JP3182639B2 - Ceramic heater and method of manufacturing the same - Google Patents

Ceramic heater and method of manufacturing the same

Info

Publication number
JP3182639B2
JP3182639B2 JP22746595A JP22746595A JP3182639B2 JP 3182639 B2 JP3182639 B2 JP 3182639B2 JP 22746595 A JP22746595 A JP 22746595A JP 22746595 A JP22746595 A JP 22746595A JP 3182639 B2 JP3182639 B2 JP 3182639B2
Authority
JP
Japan
Prior art keywords
ceramic
rhenium
powder
metal
metal resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22746595A
Other languages
Japanese (ja)
Other versions
JPH0952784A (en
Inventor
光秋 三輪
寛隆 早川
康司 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP22746595A priority Critical patent/JP3182639B2/en
Publication of JPH0952784A publication Critical patent/JPH0952784A/en
Application granted granted Critical
Publication of JP3182639B2 publication Critical patent/JP3182639B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/515Other specific metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は自動車用酸素センサ
や暖房用機具等に使用されるレニウム粉末及びその製造
方法並びにそのレニウム粉末を使用したセラミックヒー
タ及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rhenium powder used for an oxygen sensor for automobiles and heating equipment, a method for producing the same, a ceramic heater using the rhenium powder, and a method for producing the same.

【0002】[0002]

【従来の技術】金属粉末と有機バインダが混煉されたペ
ーストを印刷して形成した金属抵抗体をセラミック中に
埋設して備えたセラミックヒータは、従来から自動車用
酸素センサのヒータに使用されている。それらのセラミ
ックヒータに使用される金属粉末としては、耐熱性の点
からタングステン或はモリブデン等の粉末が用いられる
が、これらの金属は高い抵抗温度係数を有するため、こ
れらの金属で作られている抵抗体は常温における抵抗値
が、使用温度での抵抗値よりもかなり低い抵抗値であ
り、ヒータに通電を開始した直後にはヒータに流れる電
流値が大きく、電流を供給する電源として大きなものを
用いなければならない。一方、ヒータに用いられる金属
粉末にレニウム粉末を混合する技術が特開平5−315
055に開示されている。この技術によればレニウム粉
末の混合率を高めることでヒータの抵抗温度係数を下げ
ることが出来るので、ヒータに通電を開始した直後の電
流を低減出来る。
2. Description of the Related Art A ceramic heater provided with a metal resistor formed by printing a paste in which a metal powder and an organic binder are mixed and embedded in a ceramic has been used as a heater of an oxygen sensor for automobiles. I have. As metal powders used for these ceramic heaters, powders such as tungsten or molybdenum are used from the viewpoint of heat resistance, but since these metals have a high temperature coefficient of resistance, they are made of these metals. The resistance value of the resistor at room temperature is much lower than the resistance value at the operating temperature, and the current flowing through the heater is large immediately after the heater is energized. Must be used. On the other hand, a technique of mixing rhenium powder with metal powder used for a heater is disclosed in Japanese Patent Application Laid-Open No. 5-315.
055. According to this technique, since the resistance temperature coefficient of the heater can be reduced by increasing the mixing ratio of the rhenium powder, the current immediately after the heater is energized can be reduced.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記の方法で
レニウムを混合すると、セラミック表面に形成したメタ
ライズ部分にニッケルメッキを施す工程で、メタライズ
部分以外のセラミック表面にもニッケルメッキが付着す
ることがある。場合によってはニッケルメッキがヒータ
の取り出し電極の正極と負極の間を短絡する形で形成さ
れることにより、ヒータに電流を供給出来ないという不
具合が発生する。そのため、レニウムを混合する場合に
は、メッキ後のセラミック表面に付着した余分なメッキ
を取り除いたり、或は外観検査でセラミック表面にメッ
キが付着していないことを確認する必要が有った。本発
明は、上記の不具合を解決することを目的としたもので
ある。
However, if rhenium is mixed by the above method, nickel plating may adhere to the ceramic surface other than the metallized portion in the step of applying nickel plating to the metallized portion formed on the ceramic surface. is there. In some cases, the nickel plating is formed in such a manner that the positive electrode and the negative electrode of the extraction electrode of the heater are short-circuited, which causes a problem that current cannot be supplied to the heater. Therefore, when mixing rhenium, it was necessary to remove excess plating adhered to the ceramic surface after plating, or to confirm by appearance inspection that plating had not adhered to the ceramic surface. An object of the present invention is to solve the above problems.

【0004】[0004]

【課題を解決するための手段】上記の問題を解決するた
めの第一の発明は金属粉末と有機バインダよりなるペー
ストをセラミックの未焼成体上に印刷して形成した金属
抵抗体パターンをセラミックの未焼成体中に埋設した後
セラミックと同時焼成して形成した金属抵抗体を備えた
セラミックヒータであって、該金属抵抗体は少なくとも
レニウムを含み、該金属抵抗体の周辺のセラミック中に
レニウムが拡散していない事を特徴とするセラミックヒ
ータである。ヒータとしてレニウムを含んだ金属抵抗体
を同時焼成によって製造する従来のセラミックヒータに
おいては、レニウムが僅かながらヒータの基材であるセ
ラミック中に拡散し、その拡散によってセラミック表面
に達したレニウムを核としてメッキが形成される。第一
の発明においては、セラミック中にレニウムが拡散して
いないため、セラミック表面にもレニウムが達すること
はなく、メッキ工程でもメタライズ部分以外のセラミッ
ク表面にメッキが形成されることが無い。
According to a first aspect of the present invention, a metal resistor pattern formed by printing a paste made of a metal powder and an organic binder on an unfired ceramic body is used. A ceramic heater having a metal resistor formed by being buried in an unfired body and simultaneously firing with a ceramic, wherein the metal resistor contains at least rhenium, and rhenium is contained in ceramic around the metal resistor. This is a ceramic heater characterized by not being diffused. In a conventional ceramic heater in which a metal resistor containing rhenium is manufactured as a heater by simultaneous firing, rhenium slightly diffuses into the ceramic, which is the base material of the heater, and the rhenium that reaches the ceramic surface due to the diffusion is used as a core. Plating is formed. In the first invention, since rhenium is not diffused into the ceramic, rhenium does not reach the ceramic surface, and plating is not formed on the ceramic surface other than the metallized portion even in the plating step.

