て、熱酸化を実施して各メモリセルを電気的に分離する
フィールド酸化膜6を形成し、続けてシリコン窒化膜5
をホットリン酸を用いたウェットエッチングにより除去
し、その後、シリコン膜3,シリコン酸化膜4,フィー
ルド酸化膜6をマスク材料にしてメモリセルのソース・
ドレイン拡散層7を形成するための砒素のイオン注入を
実施する(図6(b))。
Next, using the silicon nitride film 5 as a mask material, thermal oxidation is performed to form a field oxide film 6 for electrically isolating each memory cell.
Is removed by wet etching using hot phosphoric acid, and thereafter, the silicon film 3, silicon oxide film 4, and field oxide film 6 are used as a mask material to form a memory cell source / source.
Arsenic ion implantation for forming the drain diffusion layer 7 is performed (FIG. 6B).

【0006】さらに、シリコン酸化膜8を堆積して、こ
れをエッチバックすることでシリコン膜3間の溝を埋め
込んだ後、第2の浮遊ゲート電極用の多結晶シリコン膜
9を堆積し、これをフォトリソグラフィーとドライエッ
チング技術を用い、シリコン膜9を第2の浮遊ゲート電
極形状に加工する。この時、第1,第2の浮遊ゲート電
極用シリコン膜3,9は電気的に接続した状態になるよ
うに形成する。続けて、絶縁膜10,制御ゲート電極用
の多結晶シリコン膜11を堆積し、これをフォトリソグ
ラフィーとドライエッチング技術を用い、シリコン膜1
1を制御ゲート電極形状に加工するとともに、第1,第
2の浮遊ゲート電極用シリコン膜3,9のドライエッチ
ングも行い、各メモリセル毎の浮遊ゲート電極の分離を
行い、フラッシュメモリセルを作成する(図6
(c))。このフラッシュメモリセルにおいて、第2の
浮遊ゲート電極用シリコン膜9は制御ゲート電極11と
の対向面積を増大させ、浮遊ゲート電極と制御ゲート電
極の容量結合を高める働きをしている。
Further, a silicon oxide film 8 is deposited, and the silicon oxide film 8 is etched back to fill a groove between the silicon films 3, and then a polycrystalline silicon film 9 for a second floating gate electrode is deposited. Is processed into a second floating gate electrode shape using photolithography and dry etching techniques. At this time, the first and second silicon films 3 and 9 for the floating gate electrode are formed so as to be electrically connected. Subsequently, an insulating film 10 and a polycrystalline silicon film 11 for a control gate electrode are deposited, and the silicon film 1 is formed by photolithography and dry etching.
1 is formed into a control gate electrode shape, and the first and second silicon films 3 and 9 for the floating gate electrode are also dry-etched to separate the floating gate electrode for each memory cell, thereby producing a flash memory cell. (Fig. 6
(C)). In this flash memory cell, the second silicon film 9 for the floating gate electrode has a function of increasing the area facing the control gate electrode 11 and increasing the capacitive coupling between the floating gate electrode and the control gate electrode.

【0007】しかしながら、このフラッシュメモリセル
においては、メモリセル間の素子分離にフィールド酸化
膜を用いている。そのため、メモリセルの高集積化が進
んでも、ある程度の素子分離特性を保つために、0.6
μm程度以上の素子分離幅は求められ、メモリセルの微
細化が困難になる。
However, in this flash memory cell, a field oxide film is used for element isolation between memory cells. Therefore, even if the integration of the memory cell is advanced, in order to maintain a certain element isolation characteristic,
An element isolation width of about μm or more is required, which makes it difficult to miniaturize a memory cell.

【0008】このような状況を解決するための一方法と
して、Masataka Kato et.al.“A Shallow-Trench-Isola
tion Flash Memory Technology with a Source-bias Pr
ogramming Method" 1996 IEDM Tech.Digest pp.177-180
に示されているように、素子分離法としてシリコン基
板に溝構造を形成し、溝内をシリコン酸化膜で埋め込
み、素子分離幅を0.25μmまで低減できるメモリセ
ル構造が提案されている。
As one method for solving such a situation, Masataka Kato et.al. “A Shallow-Trench-Isola
tion Flash Memory Technology with a Source-bias Pr
ogramming Method "1996 IEDM Tech.Digest pp.177-180
As shown in (1), a memory cell structure has been proposed in which a trench structure is formed in a silicon substrate as a device isolation method, the trench is filled with a silicon oxide film, and the device isolation width can be reduced to 0.25 μm.

【0009】以下、図4および図5を用いてメモリセル
構造と製造方法を示す。まず、シリコン基板20上にト
ンネル酸化膜21を形成し、この基板上に第1の浮遊ゲ
ート電極用多結晶シリコン膜22,シリコン酸化膜23
およびシリコン窒化膜24を形成する。次に、フォトリ
ソグラフィーとドライエッチング技術を用い、シリコン
窒化膜24,シリコン酸化膜23およびシリコン膜22
を第1の浮遊ゲート電極形状に加工する。その後、シリ
コン膜22,シリコン酸化膜23,シリコン窒化膜24
をマスク材料にしてメモリセルのソース・ドレイン拡散
層25を形成するための砒素のイオン注入を実施する
(図4(a))。
A memory cell structure and a manufacturing method will be described below with reference to FIGS. First, a tunnel oxide film 21 is formed on a silicon substrate 20, and a first polysilicon film 22 for a floating gate electrode and a silicon oxide film 23 are formed on the substrate.
Then, a silicon nitride film 24 is formed. Next, the silicon nitride film 24, the silicon oxide film 23 and the silicon film 22 are formed by using photolithography and dry etching technology.
Is processed into a first floating gate electrode shape. Then, the silicon film 22, the silicon oxide film 23, the silicon nitride film 24
Is used as a mask material to perform arsenic ion implantation for forming the source / drain diffusion layers 25 of the memory cell (FIG. 4A).

【0010】その後、シリコン膜22の側壁を熱酸化し
てシリコン酸化膜33を形成し、続けてシリコン窒化膜
26とシリコン酸化膜27を堆積し、シリコン酸化膜2
7,シリコン窒化膜26をエッチバックすることで、第
1の浮遊ゲート電極側壁にシリコン窒化膜26とシリコ
ン酸化膜27のサイドウォールを形成する。このサイド
ウォールをマスク材にしてシリコン基板20をドライエ
ッチングして各メモリセル間に溝を掘った後、シリコン
基板20の溝表面を熱酸化することでシリコン酸化膜2
8を形成する(図4(b))。
Thereafter, the side wall of the silicon film 22 is thermally oxidized to form a silicon oxide film 33, and then a silicon nitride film 26 and a silicon oxide film 27 are deposited.
7. By etching back the silicon nitride film 26, sidewalls of the silicon nitride film 26 and the silicon oxide film 27 are formed on the side walls of the first floating gate electrode. After the silicon substrate 20 is dry-etched by using the sidewalls as a mask material to dig a groove between the memory cells, the silicon oxide film 2 is thermally oxidized on the groove surface of the silicon substrate 20.
8 (FIG. 4B).