【0005】また、上記の問題を解決するための第二の
発明は少なくとも示差熱分析で150℃から350℃の
範囲において発熱ピークを示さないレニウム粉末を含む
金属粉末と有機バインダを混煉してペーストを製造し、
該ペーストをセラミック未焼成体上に印刷し金属抵抗体
パターンを形成し、該金属抵抗体パターンの上にもう一
つのセラミック未焼成体を積層して該金属抵抗体パター
ンをそれらセラミック未焼成体中に埋設し、該セラミッ
ク未焼成体を焼成してセラミックヒータとすることを特
徴とする請求項1記載のセラミックヒータの製造方法で
ある。示差熱分析で150℃〜350℃において発熱ピ
ークを生じないか、或はそのピークが極めて小さなレニ
ウム粉末をヒータの金属粉末に使用することで、セラミ
ック中にレニウムが拡散せず、メッキ工程でもメタライ
ズ以外のセラミック表面にメッキが形成されていない良
好なセラミック表面のセラミックヒータが製造される。
また、金属抵抗体に含まれるレニウムの濃度が拡散によ
って変化しないので製造時におけるレニウムの混合率が
略金属抵抗体のレニウムの含有率となり、目標の抵抗値
と抵抗温度係数を正確に得られる。
[0005] A second invention for solving the above-mentioned problem is that at least differential thermal analysis is performed at a temperature of 150 ° C to 350 ° C.
Includes rhenium powder that does not show exothermic peaks in the range
Kneading metal powder and organic binder to produce paste,
The paste is printed on an unfired ceramic body to form a metal resistor.
Forming a pattern, and forming another pattern on the metal resistor pattern.
Two ceramic unfired bodies are laminated to form a metal resistor pattern.
Embedded in the ceramic green body, and the ceramic
It is a special feature that the green body is fired to make a ceramic heater.
The method for manufacturing a ceramic heater according to claim 1, wherein
is there. In the differential thermal analysis, no exothermic peak is generated at 150 ° C to 350 ° C, or by using rhenium powder having a very small peak as the metal powder for the heater, rhenium does not diffuse into the ceramic and metallization is performed even in the plating process. A ceramic heater having a good ceramic surface with no plating formed on the other ceramic surface is manufactured.
Further, since the concentration of rhenium contained in the metal resistor does not change due to diffusion, the mixing ratio of rhenium at the time of manufacturing substantially becomes the content of rhenium in the metal resistor, and the target resistance value and resistance temperature coefficient can be accurately obtained.

【0006】 セラミック中にレニウムが拡散する原因は
明確ではないが、従来の方法で製造したレニウム粉末
は、示差熱分析で150℃〜350℃において発熱ピー
クを生じる。一方示差熱分析で150℃〜350℃にお
いて発熱ピークを生じないか、或はそのピークが極めて
小さなレニウム粉末は、セラミックヒータの金属粉末に
混合してもセラミック中にレニウムが拡散しない。この
ことから従来の方法で製造したレニウム粉末には、示差
熱分析で150℃〜350℃において発熱ピークを生じ
るような何らかの不純物が混入しており、そのことがセ
ラミック中へのレニウムの拡散を生じさせているが、示
差熱分析で150℃〜350℃において発熱ピークを生
じないか、或はそのピークが極めて小さなレニウム粉末
には、その不純物が無いか或は極めて少ない為、セラミ
ック中へのレニウムの拡散が生じないと推測される。
Although the cause of the diffusion of rhenium into the ceramic is not clear, the rhenium powder produced by the conventional method generates an exothermic peak at 150 ° C. to 350 ° C. by differential thermal analysis. On the other hand, rhenium powder which does not generate an exothermic peak at 150 ° C. to 350 ° C. in the differential thermal analysis or has an extremely small peak does not diffuse into the ceramic even when mixed with the metal powder of the ceramic heater. For this reason, the rhenium powder manufactured by the conventional method contains some impurities that cause an exothermic peak at 150 ° C. to 350 ° C. in differential thermal analysis, which causes the diffusion of rhenium into the ceramic. However, in the differential thermal analysis, no exothermic peak is generated at 150 ° C. to 350 ° C. or the peak of the rhenium powder is extremely small. It is presumed that no diffusion occurs.

【0007】従来の方法で製造したレニウム粉末は示差
熱分析で150℃〜350℃において発熱ピークを示す
が、そのレニウム粉末を非酸化雰囲気中にて加熱処理す
ると、示差熱分析で150℃〜350℃において発熱ピ
ークを示さないか、或はそのピークが極めて小さなレニ
ウム粉末が製造される。これは加熱処理によってセラミ
ック中へのレニウムの拡散を生じさせている不純物が取
り除かれたものと推測される。加熱処理による製造では
一度で大量のレニウム粉末を処理することが可能であ
る。処理温度は300℃〜1400℃の範囲が好まし
い。処理温度は300℃以上であれば効率良く示差熱分
析において発熱ピークを示さないレニウム粉末を製造す
ることが出来る。ただし300℃より僅かに低いとして
も効果が無い訳ではない。また上限は1400℃を越え
ないことが好ましいが、その理由は1400℃を越える
温度ではレニウム粉末が粗大化してしまう為で、その後
の粉末の混合などにおけるレニウム粉末の分散に影響が
生じるのを防止する為である。従って、示差熱分析での
特性を改善するには1400℃以上の温度でも問題な
く、1400℃を僅かに越えるからといって本発明の主
旨から外れない。しかし、製造効率及びエネルギー効率
の点から800℃〜1100℃の範囲で加熱処理するの
が更に好ましい。また、加熱処理の雰囲気としては、特
に上記に限定したものでは無く、非酸化雰囲気であれ
ば、真空であっても、希ガス雰囲気であっても良い。
The rhenium powder produced by the conventional method shows an exothermic peak at 150 ° C. to 350 ° C. by differential thermal analysis. However, when the rhenium powder is subjected to heat treatment in a non-oxidizing atmosphere, it becomes 150 ° C. to 350 ° C. by differential thermal analysis. A rhenium powder is produced which does not show an exothermic peak at ° C. or has a very small peak. This is presumed to be due to the fact that impurities causing rhenium diffusion into the ceramic were removed by the heat treatment. In production by heat treatment, it is possible to treat a large amount of rhenium powder at one time. The processing temperature is preferably in the range of 300C to 1400C. When the treatment temperature is 300 ° C. or higher, a rhenium powder that does not show an exothermic peak in differential thermal analysis can be efficiently produced. However, even if it is slightly lower than 300 ° C., this does not mean that there is no effect. The upper limit is preferably not higher than 1400 ° C., because the temperature exceeding 1400 ° C. causes coarsening of the rhenium powder, so that it does not affect the dispersion of the rhenium powder in the subsequent mixing of the powder. To do that. Therefore, to improve the characteristics in the differential thermal analysis, there is no problem even at a temperature of 1400 ° C. or more, and even if the temperature slightly exceeds 1400 ° C., it does not depart from the gist of the present invention. However, it is more preferable to perform the heat treatment in the range of 800 ° C. to 1100 ° C. in terms of manufacturing efficiency and energy efficiency. The atmosphere for the heat treatment is not particularly limited to the above, and may be a vacuum or a rare gas atmosphere as long as it is a non-oxidizing atmosphere.

【0008】従来の方法で製造したレニウム粉末は示差
熱分析で150℃〜350℃において発熱ピークを示す
が、そのレニウム粉末を有機溶媒にて洗浄処理すること
によって、示差熱分析で150℃〜350℃において発
熱ピークを示さないか、或はそのピークが極めて小さな
レニウム粉末が製造される。これは洗浄処理によってセ
ラミック中へのレニウムの拡散を生じさせている不純物
が取り除かれたものと推測される。有機溶媒でレニウム
粉末を洗浄する方法では特に非酸化雰囲気の加熱処理装
置のない場合でもレニウム粉末を処理することが可能で
ある。使用する有機溶剤はアセトンや、トリクレンなど
一般的な有機溶剤を用いることが出来る。洗浄の温度は
常温で良く、洗浄時間については長い程効果は高いが、
特に臨界的な意義を有する範囲は存在しない。ただ、静
止した有機溶剤中に侵漬しただけでは洗浄の効果は無
く、少なくとも数時間程度撹袢する、或は有機溶剤の流
れの中に数時間程度侵漬することが必要である。
The rhenium powder produced by the conventional method shows an exothermic peak at 150 ° C. to 350 ° C. by differential thermal analysis. However, by washing the rhenium powder with an organic solvent, 150 ° C. to 350 ° C. by differential thermal analysis is obtained. A rhenium powder is produced which does not show an exothermic peak at ° C. or has a very small peak. This is presumed to be due to removal of impurities causing rhenium diffusion into the ceramic by the cleaning treatment. In the method of cleaning rhenium powder with an organic solvent, the rhenium powder can be treated even without a heat treatment apparatus in a non-oxidizing atmosphere. As the organic solvent to be used, a general organic solvent such as acetone and trichlene can be used. The temperature of washing may be room temperature, and the longer the washing time, the higher the effect,
There is no particularly critical range. However, simply immersing in a stationary organic solvent has no cleaning effect, and it is necessary to stir for at least several hours or to immerse in a flow of the organic solvent for several hours.

【0009】また、上記の問題を解決するための第三の
発明は、少なくともレニウム粉末を含む金属粉末と有機
バインダを混煉してペーストを製造し、該ペーストをセ
ラミック未焼成体上に印刷し金属抵抗体パターンを形成
し、該金属抵抗体パターンの上にもう一つのセラミック
未焼成体を積層して該金属抵抗体パターンをそれらセラ
ミック未焼成体中に埋設し、該セラミック未焼成体を2
00℃以上240℃以下の温度にて樹脂抜きし、樹脂抜
き後に1400℃以上の温度で焼結する事を特徴とする
第一の発明のセラミックヒータの製造方法である。セラ
ミックの焼成工程である樹脂抜き工程において、その樹
脂抜き工程における最高温度を240℃以下にすること
で、従来の方法で製造されたレニウム粉末を用いても、
レニウムがセラミック中に拡散することが無く、メッキ
工程で取り出し電極以外のセラミック表面にメッキが形
成されることが無い、良好なセラミック表面のセラミッ
クヒータが製造される。また、金属抵抗体に含まれるレ
ニウムの濃度が拡散によって変化しないので製造時にお
けるレニウムの混合率がほぼ金属抵抗体のレニウムの含
有率となるため、目標の抵抗値と抵抗温度係数を正確に
得られる。これは、樹脂抜き工程における最高温度を2
40℃以下にすることで、従来の方法で製造されたレニ
ウム粉末中の不純物がレニウムを拡散させる作用を抑制
することが出来るためと推測される。なお、本焼成後に
おける焼結強度を確保する為に樹脂抜き工程における最
高温度は200℃以上にする必要がある。
Further, a third solution for solving the above-mentioned problem .
The present invention blends at least a metal powder containing rhenium powder and an organic binder to produce a paste, prints the paste on a ceramic green body to form a metal resistor pattern, and forms a metal resistor pattern on the paste. Another ceramic unsintered body is laminated, and the metal resistor pattern is buried in the ceramic unsintered body.
A method for manufacturing a ceramic heater according to the first invention, characterized in that the resin is removed at a temperature of from 00 ° C to 240 ° C, and then sintered at a temperature of 1400 ° C or more after the resin is removed. In the resin removing step, which is a firing step of the ceramic, by setting the maximum temperature in the resin removing step to 240 ° C. or less, even if rhenium powder manufactured by a conventional method is used,
A ceramic heater having a good ceramic surface is manufactured, in which rhenium does not diffuse into the ceramic and no plating is formed on the ceramic surface other than the extraction electrode in the plating step. In addition, since the concentration of rhenium contained in the metal resistor does not change due to diffusion, the mixing ratio of rhenium during manufacturing is almost the same as the rhenium content of the metal resistor, so that the target resistance value and the temperature coefficient of resistance can be accurately obtained. Can be This means that the maximum temperature in the resin removal process is 2
It is presumed that the effect of diffusing rhenium by impurities in the rhenium powder manufactured by the conventional method can be suppressed by setting the temperature to 40 ° C. or lower. Note that the maximum temperature in the resin removing step needs to be 200 ° C. or more in order to secure the sintering strength after the main firing.