【0011】次に、シリコン酸化膜29の堆積と、この
シリコン酸化膜29のエッチバックにより、サイドウォ
ール27とシリコン酸化膜28表面を被覆するシリコン
酸化膜29を形成した後、シリコン膜30の堆積と、こ
のシリコン膜30のエッチバックにより、メモリセル間
の溝を埋め込み、素子分離幅0.25μmを実現する
(図4(c))。
Next, by depositing a silicon oxide film 29 and etching back the silicon oxide film 29, a silicon oxide film 29 covering the side walls 27 and the surface of the silicon oxide film 28 is formed. Then, the trench between the memory cells is buried by etching back the silicon film 30, and an element isolation width of 0.25 μm is realized (FIG. 4C).

【0012】次に、シリコン膜30の表面を熱酸化した
後、シリコン窒化膜24を、ホットリン酸を用いたウェ
ットエッチングにより除去する(図5(d))。
Next, after the surface of the silicon film 30 is thermally oxidized, the silicon nitride film 24 is removed by wet etching using hot phosphoric acid (FIG. 5D).

【0013】続けて、シリコン酸化膜23をドライエッ
チングにより除去した後、第2の浮遊ゲート電極用の多
結晶シリコン膜32を堆積し、これをフォトリソグラフ
ィーとドライエッチング技術を用い、シリコン膜32を
第2の浮遊ゲート電極形状に加工する。この時、第1,
第2の浮遊ゲート電極用シリコン膜22,32は電気的
に接続した状態になる。続けて、絶縁膜33,制御ゲー
ト電極用の多結晶シリコン膜34を堆積し、これをフォ
トリソグラフィーとドライエッチング技術を用い、シリ
コン膜34を制御ゲート電極形状に加工するとともに、
第1,第2の浮遊ゲート電極用シリコン膜22,32の
ドライエッチングも行い、各メモリセル毎の浮遊ゲート
電極の分離を行い、フラッシュメモリセルを作成する
(図5(e))。このフラッシュメモリセルにおいて、
第2の浮遊ゲート電極用シリコン膜32は制御ゲート電
極34との対向面積を増大させ、浮遊ゲート電極と制御
ゲート電極の容量結合を高める働きをしている。
Subsequently, after removing the silicon oxide film 23 by dry etching, a second polycrystalline silicon film 32 for a floating gate electrode is deposited, and the silicon film 32 is formed by photolithography and dry etching techniques. It is processed into a second floating gate electrode shape. At this time,
The second floating gate electrode silicon films 22 and 32 are electrically connected. Subsequently, an insulating film 33 and a polycrystalline silicon film 34 for a control gate electrode are deposited, and the silicon film 34 is processed into a control gate electrode shape using photolithography and dry etching techniques.
Dry etching of the first and second floating gate electrode silicon films 22 and 32 is also performed to separate the floating gate electrode of each memory cell, thereby forming a flash memory cell (FIG. 5E). In this flash memory cell,
The second silicon film 32 for the floating gate electrode has a function of increasing the area facing the control gate electrode 34 and increasing the capacitive coupling between the floating gate electrode and the control gate electrode.

【0014】[0014]

【発明が解決しようとする課題】しかしながら、図5
(e)に示すように、メモリセルの高集積化のために素
子分離幅を0.25μmと狭めた結果、隣接するメモリ
セルの第2の浮遊ゲート電極用シリコン膜32は、素子
分離にフィールド酸化膜を用いた場合に比べ接近する。
また、第2の浮遊ゲート電極用シリコン膜32の加工技
術が従来と同じ場合には、第2の浮遊ゲート電極用シリ
コン膜32の分離間隔は従来と同じになるため、素子分
離領域に突きだしている部分の第2の浮遊ゲート電極用
シリコン膜32の面積が減少することになる。その結
果、第2の浮遊ゲート電極用シリコン膜32と制御ゲー
ト電極34の対向面積が減少し、浮遊ゲート電極と制御
ゲート電極の容量結合も低減する。このため、制御ゲー
ト電極34に電圧を印加し、浮遊ゲート電極22,32
を介してトンネル酸化膜21に電界を加える場合、従来
と同じ電界をトンネル酸化膜21に加えるためには、よ
り高い電圧を制御ゲート電極に印加する必要がある。そ
の結果、このフラッシュメモリセルを操作するために
は、より高い値の電源電圧が必要になり、素子の低電圧
化、低消費電力化が困難になる。
However, FIG.
As shown in (e), the element isolation width is reduced to 0.25 μm for high integration of the memory cell. As a result, the silicon film 32 for the second floating gate electrode of the adjacent memory cell becomes a field for element isolation. It is closer than when an oxide film is used.
Further, when the processing technology of the second floating gate electrode silicon film 32 is the same as that of the related art, the separation interval of the second floating gate electrode silicon film 32 becomes the same as that of the related art. The area of the portion of the second floating gate electrode silicon film 32 that is present is reduced. As a result, the facing area between the second floating gate electrode silicon film 32 and the control gate electrode 34 is reduced, and the capacitive coupling between the floating gate electrode and the control gate electrode is also reduced. Therefore, a voltage is applied to the control gate electrode 34 and the floating gate electrodes 22 and 32 are applied.
When an electric field is applied to the tunnel oxide film 21 through the gate electrode, a higher voltage needs to be applied to the control gate electrode in order to apply the same electric field to the tunnel oxide film 21 as in the related art. As a result, in order to operate the flash memory cell, a higher power supply voltage is required, and it is difficult to reduce the voltage and power consumption of the device.

【0015】[0015]

【課題を解決するための手段】本発明の不揮発性半導体
記憶装置は、半導体基板にソースおよびドレイン電極用
の不純物拡散層を有し、該不純物拡散層により規定され
るチャネル領域上にはゲート絶縁膜を介して第1の浮遊
ゲート電極を有し、前記不純物拡散層上には前記ゲート
絶縁膜よりも薄いトンネル絶縁膜を介してその高さが前
記第1の浮遊ゲート電極よりも高い第2の浮遊ゲート電
極を有し、前記第1および第2の浮遊ゲート電極と接続
する第3の浮遊ゲート電極を有し、該第3の浮遊ゲート
電極上に絶縁膜を介して制御ゲート電極を有し、前記第
3の浮遊ゲート電極の表面は、前記第1および第2の浮
遊ゲート電極の高低差により生じる凹状の窪みに対応し
て凹状に形成されていることを特徴とする。
A nonvolatile semiconductor memory device according to the present invention has an impurity diffusion layer for source and drain electrodes on a semiconductor substrate, and a gate insulating layer on a channel region defined by the impurity diffusion layer. A first floating gate electrode with a film interposed therebetween, and a height above the impurity diffusion layer via a tunnel insulating film thinner than the gate insulating film;
A third floating gate electrode having a second floating gate electrode higher than the first floating gate electrode, and a third floating gate electrode connected to the first and second floating gate electrodes; a control gate electrode via an insulating film on the first
3 has the surface of the first and second floating gate electrodes.
It corresponds to the concave depression caused by the height difference of the play gate electrode.
And is formed in a concave shape .

【0016】また本発明の不揮発性半導体記憶装置の製
造方法は、半導体基板に、ゲート絶縁膜、第1の浮遊ゲ
ート電極用半導体膜、シリコン酸化膜、シリコン窒化膜
を順次形成する工程と、チャネル領域に相当する部分以
外の領域の、前記第1の浮遊ゲート電極用半導体膜、前
シリコン酸化膜、前記シリコン窒化膜を除去した後、
不純物をイオン注入し、ソース/ドレイン拡散層を形成
する工程と、該チャネル領域に相当する部分以外の領域
の前記ゲート絶縁膜を除去した後、トンネル絶縁膜を形
成し、その表面に第2の浮遊ゲート電極用半導体膜を堆
積し、前記半導体基板上の該第2の浮遊ゲート電極用半
導体膜及び該トンネル絶縁膜を一部除去することで、前
記第1の浮遊ゲート電極用半導体膜、シリコン酸化膜、
シリコン窒化膜の側壁部に前記第2の浮遊ゲート電極用
半導体膜を形成する工程と、前記第1の浮遊ゲート電極
用半導体膜、シリコン酸化膜、シリコン窒化膜の側壁部
に形成された前記第2の浮遊ゲート電極用半導体膜をマ
スクとして前記半導体基板に溝を形成し、該溝の内壁
第1の絶縁膜を形成した後、該溝を第2の絶縁膜で埋め
込む工程と、前記シリコン窒化膜と前記シリコン酸化膜
を除去した後、前記第1および第2の浮遊ゲート電極用
半導体膜と電気的に接続する第3の浮遊ゲート電極用半
導体膜を形成し、さらに該第3の浮遊ゲート電極用半導
体膜上に第3の絶縁膜を介して制御ゲート電極を設ける
工程と、を有することを特徴とする。
Further, according to the method of manufacturing a nonvolatile semiconductor memory device of the present invention, a step of sequentially forming a gate insulating film, a first floating gate electrode semiconductor film, a silicon oxide film, and a silicon nitride film on a semiconductor substrate; After removing the first floating gate electrode semiconductor film, the silicon oxide film, and the silicon nitride film in a region other than the portion corresponding to the region,
Forming a source / drain diffusion layer by ion-implanting an impurity; removing the gate insulating film in a region other than a portion corresponding to the channel region; forming a tunnel insulating film; By depositing a semiconductor film for a floating gate electrode and partially removing the second semiconductor film for a floating gate electrode and the tunnel insulating film on the semiconductor substrate, the first semiconductor film for a floating gate electrode , silicon Oxide film,
Forming the second semiconductor film for a floating gate electrode on a side wall portion of a silicon nitride film ; and forming the second semiconductor film for a floating gate electrode , a silicon oxide film, and forming the second semiconductor film on a side wall portion of a silicon nitride film . Forming a groove in the semiconductor substrate using the second floating gate electrode semiconductor film as a mask, forming a first insulating film on the inner wall of the groove, and filling the groove with a second insulating film. Forming a third floating gate electrode semiconductor film electrically connected to the first and second floating gate electrode semiconductor films after removing the silicon nitride film and the silicon oxide film; Providing a control gate electrode over the third floating gate electrode semiconductor film with a third insulating film interposed therebetween.

【0017】(作用)本発明においては、1)素子分離
法として半導体基板に形成した溝構造の素子分離を用
い、かつメモリセルのトンネル領域の面積を低減するこ
とで、制御ゲート電極−浮遊ゲート電極間および浮遊ゲ
ート電極−半導体基板間の電気容量結合比を変更し、制
御ゲート電極に印加した電圧がトンネル絶縁膜へ電界を
加え易くすることで、メモリセルの高集積化と素子の低
電圧動作実現を可能にできる。
(Operation) In the present invention, 1) the control gate electrode-floating gate can be formed by using the element isolation of the trench structure formed in the semiconductor substrate as the element isolation method and reducing the area of the tunnel region of the memory cell. By changing the capacitance coupling ratio between the electrodes and between the floating gate electrode and the semiconductor substrate, the voltage applied to the control gate electrode makes it easier to apply an electric field to the tunnel insulating film, thereby increasing the memory cell integration and lowering the device voltage. Operation can be realized.

【0018】本発明を用いることで向上する特性向上と
しては、1)素子分離法として半導体基板に形成した溝
構造の素子分離を用い、メモリセルの高集積化を実現す
ると共に、2)メモリセルのチャネル長を変更すること
なくトンネル絶縁膜で規定されるトンネル領域の面積を
低減することで、メモリセルの浮遊ゲート電極と半導体
基板間の容量結合を低減し、その結果、制御ゲート電極
−浮遊ゲート電極間および浮遊ゲート電極−半導体基板
間の電気容量結合比を変更し、制御ゲート電極に印加し
た電圧がトンネル絶縁膜へ電界を加え易くしたことで素
子の低電圧動作を実現し、3)さらに、浮遊ゲート電極
と制御ゲート電極の対向面積を増大させ、素子の低電圧
動作を実現する。
According to the present invention, the characteristics can be improved by 1) using a device isolation of a trench structure formed in a semiconductor substrate as an element isolation method to realize high integration of a memory cell, and 2) realizing a high integration of a memory cell. By reducing the area of the tunnel region defined by the tunnel insulating film without changing the channel length of the memory cell, the capacitive coupling between the floating gate electrode of the memory cell and the semiconductor substrate is reduced. By changing the electric capacitance coupling ratio between the gate electrode and between the floating gate electrode and the semiconductor substrate, the voltage applied to the control gate electrode facilitates the application of an electric field to the tunnel insulating film, thereby realizing low-voltage operation of the device. Further, the opposing area between the floating gate electrode and the control gate electrode is increased, and low-voltage operation of the device is realized.

【0019】[0019]

【実施例】以下、本発明の実施例について図面を用いて
説明する。ここでは本発明の不揮発性半導体記憶装置と
して代表的なフラッシュメモリを取り上げて説明する
が、本発明はEPROM等の他の不揮発性半導体記憶装
置にも適用することができる。本実施例において用いた
メモリセルでは、半導体膜としてシリコン膜、ゲート絶
縁膜としてシリコン酸化膜、絶縁膜としてシリコン酸化
膜、半導体基板としてシリコン基板を用いている。
Embodiments of the present invention will be described below with reference to the drawings. Here, a description will be given taking a typical flash memory as the nonvolatile semiconductor memory device of the present invention, but the present invention can be applied to other nonvolatile semiconductor memory devices such as an EPROM. In the memory cell used in this embodiment, a silicon film is used as a semiconductor film, a silicon oxide film is used as a gate insulating film, a silicon oxide film is used as an insulating film, and a silicon substrate is used as a semiconductor substrate.