【0010】[0010]

【発明の実施の形態】以下に、本発明の実施の形態を示
す。まず、レニウム粉末及びその製造方法について説明
する。本発明の第1の実施の形態においては、従来の精
製方法によって製造されたレニウム粉末を、水素と窒素
の比が3:1である雰囲気中にて900℃で2時間加熱
処理する。加熱処理炉はバッチ式炉で、その炉内にレニ
ウム粉末を幾つかに小分けして空間的に均等に分散する
ように配置する。炉を密封した状態で窒素ガスを注入
し、炉内の酸素濃度が0.1%以下になるまで窒素ガス
置換を行う。その後、窒素ガス及び、窒素ガスと水素ガ
スを1対3の割合で混合したガスを2対3の割合でそれ
ぞれ注入し、更に炉内の圧力は200mmHg程度に保
たれるように排気ポンプを作動させた状態で加熱処理を
行う。まず、常温から900℃までを1時間当たり10
0℃の速さで昇温し、900℃に達した後2時間維持
し、その後は平均して1時間に約200℃の割合で自然
放冷させる。加熱処理する前のレニウム粉末の示差熱分
析の結果と加熱処理した後のレニウム粉末の示差熱分析
における結果をそれぞれ図1と図2にを示す。図1と図
2を比較すると加熱処理していないものは150℃〜3
50℃において発熱ピークを示すが、加熱処理したもの
は150℃〜350℃において発熱ピークを示さない。
示差熱分析は標準試料としてアルミナを使用し、測定試
料であるレニウム粉末80mgを白金性の測定皿に載
せ、空気中にて毎秒100ccの空気を交換しながら測
定試料温度を室温から800℃まで毎分10℃の速さで
昇温しながら測定した。
Embodiments of the present invention will be described below. First, a rhenium powder and a method for producing the same will be described. In the first embodiment of the present invention, rhenium powder produced by a conventional purification method is subjected to heat treatment at 900 ° C. for 2 hours in an atmosphere having a hydrogen to nitrogen ratio of 3: 1. The heat treatment furnace is a batch type furnace, in which rhenium powder is divided into several parts and arranged so as to be spatially and evenly dispersed. Nitrogen gas is injected while the furnace is sealed, and nitrogen gas replacement is performed until the oxygen concentration in the furnace becomes 0.1% or less. Thereafter, nitrogen gas and a mixture of nitrogen gas and hydrogen gas at a ratio of 1: 3 are injected at a ratio of 2: 3, and an exhaust pump is operated so that the pressure in the furnace is maintained at about 200 mmHg. Heat treatment is performed in this state. First, from normal temperature to 900 ° C for 10 hours
The temperature is raised at a rate of 0 ° C., maintained for 2 hours after reaching 900 ° C., and thereafter allowed to cool naturally at a rate of about 200 ° C. per hour on average. FIGS. 1 and 2 show the results of the differential thermal analysis of the rhenium powder before the heat treatment and the results of the differential thermal analysis of the rhenium powder after the heat treatment, respectively. Comparing FIG. 1 and FIG.
An exothermic peak is shown at 50 ° C., but the heat-treated one does not show an exothermic peak at 150 ° C. to 350 ° C.
Differential thermal analysis uses alumina as a standard sample, puts 80 mg of rhenium powder as a measurement sample on a platinum measuring dish, and changes the measurement sample temperature from room temperature to 800 ° C. while exchanging 100 cc of air per second in air. The temperature was measured at a rate of 10 ° C. for 10 minutes.

【0011】また、上記の加熱処理の工程は、有機溶剤
による洗浄工程によっても置き換えることが出来る。本
発明の第2の実施の形態においては、従来の精製方法に
よって製造されたレニウム粉末をアセトンの中に投入
し、適当に混合した後、濾過してレニウム粉末とアセト
ンとを分離する。レニウム粉末約300gに対しアセト
ンを約600gの割合で加え、更に玉石を約600g加
えて密封容器に入れ回転機にて約24時間混合した後、
混合した液を濾過してレニウム粉末とアセトンを分離す
る。この工程を3回繰り返して最終的にレニウム粉末を
得る。この処理を施すことにより示差熱分析において1
50℃〜350℃において発熱ピークを示さないレニウ
ム粉末を得ることが出来る。
Further, the above-mentioned heat treatment step can be replaced by a washing step using an organic solvent. In the second embodiment of the present invention, rhenium powder produced by a conventional purification method is put into acetone, mixed appropriately, and then filtered to separate rhenium powder and acetone. About 600 g of acetone is added to about 300 g of rhenium powder, about 600 g of cobblestone is further added, and the mixture is placed in a sealed container and mixed for about 24 hours with a rotating machine.
The mixed solution is filtered to separate rhenium powder and acetone. This step is repeated three times to finally obtain a rhenium powder. By performing this treatment, 1 in differential thermal analysis
A rhenium powder that does not exhibit an exothermic peak at 50 ° C to 350 ° C can be obtained.