【0020】図1(a)〜(c)及び図2(d),
(e)は本発明の第1の実施例で説明に用いるメモリセ
ル形成工程および構造を示した模式図である。図3は本
発明の第2の実施例で説明に用いるメモリセル構造を示
した模式図である。以下、図を用いて順次説明する。 [実施例1]本発明の第1の実施例について図1及び図
2を用いて説明する。
1 (a) to 1 (c) and 2 (d),
(E) is a schematic diagram showing a memory cell forming step and a structure used for explanation in the first embodiment of the present invention. FIG. 3 is a schematic diagram showing a memory cell structure used in the description of the second embodiment of the present invention. Hereinafter, description will be made sequentially with reference to the drawings. Embodiment 1 A first embodiment of the present invention will be described with reference to FIGS.

【0021】シリコン基板40上に、まず第1のゲート
酸化膜41(膜厚150Å)を900℃の熱酸化で形成
した後、第1の浮遊ゲート電極用多結晶シリコン膜42
(膜厚1500Å)、シリコン酸化膜43(膜厚100
Å)、およびシリコン窒化膜44(膜厚1500Å)を
CVD法を用い順次形成する。その後、リソグラフィー
とシリコン窒化膜・シリコン酸化膜・シリコン膜のドラ
イエッチング技術により、メモリセルのチャネル領域に
相当する部分以外の領域の前記第1の浮遊ゲート電極用
多結晶シリコン膜42、第1の半シリコン酸化膜43、
および第1のシリコン窒化膜44を除去する。その後、
第1の浮遊ゲート電極用多結晶シリコン膜42、第1の
シリコン酸化膜43、および第1のシリコン窒化膜44
をマスクにしてN型不純物(例えば砒素)をイオン注入
(イオン注入条件は例えばエネルギー30keV、注入
量3×1015cm-2)し、ソース/ドレイン拡散層45
を形成する(図1(a))。
First, a first gate oxide film 41 (thickness 150 °) is formed on a silicon substrate 40 by thermal oxidation at 900 ° C., and then a first polysilicon film 42 for a floating gate electrode is formed.
(Film thickness 1500 °), silicon oxide film 43 (film thickness 100
Å) and a silicon nitride film 44 (thickness 1500 Å) are sequentially formed by the CVD method. Thereafter, the first polysilicon film 42 for the first floating gate electrode in the region other than the portion corresponding to the channel region of the memory cell is formed by lithography and a dry etching technique of a silicon nitride film, a silicon oxide film, and a silicon film. Half silicon oxide film 43,
Then, the first silicon nitride film 44 is removed. afterwards,
First floating gate electrode polycrystalline silicon film 42, first silicon oxide film 43, and first silicon nitride film 44
Is used as a mask to ion-implant an N-type impurity (for example, arsenic) (ion implantation conditions are, for example, energy 30 keV, implantation amount 3 × 10 15 cm −2 ), and the source / drain diffusion layer 45 is implanted.
Is formed (FIG. 1A).

【0022】この後、第1の浮遊ゲート電極用多結晶シ
リコン膜42、第1のシリコン酸化膜43、および第1
のシリコン窒化膜44をマスクにして、メモリセルのチ
ャネル領域に相当する部分以外の領域の前記第1のゲー
ト酸化膜41を希フッ酸を用いてエッチング除去する。
このゲート酸化膜41を除去した領域には、第1のトン
ネル酸化膜46を形成し(同時に第1の浮遊ゲート電極
用多結晶シリコン膜42の側部にも酸化膜が形成され
る)、その表面に第2の浮遊ゲート電極用多結晶シリコ
ン膜47(膜厚は例えば1000Å)をCVD法で堆積
し、このシリコン膜47をエッチバックすることで、前
記第1の浮遊ゲート電極の側壁に前記第2の浮遊ゲート
電極47を形成し、続けてシリコン酸化膜46もシリコ
ン酸化膜のドライエッチングで露出部分のシリコン酸化
膜46を除去する(図1(b))。続いて、例えば90
0℃の熱酸化を行いシリコン膜47の表面に、例えば膜
厚200Åのシリコン酸化膜48を形成する。
Thereafter, the first floating gate electrode polycrystalline silicon film 42, the first silicon oxide film 43, and the first
Using the silicon nitride film 44 as a mask, the first gate oxide film 41 in a region other than the portion corresponding to the channel region of the memory cell is etched away using diluted hydrofluoric acid.
In the region where the gate oxide film 41 is removed, a first tunnel oxide film 46 is formed (at the same time, an oxide film is also formed on the side of the first floating gate electrode polycrystalline silicon film 42). A second polycrystalline silicon film 47 for the floating gate electrode (having a thickness of, for example, 1000 堆積) is deposited on the surface by a CVD method, and the silicon film 47 is etched back, so that the side wall of the first floating gate electrode is formed. A second floating gate electrode 47 is formed, and then the exposed portion of the silicon oxide film 46 is removed by dry etching of the silicon oxide film 46 (FIG. 1B). Then, for example, 90
By performing thermal oxidation at 0 ° C., a silicon oxide film 48 having a thickness of, for example, 200 ° is formed on the surface of the silicon film 47.

【0023】さらに、前記第1,第2の浮遊ゲート電極
をマスクにしてシリコン基板40の露出部分にシリコン
膜のドライエッチングを施し、シリコン基板40露出部
分に溝(溝深さは例えば1μm、溝幅は例えば0.25
μm)を形成する。その後、例えば900℃の熱酸化を
行い、シリコン基板40の溝側壁にシリコン酸化膜49
(膜厚は例えば150Å)を形成する(図1(c))。
Further, the exposed portion of the silicon substrate 40 is subjected to dry etching of the silicon film using the first and second floating gate electrodes as a mask, and a groove is formed in the exposed portion of the silicon substrate 40 (the groove depth is 1 μm, for example). The width is for example 0.25
μm). Thereafter, thermal oxidation at, for example, 900 ° C. is performed, and a silicon oxide film 49 is formed on the groove side wall of the silicon substrate 40.
(The thickness is, for example, 150 °) (FIG. 1C).

【0024】その後、膜厚5000Åのシリコン酸化膜
50をCVD法で堆積し、シリコン基板表面の溝を埋め
込んだ後、シリコン酸化膜50のエッチングを行い、シ
リコン窒化膜44の表面を露出させる(図2(d))。
続けて、ホットリン酸を用いたシリコン窒化膜44のエ
ッチングを行い、さらにフッ酸を用いて膜厚100Å分
のシリコン酸化膜のエッチングを行い、シリコン酸化膜
43を除去する。
Thereafter, a 5000-nm thick silicon oxide film 50 is deposited by the CVD method to fill the grooves on the silicon substrate surface, and then the silicon oxide film 50 is etched to expose the surface of the silicon nitride film 44 (FIG. 2 (d)).
Subsequently, the silicon nitride film 44 is etched using hot phosphoric acid, and the silicon oxide film having a thickness of 100 ° is further etched using hydrofluoric acid to remove the silicon oxide film 43.

【0025】その後、第3の浮遊ゲート電極用の多結晶
シリコン膜51(膜厚5000Å)をCVD法で堆積し
シリコン基板40表面を平坦化する。なお、前記第1の
浮遊ゲートポリシリコン42と第2の浮遊ゲートポリシ
リコン47は第3の浮遊ゲートポリシリコン51を介し
て電気的に接続する。続けて、第3の浮遊ゲートポリシ
リコン51をフォトリソグラフィとシリコン膜のドライ
エッチングにより、浮遊ゲート電極形状に加工する。続
けて900℃の熱酸化を行い、第3の浮遊ゲートポリシ
リコン51上にシリコン酸化膜52(膜厚は例えば18
0Å)を形成し、さらに制御ゲート用ポリシリコン膜5
3をCVD法で堆積し、その後フォトリソグラフィドラ
イエッチング技術を用い、制御ゲート電極53を加工
し、フラッシュメモリセルを形成する(図2(e))。
最後に、これらのパターンを覆うように絶縁膜をシリコ
ン基板40の全面に形成し、メモリセルの各電極へのコ
ンタクトホールおよび、金属配線を形成する。 [実施例2]本発明の第2の実施例について図1、図2
および図3を用いて説明する。
After that, a polycrystalline silicon film 51 (thickness 5000 °) for the third floating gate electrode is deposited by the CVD method, and the surface of the silicon substrate 40 is flattened. The first floating gate polysilicon 42 and the second floating gate polysilicon 47 are electrically connected via a third floating gate polysilicon 51. Subsequently, the third floating gate polysilicon 51 is processed into a floating gate electrode shape by photolithography and dry etching of the silicon film. Subsequently, thermal oxidation at 900 ° C. is performed to form a silicon oxide film 52 (having a film thickness of, for example, 18) on the third floating gate polysilicon 51.
0Å), and a polysilicon film 5 for a control gate is further formed.
3 is deposited by a CVD method, and thereafter, the control gate electrode 53 is processed using a photolithography dry etching technique to form a flash memory cell (FIG. 2E).
Finally, an insulating film is formed on the entire surface of the silicon substrate 40 so as to cover these patterns, and a contact hole to each electrode of the memory cell and a metal wiring are formed. [Embodiment 2] FIGS. 1 and 2 show a second embodiment of the present invention.
This will be described with reference to FIG.

【0026】シリコン基板40上に、まず第1のゲート
酸化膜41(膜厚150Å)を900℃の熱酸化で形成
した後、第1の浮遊ゲート電極用多結晶シリコン膜42
(膜厚1500Å)、シリコン酸化膜43(膜厚100
Å)、およびシリコン窒化膜44(膜厚1500Å)を
CVD法を用い順次形成する。その後、リソグラフィー
とシリコン窒化膜・シリコン酸化膜・シリコン膜のドラ
イエッチング技術により、メモリセルのチャネル領域に
相当する部分以外の領域の前記第1の浮遊ゲート電極用
多結晶シリコン膜42、第1のシリコン酸化膜43、お
よび第1のシリコン窒化膜44を除去する。その後、第
1の浮遊ゲート電極用多結晶シリコン膜42、第1のシ
リコン酸化膜43、および第1のシリコン窒化膜44を
マスクにしてN型不純物(例えば砒素)をイオン注入
(イオン注入条件は例えばエネルギー30keV、注入
量3×1015cm-2)し、ソース/ドレイン拡散層45
を形成する(図1(a))。
First, a first gate oxide film 41 (thickness 150 °) is formed on a silicon substrate 40 by thermal oxidation at 900 ° C., and then a first polysilicon film 42 for a floating gate electrode is formed.
(Film thickness 1500 °), silicon oxide film 43 (film thickness 100
Å) and a silicon nitride film 44 (thickness 1500 Å) are sequentially formed by the CVD method. Thereafter, the first polysilicon film 42 for the first floating gate electrode in the region other than the portion corresponding to the channel region of the memory cell is formed by lithography and a dry etching technique of a silicon nitride film, a silicon oxide film, and a silicon film. The silicon oxide film 43 and the first silicon nitride film 44 are removed. Then, using the first floating gate electrode polycrystalline silicon film 42, the first silicon oxide film 43, and the first silicon nitride film 44 as a mask, N-type impurities (for example, arsenic) are ion-implanted (ion implantation conditions are as follows). For example, the energy is 30 keV, the injection amount is 3 × 10 15 cm −2 ), and the source / drain diffusion layer 45 is formed.
Is formed (FIG. 1A).

【0027】この後、第1の浮遊ゲート電極用多結晶シ
リコン膜42、第1のシリコン酸化膜43、および第1
のシリコン窒化膜44をマスクにして、メモリセルのチ
ャネル領域に相当する部分以外の領域の前記第1のゲー
ト酸化膜41を希フッ酸を用いてエッチング除去する。
このゲート酸化膜41を除去した領域には、第1のトン
ネル酸化膜46を形成し(同時に第1の浮遊ゲート電極
用多結晶シリコン膜42の側部にも酸化膜が形成され
る)、その表面に第2の浮遊ゲート電極用多結晶シリコ
ン膜47(膜厚は例えば1000Å)をCVD法で堆積
し、このシリコン膜47をエッチバックすることで、前
記第1の浮遊ゲート電極の側壁に前記第2の浮遊ゲート
電極47を形成し、続けてシリコン酸化膜46もシリコ
ン酸化膜のドライエッチングで露出部分のシリコン酸化
膜46を除去する(図1(b))。続いて、例えば90
0℃の熱酸化を行いシリコン膜47の表面に、例えば膜
厚200Åのシリコン酸化膜48を形成する。
Thereafter, the first polycrystalline silicon film 42 for floating gate electrode, the first silicon oxide film 43, and the first
Using the silicon nitride film 44 as a mask, the first gate oxide film 41 in a region other than the portion corresponding to the channel region of the memory cell is etched away using diluted hydrofluoric acid.
In the region where the gate oxide film 41 is removed, a first tunnel oxide film 46 is formed (at the same time, an oxide film is also formed on the side of the first floating gate electrode polycrystalline silicon film 42). A second polycrystalline silicon film 47 for the floating gate electrode (having a thickness of, for example, 1000 堆積) is deposited on the surface by a CVD method, and the silicon film 47 is etched back, so that the side wall of the first floating gate electrode is formed. A second floating gate electrode 47 is formed, and then the exposed portion of the silicon oxide film 46 is removed by dry etching of the silicon oxide film 46 (FIG. 1B). Then, for example, 90
By performing thermal oxidation at 0 ° C., a silicon oxide film 48 having a thickness of, for example, 200 ° is formed on the surface of the silicon film 47.