【0012】次に、上記レニウム粉末を用いて製造した
セラミックヒータ及びその製造方法について説明する。
上記いずれかの方法で得られたレニウム粉末とタングス
テン粉末及びアルミナ粉末をそれぞれ23:77:10
の重量割合で混合する。使用するレニウム粉末は平均粒
径約3μm、純度99.5%、タングステン粉末は平均
粒径約1.2μm、純度99.9%、アルミナ粉末は平
均粒径約1.0μm、純度99.9%である。その後、
混合した粉末とトルエン及び玉石をそれぞれ1:2:2
の重量割合で混合し、密封容器に封入し回転機にて24
時間回転させ粉末を良く分散させる。更に有機バインダ
としてエチルセルロース及びブチルカルビドールを前記
粉末100重量部に対しておよそ6重量部及び3重量部
の割合でそれぞれ加え、回転機で約12時間回転させ粉
末と良く混合する。その後、密封容器から混合液を取り
出した後、濾紙によって玉石と混合液を分離し、最後に
ロールミルで混合液を回転させながら残った溶剤を蒸発
させて金属抵抗体を含む印刷ペーストを製造する。レニ
ウム粉末とタングステン粉末及びアルミナ粉末の重量割
合は必要な抵抗値と温度係数が得られるように適当に決
めることが出来る。また回転機での回転時間や有機バイ
ンダの種類及び混合する量も印刷ペーストの粘度や粉末
の分散状態が適当になるように設定することが出来る。
Next, a ceramic heater manufactured by using the above rhenium powder and a method of manufacturing the same will be described.
The rhenium powder, the tungsten powder and the alumina powder obtained by any of the above methods were respectively 23:77:10
Mix by weight. The rhenium powder used has an average particle diameter of about 3 μm and a purity of 99.5%, the tungsten powder has an average particle diameter of about 1.2 μm and a purity of 99.9%, and the alumina powder has an average particle diameter of about 1.0 μm and a purity of 99.9%. It is. afterwards,
1: 2: 2 mixed powder and toluene and boulder respectively
, Mixed in a sealed container, and mixed with a rotating machine for 24 hours.
Spin for hours to disperse the powder well. Further, ethyl cellulose and butyl carbidol are added as organic binders at a ratio of about 6 parts by weight and 3 parts by weight, respectively, with respect to 100 parts by weight of the powder, and the mixture is rotated with a rotator for about 12 hours and mixed well with the powder. Then, after taking out the mixed solution from the sealed container, the cobblestone and the mixed solution are separated by a filter paper, and finally, the remaining solvent is evaporated while rotating the mixed solution by a roll mill to produce a printing paste containing a metal resistor. The weight ratio of the rhenium powder to the tungsten powder and the alumina powder can be appropriately determined so that the required resistance value and temperature coefficient can be obtained. In addition, the rotation time in the rotating machine, the type of the organic binder, and the amount to be mixed can be set so that the viscosity of the printing paste and the dispersion state of the powder become appropriate.

【0013】以下に図4に基づきセラミックヒータの製
造方法について説明する。セラミックヒータは第1グリ
ーンシート1と第2グリーンシート3及び芯材5をそれ
ぞれ圧着して積層される。最初に、これらセラミックの
未焼成体の製造方法を説明する。平均粒径約1.5μ
m、純度約99.9%のアルミナ粉末、焼結促進材とし
て平均粒径約2μm、純度約98%のシリカ粉末、平均
粒径約2μm、純度約90%のマグネシア粉末、及び平
均粒径約2μm、純度約93%のカルシア粉末を、9
7.2:2.5:0.1:0.1の重量割合で配合し、
ボールミルで20〜60時間湿式混合した後、脱水乾燥
して配合粉末としたものを用いる。この配合粉末に、ポ
リビニルブチラール約8%、DBP約4%、メチルエチ
ルケトン、トルエン約70%を添加し、ボールミルで混
合してスラリー状とし、減圧脱泡後、ドクターブレード
法により、厚さ0.2〜0.4mmの第1グリーンシー
ト1を作成する。同時に、同じ方法で厚さ約0.05m
mの第2グリーンシート3を作成する。一方、同じ配合
粉末に、メチルセルロース約1%、マクセロン(商品
名)約15%、約水10%を添加し混練した後、押出成
形法で円筒状に整形し、所定寸法に切断後、約1200
℃で仮焼して外形約2.3mmの芯材5を作成する。
A method for manufacturing a ceramic heater will be described below with reference to FIG. The ceramic heater is laminated by pressing the first green sheet 1, the second green sheet 3 and the core material 5 respectively. First, a method for producing an unfired ceramic body will be described. Average particle size about 1.5μ
m, alumina powder having a purity of about 99.9%, silica powder having an average particle diameter of about 2 μm and a purity of about 98% as a sintering accelerator, magnesia powder having an average particle diameter of about 2 μm and a purity of about 90%, and an average particle diameter of about 2 μm, about 93% pure calcia powder was added to 9
Blended in a weight ratio of 7.2: 2.5: 0.1: 0.1,
After wet mixing with a ball mill for 20 to 60 hours, a dehydrated and dried compound powder is used. About 8% of polyvinyl butyral, about 4% of DBP, about 70% of methyl ethyl ketone, and about 70% of toluene were added to this compounded powder, mixed by a ball mill to form a slurry, and defoamed under reduced pressure. A first green sheet 1 of about 0.4 mm is prepared. At the same time, about 0.05m thick by the same method
A second green sheet 3 of m is prepared. On the other hand, about 1% of methylcellulose, about 15% of Maxelon (trade name) and about 10% of water were added to the same compounding powder, kneaded, formed into a cylindrical shape by an extrusion molding method, cut into a predetermined size, and cut to a size of about 1,200.
The core material 5 having an outer shape of about 2.3 mm is prepared by calcination at ℃.

【0014】ヒータの印刷パターンを図3に示す。第1
グリーンシート1の一方の面2に厚膜印刷法によって前
記の印刷ペーストを用いて金属抵抗体パターン11を形
成する。次に金属抵抗体パターン11の端部に接続して
リード電極パターン12を印刷する。第1グリーンシー
ト1の他方の面6に取り出し電極パターン14を印刷
し、スルーホール13によって一方の面2のリード電極
パターン12に電気的に接続する。リード電極パターン
12と取り出し電極パターン14に用いる印刷ペースト
は金属抵抗体パターン11に用いた印刷ペーストを用い
ても良いが、電気抵抗率の低い別の導体ペーストを用い
ると更に良い。導体ペーストとしては上記タングステン
粉末と有機バインダを有機溶剤にて混合分散させたもの
を用いることが出来る。第1グリーンシート1の表面2
の上にアセトン等の接着用の溶剤を塗布し第2グリーン
シート3を圧着し積層体とする。更に、この積層体の第
2グリーンシート3の表面4に接着剤としてアルミナペ
ーストを塗布し、芯材5に表面4を接するように積層体
を巻き付け加圧密着する。このアルミナペーストは第1
グリーンシートの材料である上記配合粉末と、ポリビニ
ルブチラール約25%、DBP約8%、ブチルカルビド
ール約30%を混合したものを用いる。
FIG. 3 shows a print pattern of the heater. First
The metal resistor pattern 11 is formed on one surface 2 of the green sheet 1 by using the printing paste by a thick film printing method. Next, the lead electrode pattern 12 is printed by connecting to the end of the metal resistor pattern 11. An extraction electrode pattern 14 is printed on the other surface 6 of the first green sheet 1, and is electrically connected to the lead electrode pattern 12 on the one surface 2 through a through hole 13. The printing paste used for the lead electrode pattern 12 and the lead electrode pattern 14 may be the printing paste used for the metal resistor pattern 11, but it is more preferable to use another conductor paste having a low electric resistivity. As the conductor paste, a mixture obtained by mixing and dispersing the above-mentioned tungsten powder and an organic binder with an organic solvent can be used. Surface 2 of first green sheet 1
Is coated with an adhesive solvent such as acetone, and the second green sheet 3 is pressed to form a laminate. Further, an alumina paste is applied as an adhesive to the surface 4 of the second green sheet 3 of the laminated body, and the laminated body is wound around the core material 5 so that the surface 4 is in contact with the core material 5 and pressed and adhered. This alumina paste is
A mixture of the above-mentioned blended powder, which is a material of the green sheet, about 25% of polyvinyl butyral, about 8% of DBP, and about 30% of butyl carbidol is used.

【0015】上記積層体に対して大気開放の状態で連続
焼成炉にて樹脂抜きを行う。樹脂抜き工程における炉内
温度の変化を図7のAに示す。続いて還元雰囲気の状態
で連続焼成炉にて本焼成を行う。本焼成における炉内温
度の変化を図8に示す。本焼成は窒素と水素の混合雰囲
気中にて行い、水素ガスと窒素ガスを24対27の割合
で注入する。なお、レニウム粉末として加熱処理或は洗
浄を施さないものを用いても、樹脂抜き工程における熱
処理温度を240℃以下とすれば、セラミック中へのレ
ニウムの拡散を抑制する事が出来る。本発明の第3の実
施の形態においては、使用するレニウム粉末は特に限定
せず、樹脂抜き工程における熱処理温度の最高値を20
0℃以上240℃以下に規定して上記積層体を樹脂抜き
する。本焼成後における焼結強度を確保する為に、樹脂
抜き工程における熱処理温度の最高値は200℃以上と
する。樹脂抜き工程における炉内温度の変化を図7のB
に示す。その後、このセラミックヒータの取り出し電極
14に端子をロー付けする下地としてニッケルメッキを
施す。メッキ方法は無電解ニッケルメッキによって行
う。まず焼成したセラミックヒータを塩酸に約1分間侵
漬した後、脱脂液に3分間侵漬し更に塩酸に5分間侵漬
する。活性化液に5分間侵漬し、更に塩酸に5分間侵漬
する。その後ニッケルメッキ液に撹袢しながら32分間
侵漬する工程を2回と35分間侵漬する工程を1回行
う。メッキ後は純水にて10分間洗浄した後、更に水切
り剤にて10分間の侵漬と10分間の洗浄をして水を落
とし、乾燥させる。
The resin is removed from the laminate in a continuous firing furnace in a state of being opened to the atmosphere. FIG. 7A shows a change in the furnace temperature in the resin removing step. Subsequently, main firing is performed in a continuous firing furnace in a reducing atmosphere. FIG. 8 shows changes in the furnace temperature during the main firing. The main firing is performed in a mixed atmosphere of nitrogen and hydrogen, and hydrogen gas and nitrogen gas are injected at a ratio of 24:27. It should be noted that even if a rhenium powder that is not subjected to heat treatment or washing is used, the diffusion of rhenium into the ceramic can be suppressed if the heat treatment temperature in the resin removing step is 240 ° C. or less. In the third embodiment of the present invention, the rhenium powder to be used is not particularly limited, and the maximum value of the heat treatment temperature in the resin removing step is set at 20.
The laminated body is extruded from a resin at a temperature of 0 ° C. or more and 240 ° C. or less. In order to secure the sintering strength after the main firing, the maximum value of the heat treatment temperature in the resin removing step is set to 200 ° C. or more. FIG. 7B shows the change in the furnace temperature in the resin removing step.
Shown in Thereafter, nickel plating is applied as a base for brazing a terminal to the extraction electrode 14 of the ceramic heater. The plating is performed by electroless nickel plating. First, the fired ceramic heater is dipped in hydrochloric acid for about 1 minute, then dipped in a degreasing solution for 3 minutes, and further dipped in hydrochloric acid for 5 minutes. Soak in the activation solution for 5 minutes and then in hydrochloric acid for 5 minutes. Thereafter, the step of immersing in the nickel plating solution for 32 minutes while stirring and the step of immersing for 35 minutes are performed once. After the plating, the plate is washed with pure water for 10 minutes, then immersed in a draining agent for 10 minutes and washed for 10 minutes to drop water and dried.