【0028】さらに、前記第1,第2の浮遊ゲート電極
をマスクにしてシリコン基板40の露出部分にシリコン
膜のドライエッチングを施し、シリコン基板40露出部
分に溝(溝深さは例えば1μm、溝幅は例えば0.25
μm)を形成する。その後、例えば900℃の熱酸化を
行い、シリコン基板40の溝側壁にシリコン酸化膜49
(膜厚は例えば150Å)を形成する(図1(c))。
Further, the exposed portion of the silicon substrate 40 is dry-etched by using the first and second floating gate electrodes as a mask, and a groove (groove depth is 1 μm, The width is for example 0.25
μm). Thereafter, thermal oxidation at, for example, 900 ° C. is performed, and a silicon oxide film 49 is formed on the groove side wall of the silicon substrate 40.
(The thickness is, for example, 150 °) (FIG. 1C).

【0029】その後、膜厚5000Åのシリコン酸化膜
50をCVD法で堆積し、シリコン基板表面の溝を埋め
込んだ後、シリコン酸化膜50のエッチングを行い、シ
リコン窒化膜44の表面を露出させる(図2(d))。
続けて、ホットリン酸を用いたシリコン窒化膜44のエ
ッチングを行い、さらにフッ酸を用いて膜厚100Å分
のシリコン酸化膜のエッチングを行い、シリコン酸化膜
43を除去する。その後、第3の浮遊ゲート電極用の多
結晶シリコン膜61(膜厚1000Å)をCVD法で堆
積する。この結果、シリコン膜61表面には下地に依存
して凹状の窪みが形成される。このようにシリコン膜6
1表面に凹状の窪みが形成されるのは前述した実施例1
と比べシリコン膜61の膜厚を薄くしたからである。表
面に凹部を形成する場合のシリコン膜61の膜厚は、下
地の形状、特に図3に示す第2の浮遊ゲート電極47間
の幅t等を考慮して適宜設定される。なお、前記第1の
浮遊ゲートポリシリコン42と第2の浮遊ゲートポリシ
リコン47は第3の浮遊ゲートポリシリコン61を介し
て電気的に接続する。続けて、第3の浮遊ゲートポリシ
リコン61をフォトリソグラフィとシリコン膜のドライ
エッチングにより、浮遊ゲート電極形状に加工する。続
けて900℃の熱酸化を行い、第3の浮遊ゲートポリシ
リコン61上にシリコン酸化膜62(膜厚は例えば18
0Å)を形成し、さらに制御ゲート用ポリシリコン膜6
3をCVD法で堆積し、その後フォトリソグラフィとド
ライエッチング技術を用い、制御ゲート電極63を加工
し、フラッシュメモリセルを形成する(図3)。最後
に、これらのパターンを覆うように絶縁膜をシリコン基
板40の全面に形成し、メモリセルの各電極へのコンタ
クトホールおよび、金属配線を形成する。
Thereafter, a 5000-nm thick silicon oxide film 50 is deposited by the CVD method to fill the grooves on the silicon substrate surface, and then the silicon oxide film 50 is etched to expose the surface of the silicon nitride film 44 (FIG. 2 (d)).
Subsequently, the silicon nitride film 44 is etched using hot phosphoric acid, and the silicon oxide film having a thickness of 100 ° is further etched using hydrofluoric acid to remove the silicon oxide film 43. Thereafter, a polycrystalline silicon film 61 (thickness: 1000 °) for the third floating gate electrode is deposited by the CVD method. As a result, a concave depression is formed on the surface of the silicon film 61 depending on the base. Thus, the silicon film 6
The reason why a concave depression is formed on one surface is as described in the first embodiment.
This is because the film thickness of the silicon film 61 is made smaller than that of the silicon film 61. The thickness of the silicon film 61 when the concave portion is formed on the surface is appropriately set in consideration of the shape of the base, particularly the width t between the second floating gate electrodes 47 shown in FIG. The first floating gate polysilicon 42 and the second floating gate polysilicon 47 are electrically connected via a third floating gate polysilicon 61. Subsequently, the third floating gate polysilicon 61 is processed into a floating gate electrode shape by photolithography and dry etching of the silicon film. Subsequently, thermal oxidation at 900 ° C. is performed to form a silicon oxide film 62 (having a film thickness of, for example, 18) on the third floating gate polysilicon 61.
0 °), and furthermore, a polysilicon film 6 for a control gate.
Then, the control gate electrode 63 is processed by photolithography and dry etching techniques to form a flash memory cell (FIG. 3). Finally, an insulating film is formed on the entire surface of the silicon substrate 40 so as to cover these patterns, and a contact hole to each electrode of the memory cell and a metal wiring are formed.

【0030】[0030]

【発明の効果】本発明の効果は、不揮発性半導体メモリ
の高集積化と素子の低電圧動作実現を可能にする点であ
る。
An advantage of the present invention is that high integration of a nonvolatile semiconductor memory and realization of low-voltage operation of an element can be realized.

【0031】すなわち、本発明を用いれば、 1)素子分離法として半導体基板に形成した溝構造の素
子分離を用いるので、メモリセル専有面積の微細化が可
能である。また、メモリセルのトンネル領域の面積を低
減する事で、制御ゲート電極−浮遊ゲート電極間および
浮遊ゲート電極−半導体基板間の電気容量結合比を変更
し、制御ゲート電極−浮遊ゲート電極の対向面積を増大
させることなく、すなわちメモリセルの専有面積を増大
させることなく、制御ゲート電極に印加した電圧がトン
ネル絶縁膜へ電界を加え易くし、 2)その結果、素子動作上制御ゲート電極に印加すべき
電圧の低電圧化が可能になる。さらに第3の浮遊ゲート
電極表面に凹状の形状を形成することで、さらにトンネ
ル膜へ電界を加えやすい構造にし、その結果、制御ゲー
ト電極へ印加する電圧を低減し、フラッシュメモリセル
等の不揮発性半導体メモリの電源電圧低電圧化の実現を
可能にする。
That is, according to the present invention, 1) since the element isolation having the groove structure formed in the semiconductor substrate is used as the element isolation method, the area occupied by the memory cell can be reduced. In addition, by reducing the area of the tunnel region of the memory cell, the capacitance coupling ratio between the control gate electrode and the floating gate electrode and between the floating gate electrode and the semiconductor substrate is changed, and the opposing area of the control gate electrode and the floating gate electrode is changed. Voltage, that is, without increasing the occupied area of the memory cell, the voltage applied to the control gate electrode makes it easier to apply an electric field to the tunnel insulating film. 2) As a result, the voltage applied to the control gate electrode in the element operation is increased. The required voltage can be reduced. In addition, by forming a concave shape on the surface of the third floating gate electrode, the structure is made easier to apply an electric field to the tunnel film. As a result, the voltage applied to the control gate electrode is reduced, and the nonvolatile memory such as a flash memory cell is used. A power supply voltage of a semiconductor memory can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1の製造工程を示す断面模式図
である。
FIG. 1 is a schematic cross-sectional view illustrating a manufacturing process according to a first embodiment of the present invention.

【図2】本発明の実施例1の製造工程を示す断面模式図
である。
FIG. 2 is a schematic cross-sectional view showing a manufacturing process in Example 1 of the present invention.

【図3】本発明の実施例2の製造工程を示す断面模式図
である。
FIG. 3 is a schematic sectional view illustrating a manufacturing process according to a second embodiment of the present invention.

【図4】従来例の製造工程を示す断面模式図である。FIG. 4 is a schematic sectional view showing a manufacturing process of a conventional example.

【図5】従来例の製造工程を示す断面模式図である。FIG. 5 is a schematic sectional view showing a manufacturing process of a conventional example.

【図6】従来例の製造工程を示す断面模式図である。FIG. 6 is a schematic sectional view showing a manufacturing process of a conventional example.

【符号の説明】[Explanation of symbols]

1,20,40 シリコン基板 2,4,6,8,10,21,23,27,28,2
9,31,33,41,43,46,48,49,5
0,52 シリコン酸化膜 30 多結晶シリコン膜 3,9,22,32,42,47,51 浮遊ゲート・
シリコン膜 11,34,53 制御ゲート・シリコン膜 7,25,45 ソース・ドレイン拡散層 5,24,26,44 シリコン窒化膜
1,20,40 silicon substrate 2,4,6,8,10,21,23,27,28,2
9, 31, 33, 41, 43, 46, 48, 49, 5
0,52 silicon oxide film 30 polycrystalline silicon film 3,9,22,32,42,47,51 floating gate
Silicon film 11, 34, 53 Control gate silicon film 7, 25, 45 Source / drain diffusion layer 5, 24, 26, 44 Silicon nitride film

フロントページの続き (56)参考文献 特開 平7−153857(JP,A) 特開 平8−23081(JP,A) 特開 平10−84052(JP,A) 特開 平11−111865(JP,A) 特開 平3−34578(JP,A) Yosiaki S.Hisamun e 他7名,”A High Capa citive−Coupling Ra tio(HiCR)Cell for 3 V−Only 64 Mbit an d Future Flash Mem ories”,Internation al Electron Device s Meeting,1993,p.19−22 (58)調査した分野(Int.Cl.7,DB名) H01L 21/8247 G11C 16/04 H01L 27/115 H01L 29/788 H01L 29/792 Continuation of the front page (56) References JP-A-7-153857 (JP, A) JP-A-8-23081 (JP, A) JP-A-10-84052 (JP, A) JP-A-11-111865 (JP) , A) JP-A-3-34578 (JP, A) Yoshiaki S .; Hisamune and 7 others, "A High Capacitive-Coupling Ratio (HiCR) Cell for 3 V-Only 64 Mbit and Future Flash Memories, International Communications, 1993, International Communications. 19-22 (58) Field surveyed (Int.Cl. 7 , DB name) H01L 21/8247 G11C 16/04 H01L 27/115 H01L 29/788 H01L 29/792

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 半導体基板にソースおよびドレイン電極
用の不純物拡散層を有し、該不純物拡散層により規定さ
れるチャネル領域上にはゲート絶縁膜を介して第1の浮
遊ゲート電極を有し、前記不純物拡散層上には前記ゲー
ト絶縁膜よりも薄いトンネル絶縁膜を介してその高さが
前記第1の浮遊ゲート電極よりも高い第2の浮遊ゲート
電極を有し、前記第1および第2の浮遊ゲート電極と接
続する第3の浮遊ゲート電極を有し、該第3の浮遊ゲー
ト電極上に絶縁膜を介して制御ゲート電極を有し、前記
第3の浮遊ゲート電極の表面は、前記第1および第2の
浮遊ゲート電極の高低差により生じる凹状の窪みに対応
して凹状に形成されていることを特徴とする不揮発性半
導体記憶装置。
A semiconductor substrate having an impurity diffusion layer for source and drain electrodes, a first floating gate electrode on a channel region defined by the impurity diffusion layer via a gate insulating film; On the impurity diffusion layer, the height is increased via a tunnel insulating film thinner than the gate insulating film.
A third floating gate electrode having a second floating gate electrode higher than the first floating gate electrode, and a third floating gate electrode connected to the first and second floating gate electrodes; Having a control gate electrode thereover via an insulating film ,
The surface of the third floating gate electrode is formed by the first and second floating gate electrodes.
Corresponds to concave depression caused by height difference of floating gate electrode
A non-volatile semiconductor storage device characterized by being formed in a concave shape .
【請求項2】 請求項に記載の不揮発性半導体記憶装
置において、前記第3の浮遊ゲート電極の膜厚を、前記
第1および第2の浮遊ゲート電極の高低差により生じる
凹状の窪みに対応して前記第3の浮遊ゲート電極表面
凹状に形成されるような厚さとしたことを特徴とする不
揮発性半導体記憶装置。
2. A nonvolatile semiconductor memory device according to claim 1, the thickness of the third floating gate electrode, wherein
Generated by the height difference between the first and second floating gate electrodes
Is in response to concave depression said third floating gate electrode surface
A nonvolatile semiconductor memory device having a thickness so as to be formed in a concave shape.
【請求項3】 半導体基板に、ゲート絶縁膜、第1の浮
遊ゲート電極用半導体膜、シリコン酸化膜、シリコン
化膜を順次形成する工程と、 チャネル領域に相当する部分以外の領域の、前記第1の
浮遊ゲート電極用半導体膜、前記シリコン酸化膜、前記
シリコン窒化膜を除去した後、不純物をイオン注入し、
ソース/ドレイン拡散層を形成する工程と、 該チャネル領域に相当する部分以外の領域の前記ゲート
絶縁膜を除去した後、トンネル絶縁膜を形成し、その表
面に第2の浮遊ゲート電極用半導体膜を堆積し、前記半
導体基板上の該第2の浮遊ゲート電極用半導体膜及び該
トンネル絶縁膜を一部除去することで、前記第1の浮遊
ゲート電極用半導体膜、シリコン酸化膜、シリコン窒化
の側壁部に前記第2の浮遊ゲート電極用半導体膜を形
成する工程と、 前記第1の浮遊ゲート電極用半導体膜、シリコン酸化
膜、シリコン窒化膜の側壁部に形成された前記第2の浮
遊ゲート電極用半導体膜をマスクとして前記半導体基板
に溝を形成し、該溝の内壁第1の絶縁膜を形成した
後、該溝を第2の絶縁膜で埋め込む工程と、 前記シリコン窒化膜と前記シリコン酸化膜を除去した
後、前記第1および第2の浮遊ゲート電極用半導体膜と
電気的に接続する第3の浮遊ゲート電極用半導体膜を形
成し、さらに該第3の浮遊ゲート電極用半導体膜上に第
3の絶縁膜を介して制御ゲート電極を設ける工程と、 を有することを特徴とする不揮発性半導体記憶装置の製
造方法。
To 3. A semiconductor substrate, a gate insulating film, a first floating gate electrode for a semiconductor film, a silicon oxide film, a step of sequentially forming a silicon nitride <br/> monolayer, other than the portion corresponding to the channel region The first semiconductor film for a floating gate electrode, the silicon oxide film,
After removing the silicon nitride film, impurities are ion-implanted,
Forming a source / drain diffusion layer; and the gate in a region other than a portion corresponding to the channel region.
After removing the insulating film , a tunnel insulating film is formed, a second semiconductor film for a floating gate electrode is deposited on the surface thereof, and the second semiconductor film for a floating gate electrode and the tunnel insulating film on the semiconductor substrate are formed. Is partially removed, whereby the first floating gate electrode semiconductor film , silicon oxide film, silicon nitride film,
And forming the second floating gate electrode for a semiconductor film on the side wall of the membrane, the first floating gate electrode for a semiconductor film, a silicon oxide
Forming a groove in the semiconductor substrate using the second floating gate electrode semiconductor film formed on the side wall of the film and the silicon nitride film as a mask; forming a first insulating film on the inner wall of the groove; Filling the trench with a second insulating film; and removing the silicon nitride film and the silicon oxide film, and then electrically connecting the first and second floating gate electrode semiconductor films to the third floating gate. Forming a semiconductor film for an electrode, and further providing a control gate electrode on the third semiconductor film for a floating gate via a third insulating film. Production method.
【請求項4】 請求項に記載の不揮発性半導体記憶装
置の製造方法において、前記第3の浮遊ゲート電極用半
導体膜の膜厚を、前記第1および第2の浮遊ゲート電極
用半導体膜の高低差により生じる凹状の窪みに対応して
前記第3の浮遊ゲート電極用半導体膜表面が凹状に形成
されるような厚さとしたことを特徴とする不揮発性半導
体記憶装置の製造方法。
4. A method of manufacturing a nonvolatile semiconductor memory device according to claim 3, the thickness of the third floating gate electrode for a semiconductor film, said first and second floating gate electrodes
Nonvolatile semiconductor memory having a thickness such that the surface of the third semiconductor film for a floating gate electrode is formed in a concave shape corresponding to a concave depression caused by a height difference of the semiconductor film for a nonvolatile memory. Device manufacturing method.
JP31975397A 1997-11-20 1997-11-20 Nonvolatile semiconductor memory device and method of manufacturing the same Expired - Fee Related JP3183396B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP31975397A JP3183396B2 (en) 1997-11-20 1997-11-20 Nonvolatile semiconductor memory device and method of manufacturing the same
KR1019980049874A KR19990045444A (en) 1997-11-20 1998-11-20 Nonvolatile Semiconductor Memory Device and Manufacturing Method Thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31975397A JP3183396B2 (en) 1997-11-20 1997-11-20 Nonvolatile semiconductor memory device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH11154712A JPH11154712A (en) 1999-06-08
JP3183396B2 true JP3183396B2 (en) 2001-07-09