【0016】[0016]

【実施例】本発明における各種製造条件の製造方法に従
って製造したセラミックヒータと、比較例として従来の
製造方法にしたがって製造したセラミックヒータについ
て外観検査した結果を表1に示す。これから条件1(従
来の製造方法)に比べて条件2〜4(本発明の製造方
法)は外観不良率が大幅に減少する効果が得られた。条
件1及び条件4によって製造したセラミックヒータの断
面のレニウムの濃度分布の模写図をそれぞれ図5、図6
に示す。条件1ではヒータの金属抵抗体11の近傍のセ
ラミック中の比較的広い範囲にわたりレニウムの濃度分
布が確認され、それは金属抵抗体11から離れるに従っ
て徐々にレニウム濃度が減少するという典型的な拡散濃
度分布を示す。条件4ではレニウムの濃度分布はヒータ
の金属抵抗体11の部分に集中しており、条件1のよう
な拡散分布は確認されない。なお、本願の発明の実施の
形態あるいは実施例において記載したセラミックヒータ
の形状は円筒形状であるが、本発明はその外にも直方体
形状或は平板形状など様々な形状のセラミックヒータに
適用することが出来る。
EXAMPLES Table 1 shows the results of appearance inspection of a ceramic heater manufactured according to the manufacturing method under various manufacturing conditions in the present invention and a ceramic heater manufactured according to a conventional manufacturing method as a comparative example. From this, under the conditions 2 to 4 (the manufacturing method of the present invention), compared with the condition 1 (the conventional manufacturing method), the effect of significantly reducing the appearance defect rate was obtained. FIGS. 5 and 6 are schematic views of the rhenium concentration distribution on the cross section of the ceramic heater manufactured under the conditions 1 and 4, respectively.
Shown in In condition 1, the rhenium concentration distribution is confirmed over a relatively wide range in the ceramic near the metal resistor 11 of the heater, which is a typical diffusion concentration distribution in which the rhenium concentration gradually decreases as the distance from the metal resistor 11 increases. Is shown. Under condition 4, the rhenium concentration distribution is concentrated on the portion of the metal resistor 11 of the heater, and the diffusion distribution as in condition 1 is not confirmed. Although the shape of the ceramic heater described in the embodiments or examples of the present invention is cylindrical, the present invention is also applicable to ceramic heaters having various shapes such as a rectangular parallelepiped shape or a flat plate shape. Can be done.

【0017】[0017]

【発明の効果】本発明においては、少なくともレニウム
粉末を含む金属粉末と有機バインダよりなるペーストを
印刷して形成した金属抵抗体をセラミック中に埋設して
備えたセラミックヒータであって、メッキ処理後におい
ても良好なセラミック表面を有するセラミックヒータを
製造出来るという効果を有する。更に、当初予定したレ
ニウムの含有率の金属抵抗体が得られるので、精度の良
い抵抗値と抵抗温度係数の金属抵抗体を製造出来るとい
う効果を有する。
According to the present invention, there is provided a ceramic heater having a metal resistor formed by printing a paste comprising at least a metal powder containing a rhenium powder and an organic binder embedded in a ceramic. Has an effect that a ceramic heater having a good ceramic surface can be manufactured. Furthermore, since a metal resistor having a rhenium content initially planned can be obtained, there is an effect that a metal resistor having a highly accurate resistance value and a resistance temperature coefficient can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の加熱処理していないレニウム粉末の示差
熱分析の結果
FIG. 1 shows the result of differential thermal analysis of a conventional unheated rhenium powder.

【図2】本発明の発明の実施の形態における加熱処理し
たレニウム粉末の示差熱分析の結果
FIG. 2 shows the results of differential thermal analysis of a heat-treated rhenium powder according to an embodiment of the present invention.

【図3】本発明の発明の実施の形態におけるセラミック
ヒータの組立図
FIG. 3 is an assembly view of the ceramic heater according to the embodiment of the present invention.

【図4】本発明の発明の実施の形態におけるヒータの印
刷パターン
FIG. 4 is a printing pattern of a heater according to the embodiment of the present invention.

【図5】表1の条件1のセラミックヒータの断面のレニ
ウムの拡散の状態の模写図
5 is a simulated view of a state of diffusion of rhenium in a cross section of the ceramic heater under condition 1 in Table 1. FIG.

【図6】表1の条件4のセラミックヒータの断面のレニ
ウムの拡散の状態の模写図
FIG. 6 is a schematic view showing a state of rhenium diffusion in a cross section of a ceramic heater under condition 4 in Table 1.

【図7】樹脂抜き工程における炉内温度の変化FIG. 7: Change in furnace temperature during the resin removal process

【図8】本焼成における炉内温度の変化FIG. 8: Change in furnace temperature during main firing

【符号の簡単な説明】[Brief description of reference numerals]

1 第1グリーンシート 3 第2グリーンシート 5 芯材 11 金属抵抗体 13 スルーホール 14 取り出し電極 DESCRIPTION OF SYMBOLS 1 1st green sheet 3 2nd green sheet 5 Core material 11 Metal resistor 13 Through hole 14 Extraction electrode

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C04B 41/88 H05B 3/12 H05B 3/14 H05B 3/18 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C04B 41/88 H05B 3/12 H05B 3/14 H05B 3/18

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】金属粉末と有機バインダよりなるペースト
をセラミックの未焼成体上に印刷して形成した金属抵抗
体パターンをセラミックの未焼成体中に埋設した後セラ
ミックと同時焼成して形成した金属抵抗体を備えたセラ
ミックヒータであって、 該金属抵抗体は少なくともレニウムを含み、 該金属抵抗体の周辺のセラミック中にレニウムが拡散し
ていない事を特徴とするセラミックヒータ。
1. A metal resistor pattern formed by printing a paste composed of a metal powder and an organic binder on a ceramic green body, embedding the metal resistor pattern in the ceramic green body, and then firing the metal simultaneously with the ceramic to form a metal resistor pattern. A ceramic heater provided with a resistor, wherein the metal resistor contains at least rhenium, and rhenium is not diffused into ceramic around the metal resistor.
【請求項2】少なくとも示差熱分析で150℃から352. At least 150 ° C. to 35 ° C. by differential thermal analysis.
0℃の範囲において発熱ピークを示さないレニウム粉末Rhenium powder showing no exothermic peak in the range of 0 ° C
を含む金属粉末と有機バインダを混煉してペーストを製Is mixed with a metal powder containing
造し、該ペーストをセラミック未焼成体上に印刷し金属And printing the paste on an unfired ceramic body
抵抗体パターンを形成し、該金属抵抗体パターンの上にForming a resistor pattern, and forming a resistor pattern on the metal resistor pattern;
もう一つのセラミック未焼成体を積層して該金属抵抗体Another ceramic unfired body is laminated to form the metal resistor
パターンをそれらセラミック未焼成体中に埋設し、該セThe pattern is embedded in the ceramic green body and the
ラミック未焼成体を焼成してセラミックヒータとするこThe ceramic heater is fired by firing the unbaked lamic body.
とを特徴とする請求項1のセラミックヒータの製造方The method of manufacturing a ceramic heater according to claim 1, wherein
法。Law.
【請求項3】少なくともレニウム粉末を含む金属粉末と
有機バインダを混煉してペーストを製造し、該ペースト
をセラミック未焼成体上に印刷し金属抵抗体パターンを
形成し、該金属抵抗体パターンの上にもう一つのセラミ
ック未焼成体を積層して該金属抵抗体パターンをそれら
セラミック未焼成体中に埋設し、該セラミック未焼成体
を200℃以上240℃以下の温度にて樹脂抜きし、樹
脂抜き後に1400℃以上の温度で同時焼成する事を特
徴とする請求項1のセラミックヒータの製造方法。
3. A paste is produced by kneading a metal powder containing at least rhenium powder and an organic binder, and printing the paste on an unfired ceramic body to form a metal resistor pattern. Another ceramic unsintered body is laminated thereon, the metal resistor pattern is buried in the ceramic unsintered body, and the ceramic unsintered body is extruded with a resin at a temperature of 200 to 240 ° C. 2. The method for manufacturing a ceramic heater according to claim 1, wherein co-firing is performed at a temperature of 1400 [deg.] C. or more after the punching.
JP22746595A 1995-08-10 1995-08-10 Ceramic heater and method of manufacturing the same Expired - Lifetime JP3182639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22746595A JP3182639B2 (en) 1995-08-10 1995-08-10 Ceramic heater and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22746595A JP3182639B2 (en) 1995-08-10 1995-08-10 Ceramic heater and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0952784A JPH0952784A (en) 1997-02-25
JP3182639B2 true JP3182639B2 (en) 2001-07-03

Family

ID=16861308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22746595A Expired - Lifetime JP3182639B2 (en) 1995-08-10 1995-08-10 Ceramic heater and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3182639B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2602563B2 (en) * 1989-12-15 1997-04-23 花王株式会社 Liquid oxygen bleach composition
JP2000058237A (en) 1998-06-05 2000-02-25 Ngk Spark Plug Co Ltd Ceramic heater and oxygen sensor using it
JP2001257062A (en) * 2000-03-13 2001-09-21 Ibiden Co Ltd Ceramic heater
CN104185317B (en) * 2014-08-14 2016-09-07 厦门格睿伟业电子科技有限公司 A kind of double-deck bag pressure ceramic heating tube
JP6604884B2 (en) * 2016-03-30 2019-11-13 日本特殊陶業株式会社 Ceramic heater

Also Published As

Publication number Publication date
JPH0952784A (en) 1997-02-25

Similar Documents

Publication Publication Date Title
EP0120243B1 (en) Process for the removal of carbon residues during sintering of ceramics
JP5189705B1 (en) Sensor electrode, manufacturing method thereof, and metal paste for electrode formation
KR101581602B1 (en) Electroconductive particle and metal paste, and electrode
JP3182639B2 (en) Ceramic heater and method of manufacturing the same
JP3561115B2 (en) Conductive paste and multilayer ceramic capacitors
JP2006044980A (en) Aluminum nitride sintered compact
JP3462359B2 (en) Rhenium powder, method for producing the same, ceramic sintered body provided with metal resistor, and method for producing the same
KR940005079B1 (en) Process for producing of ceramic a heating element
JP5931397B2 (en) Noble metal coating and method for producing the same
WO2017146121A1 (en) Gas sensor electrode and method for producing same
WO2000069217A1 (en) Hot plate and conductive paste
JPH07111899B2 (en) Heater element manufacturing method
JP2004071493A (en) Conductive paste and electronic part
JPH11273839A (en) Manufacture of ceramic heater
JPH03214716A (en) Formation of electrode and electronic parts using the same
JPH09198920A (en) Copper conductor paste and circuit board printed with copper conductor paste
JP3151920B2 (en) Manufacturing method of ceramic multilayer substrate
JP3813685B2 (en) Ceramic heater
EP0269063A2 (en) Mullite ceramic multi-layered substrate and process for producing the same
JP2003249332A (en) Hot plate and conductive paste
JPH066038A (en) Manufacturing method of low temperature baking multilayer ceramic board
JPH02129997A (en) Manufacture of multilayer ceramic circuit substrate
JPH0831229A (en) Copper paste
JPH05152726A (en) Repairing method of ceramic wiring board
JPH07105306B2 (en) Method for manufacturing monolithic ceramic capacitor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080427

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090427

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090427

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090427

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term