Family

ID=18113797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31975397A Expired - Fee Related JP3183396B2 (en) 1997-11-20 1997-11-20 Nonvolatile semiconductor memory device and method of manufacturing the same

Country Status (2)

Country Link
JP (1) JP3183396B2 (en)
KR (1) KR19990045444A (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100353535B1 (en) * 1999-12-30 2002-09-19 주식회사 하이닉스반도체 Flash memory device using trench and method for fabricating the same
US6479351B1 (en) 2000-11-30 2002-11-12 Atmel Corporation Method of fabricating a self-aligned non-volatile memory cell
US6624029B2 (en) 2000-11-30 2003-09-23 Atmel Corporation Method of fabricating a self-aligned non-volatile memory cell
KR100442090B1 (en) * 2002-03-28 2004-07-27 삼성전자주식회사 Non-volatile memory cells having a split gate structure and methods of fabricating the same
KR100861791B1 (en) * 2002-07-10 2008-10-08 매그나칩 반도체 유한회사 Method for forming the semiconductor device
US6831325B2 (en) 2002-12-20 2004-12-14 Atmel Corporation Multi-level memory cell with lateral floating spacers
KR100943482B1 (en) * 2002-12-30 2010-02-22 동부일렉트로닉스 주식회사 Method for fabricating semiconductor device having flash memory cell
US6919242B2 (en) 2003-04-25 2005-07-19 Atmel Corporation Mirror image memory cell transistor pairs featuring poly floating spacers
US6888192B2 (en) 2003-04-25 2005-05-03 Atmel Corporation Mirror image non-volatile memory cell transistor pairs with single poly layer
KR100546407B1 (en) * 2004-04-30 2006-01-26 삼성전자주식회사 Manufacturing method of EEPROM cell
US7098106B2 (en) 2004-07-01 2006-08-29 Atmel Corporation Method of making mirror image memory cell transistor pairs featuring poly floating spacers
KR100585172B1 (en) * 2005-01-12 2006-06-02 삼성전자주식회사 Transistor having gate dielectric layer of partial thickness difference and manufacturing method therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Yosiaki S.Hisamune 他7名,"A High Capacitive−Coupling Ratio(HiCR)Cell for 3 V−Only 64 Mbit and Future Flash Memories",International Electron Devices Meeting,1993,p.19−22

Also Published As

Publication number Publication date
KR19990045444A (en) 1999-06-25
JPH11154712A (en) 1999-06-08

Similar Documents

Publication Publication Date Title
JP2921653B2 (en) Trench memory structure and method of manufacturing the same
US6888194B2 (en) Nonvolatile semiconductor memory device, manufacturing method thereof, and operating method thereof
JP3973819B2 (en) Semiconductor memory device and manufacturing method thereof
US7432153B2 (en) Direct tunneling semiconductor memory device and fabrication process thereof
US20020190305A1 (en) Nonvolatile memories with floating gate spacers, and methods of fabrication
WO2002058136A1 (en) Nonvolatile semiconductor memory device and its manufacturing method
JP3397903B2 (en) Manufacturing method of nonvolatile semiconductor memory device
JP3113240B2 (en) Nonvolatile semiconductor memory device and method of manufacturing the same
JP3183396B2 (en) Nonvolatile semiconductor memory device and method of manufacturing the same
US20040166641A1 (en) Method of manufacturing high coupling ratio flash memory having sidewall spacer floating gate electrode
JP3093096B2 (en) Manufacturing method of nonvolatile memory
JP2000150676A (en) Non-volatile semiconductor memory and its manufacture
JPH09321255A (en) Manufacturing nonvolatile semiconductor memory device
JPH10189917A (en) Nonvolatile semiconductor storage device and its manufacture
JPH11186416A (en) Non-volatile semiconductor storage device and its manufacture
JP2980171B2 (en) Manufacturing method of split gate type flash memory cell
JP2870086B2 (en) Manufacturing method of MOS nonvolatile semiconductor memory device
JP2882389B2 (en) Nonvolatile semiconductor memory device and method of manufacturing the same
CN211350659U (en) Unit structure of multiple time programmable memory
JP2005531920A (en) Method for manufacturing NROM memory cell having trench transistor
JPH11307744A (en) Semiconductor device and manufacture thereof
CN111430452A (en) Unit structure of multi-time programmable memory and manufacturing method thereof
KR100725477B1 (en) Semiconductor device and method for manufacturing semiconductor device
JP2000299395A (en) Nonvolatile semiconductor storage device and manufacture thereof
JPS63136559A (en) Semiconductor memory and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees