JP3175383U - Heat tube heat dissipation structure - Google Patents

Heat tube heat dissipation structure Download PDF

Info

Publication number
JP3175383U
JP3175383U JP2012000900U JP2012000900U JP3175383U JP 3175383 U JP3175383 U JP 3175383U JP 2012000900 U JP2012000900 U JP 2012000900U JP 2012000900 U JP2012000900 U JP 2012000900U JP 3175383 U JP3175383 U JP 3175383U
Authority
JP
Japan
Prior art keywords
heat
capillary
heat dissipation
structure according
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012000900U
Other languages
Japanese (ja)
Inventor
俊銘 巫
Original Assignee
奇▲こう▼科技股▲ふん▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奇▲こう▼科技股▲ふん▼有限公司 filed Critical 奇▲こう▼科技股▲ふん▼有限公司
Priority to JP2012000900U priority Critical patent/JP3175383U/en
Application granted granted Critical
Publication of JP3175383U publication Critical patent/JP3175383U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

【課題】良好な熱伝導効率を有し、抗重力能力が良好であり、インタフェースの熱抵抗をより小さくする効果を達成する熱管放熱構造を提供する。
【解決手段】熱管放熱構造は、本体1と、少なくとも1つの第1毛細構造16と、を含み、該本体は、第1内側、第2内側、第3内側、第4内側11〜14及び作動流体を充填する少なくとも1つのチャンバ15を有する。該第1毛細構造は、該チャンバ内に設けられ、且つ第1内側上の第1部分161及び第1部分両側から相対する第3、第4内側に沿って延伸する第2部分162を有し、該第1部分の厚さが第2部分の厚さより大きい。この構造により、良好な熱伝導効率を達成する。
【選択図】図2
A heat pipe heat dissipating structure having good heat conduction efficiency, good anti-gravity capability, and achieving the effect of reducing the thermal resistance of an interface is provided.
A heat pipe heat dissipation structure includes a main body 1 and at least one first capillary structure 16, wherein the main body includes a first inner side, a second inner side, a third inner side, a fourth inner side 11 to 14, and an operation. It has at least one chamber 15 filled with fluid. The first capillary structure has a first portion 161 on the first inner side and a second portion 162 extending along the third and fourth inner sides facing from both sides of the first portion. The thickness of the first part is greater than the thickness of the second part. This structure achieves good heat conduction efficiency.
[Selection] Figure 2

Description

本考案は、熱管放熱構造に関し、特に、良好な熱伝導効率を有し、抗重力能力が良好であり、インタフェースの熱抵抗をより小さくする効果を達成する熱管放熱構造に関する。 The present invention relates to a heat tube heat dissipation structure, and more particularly, to a heat tube heat dissipation structure that has good heat conduction efficiency, good anti-gravity capability, and achieves the effect of reducing the thermal resistance of an interface.

コンピュータ、スマート電子装置及びその他の電気機器設備の微小化、高性能化は、日増しに顕著になり、これは、その内部に着用する熱伝導部材及び放熱部材も同様に微小化、薄型化の方向へ設計し、使用者の要求に合わせる必要があることを表している。   Miniaturization and high performance of computers, smart electronic devices and other electrical equipment are becoming more and more noticeable. This is because heat conduction members and heat radiation members worn inside are similarly miniaturized and thinned. It shows that it is necessary to design in the direction and meet the user's requirements.

熱管は、導熱効率が良好な導熱部材であり、その熱伝導効率は、銅、アルミ等の金属の数倍から数十倍も優れているので、各種熱関連設備において、冷却用部材として用いられている。   A heat tube is a heat conduction member with good heat conduction efficiency, and its heat conduction efficiency is several to several tens of times better than that of metals such as copper and aluminum, so it is used as a cooling member in various heat-related facilities. ing.

熱管は、形状について述べれば、円管形状の熱管、断面積がD形状を呈する熱管、平板熱管等に区分され、主に、電子設備中の熱源の伝導を冷却することに用いられ、被冷却部材への取り付けに便利であり、接触面が比較的大きな面積を獲得できるようにするため、前記開いた熱管が現段階で広く使用されており、また、冷却機構の小型化、省スペース化に伴い、熱管を熱伝導として使用する電子設備は、同様に多くが平板熱管を選択して応用している。   The heat tubes are classified into a circular tube-shaped heat tube, a heat tube having a D-shaped cross section, a flat plate heat tube, etc., mainly used for cooling the conduction of the heat source in the electronic equipment. The open heat tube is widely used at this stage in order to make it easy to attach to the member and allow the contact surface to acquire a relatively large area, and to reduce the size and space of the cooling mechanism. Accordingly, many electronic equipments that use heat tubes as heat conduction select and apply flat plate heat tubes.

従来の熱管構造は、多種の製造方法があり、例えば、中空管体に金属粉末を充填し、該金属粉末を焼結の方式を介して該中空管体内壁に毛細構造層を形成し、その後、該管体に対して作動流体を真空吸引充填し、最後に密閉し、或いは、前記中空管体内に金属材質の網状態を安置し、該網状毛細構造体が展開し、自然に外向きに該中空管体内壁まで伸び貼付し、毛細構造層を形成し、その後、該管体に対して作動流体を真空吸引充填し、最後に密閉するが、現在、電子設備の微小薄型化の要求により、熱管を平板型に製造する必要が生じている。   The conventional heat tube structure has various production methods. For example, the hollow tube body is filled with metal powder, and a capillary structure layer is formed on the inner wall of the hollow tube through a method of sintering the metal powder. Thereafter, the tube is vacuum-filled with a working fluid, and finally sealed, or the net state of a metal material is placed in the hollow tube, and the mesh-like capillary structure is unfolded naturally. Extending and sticking outward to the inner wall of the hollow tube to form a capillary structure layer, and then vacuum suction-filling the working fluid into the tube, and finally sealing it, Due to the demand for making the heat pipe, it is necessary to manufacture the heat tube into a flat plate type.

前記平板熱管は、薄型化の目的を達成することができるが、他の問題を延伸し、該平板熱管は、金属粉末を熱管管径の内壁表面に焼結し、その焼結体を完全に全面的に壁面上に被覆させ、該平板熱管に対し加圧が生じる時、該平板熱管内部の加圧面両側の毛細構造(即ち、焼結の金属粉末又は網状毛細構造体)が押圧を受けて破壊され易く、該平板熱管の内壁から脱落するので、該薄型熱管の熱伝導性能が大幅に低下し、更には、機能を失効する。また、該平板熱管は、熱源の伝導を達成するが、平板熱管は、薄型に製造した後、薄型化の目的により内部毛細構造の毛細力が不足し、作動流体に蒸気通路を塞栓させ、更に、平板熱管の薄型化により加工時に管内の流路面積が減少するので、毛細力が低下し、最大熱伝送量が低下し、その主な原因の1つとして、該平板熱管全体が薄型化した後、平板熱管内の容積が減少することがあり、もう1つの原因は、薄型化により圧延を経た後の平板熱管が中央凹陥を生じた後、該蒸気通路を密閉塞栓することである。   The flat plate heat tube can achieve the purpose of thinning, but other problems have been extended, and the flat plate heat tube sinters the metal powder on the inner wall surface of the hot tube diameter, and the sintered body is completely When the entire surface of the flat plate heat tube is coated on the wall surface and pressurization occurs, the capillary structures on both sides of the pressurization surface inside the flat plate heat tube (that is, sintered metal powder or mesh capillary structure) are pressed. Since it is easily destroyed and falls off from the inner wall of the flat plate heat tube, the heat conduction performance of the thin heat tube is greatly reduced, and the function is invalidated. In addition, the flat plate heat tube achieves conduction of the heat source, but after the flat plate heat tube is manufactured to be thin, the capillary force of the internal capillary structure is insufficient for the purpose of thinning, causing the working fluid to plug the vapor passage, Since the flow path area in the tube is reduced during processing due to the thinning of the flat plate heat tube, the capillary force is reduced and the maximum heat transfer amount is reduced. As one of the main causes, the entire flat plate heat tube is thinned. Later, the volume in the flat plate heat pipe may be reduced, and another cause is that the flat plate heat pipe after rolling due to thinning causes a central recess, and then the steam passage is tightly plugged.

従って、前記従来の欠陥を解決する為、当業者は、該平板熱管内部チャンバに芯棒を挿入し、該芯棒は、軸方向に沿って特定の切り口形状を形成し、該切り口及び該チャンバ内壁が形成する空間に金属粉末を充填し、焼結を行い、毛細構造を形成し、最後に該芯棒を抜き出し、該毛細構造が位置するチャンバの中央部位に対して加圧を行い、扁平状に加工し、毛細構造及び該チャンバ内壁平坦部分が熱接触し、且つ該チャンバ中の毛細構造両側に隙間を設け、蒸気通路とし、良好な蒸気通路抵抗を獲得することができるが、毛細断面が狭いので、毛細力が低下し、抗重力熱効率及び熱伝導効率が悪く、この欠陥は、現行改善すべき要点となっている。 Accordingly, in order to solve the conventional defect, a person skilled in the art inserts a core rod into the flat plate heat tube inner chamber, and the core rod forms a specific cut shape along the axial direction. Fill the space formed by the inner wall with metal powder, sinter, form a capillary structure, finally extract the core rod, pressurize the central part of the chamber where the capillary structure is located, The capillary structure and the flat portion of the inner wall of the chamber are in thermal contact with each other, and a gap is provided on both sides of the capillary structure in the chamber to form a steam passage, and a good steam passage resistance can be obtained. Is narrow, the capillary force is reduced, the anti-gravity thermal efficiency and the heat conduction efficiency are poor, and this defect is the main point to be improved at present.

特開2012−4454号公報JP 2012-4454 A

そこで、上記の問題を解決する為、本考案の目的は、良好な熱伝導効率を有する熱管放熱構造を提供することにある。   Therefore, in order to solve the above-described problem, an object of the present invention is to provide a heat pipe heat dissipation structure having good heat conduction efficiency.

本考案のもう1つの目的は、抗重力能力が良好であり、インタフェース熱抵抗が小さいという効果を達成する熱管放熱構造を提供することにある。   Another object of the present invention is to provide a heat-tube heat dissipation structure that achieves the effects of good anti-gravity capability and low interface thermal resistance.

本考案のもう1つの目的は、単位面積当たり比較的大きな熱出力衝撃を受けることができる熱管放熱構造を提供することにある。   Another object of the present invention is to provide a heat pipe heat dissipation structure capable of receiving a relatively large heat output impact per unit area.

上記目的を達成する為、本考案が提供する熱管放熱構造は、本体及び少なくとも1つの第1毛細構造を含み、該本体は、第1内側と、該第1内側に相対する第2内側と、第3内側と、該第3内側に相対する第4内側と、少なくとも1つのチャンバと、を有し、該チャンバ内に作動流体を充填する。該第1毛細構造は、該チャンバ内に設けられ、且つ第1部分及び第2部分を有し、該第1部分は、該第1内側上に形成され、該第2部分は、該第1部分の両側から隣り合う該第3、第4内側に沿って延伸構成され、該第1部分の厚さが該第2部分の厚さより大きく、該本体の第1、第3、第4内側上にそれぞれ前記第1部分及び第2部分を形成し、該チャンバ内の気体作動流体を十分に流通させ、極めて良好な熱伝導効率を有し、抗重力能力が良好であり、圧力抵抗が小さく、単位面積に比較的大きな熱出力衝撃を受けることができる等の効果を効率的に達成する。
本考案は以下の特徴を有する。
(1)第1内側と、該第1内側に相対する第2内側と、第3内側と、該第3内側に相対する第4内側と、少なくとも1つのチャンバと、を有し、該チャンバ内に作動流体を充填する本体と、該チャンバ内に設けられ、且つ第1部分及び第2部分を有し、該第1部分は、該第1内側上に形成され、該第2部分は、該第1部分の両側から隣り合う該第3、第4内側に沿って延伸構成され、該第1部分の厚さが該第2部分の厚さより大きい少なくとも1つの第1毛細構造と、を含む熱管放熱構造。
(2)前記第1、第2、第3、第4内側が共同で前記チャンバを定義する(1)に記載の熱管放熱構造。
(3)前記第2内側上に毛細形成領域及び少なくとも1つの毛細未形成領域を区分し、前記毛細未形成領域は、該毛細形成領域の両側に位置し、且つそれぞれ対応する第3、第4内側に近隣する(1)に記載の熱管放熱構造。
(4)前記本体内に少なくとも1つの増殖毛細部を設け、該増殖毛細部は、該第2内側の毛細形成領域上に設置され、且つ該第1部分に相対する(3)に記載の熱管放熱構造。
(5)前記増殖毛細部は、自由端を有し、該自由端は、該毛細形成領域上に相対する第1部分を延伸接続する(4)に記載の熱管放熱構造。
(6)前記チャンバと、毛細構造及び増殖毛細部と、が共同で第1蒸気通路及び第2蒸気通路を定義し、該第1蒸気通路は、該第1、第2、第3内側及び該第1毛細構造及び増殖申しアブから包囲形成され、該第2蒸気通路は、該第1、第2、第4内側と、該第1毛細構造及び増殖毛細部と、から包囲形成される(5)に記載の熱管放熱構造。
(7)前記本体内に少なくとも1つの増殖毛細部を設け、該増殖毛細部は、該第1部分上に設けられ、且つ該第2内側に相対する(3)に記載の熱管放熱構造。
(8)前記増殖毛細部は、自由端を有し、該自由端は、該第1部分上から相対する毛細形成領域に延伸接続する(7)に記載の熱管放熱構造。
(9)前記チャンバと、毛細構造及び増殖毛細部と、が共同で第1蒸気通路及び第2蒸気通路を定義し、該第1蒸気通路は、該第1、第2、第3内側及び該第1毛細構造及び増殖申しアブから包囲形成され、該第2蒸気通路は、該第1、第2、第4内側と、該第1毛細構造及び増殖毛細部と、から包囲形成される(8)に記載の熱管放熱構造。
(10)前記本体の第1内側の外部は、少なくとも1つの発熱部材と互いに対応して熱量を伝導し、該本体の第2内側の外部は、少なくとも1つの放熱ユニットに突き合わせ接合し、該放熱ユニットは、ヒートシンク、放熱フィン組及び水冷装置の何れか1つである(1)に記載の熱管放熱構造。
(11)前記チャンバ壁面は、平滑壁面である(1)に記載の熱管放熱構造。
(12)前記チャンバ壁面は、更に第2毛細構造を設け、該第2毛細構造は、該第1、第2、第3、第4内側上に形成され、且つ相対する第1毛細構造と互いに接する(1)に記載の熱管放熱構造。
(13)前記第1毛細構造は、メッシュ、繊維体、焼結粉末体、網目と焼結粉末の組み合わせ及び微小構造体のうちの何れか1つを選択する(1)に記載の熱管放熱構造。
(14)前記増殖毛細部は、金属メッシュ、繊維体、焼結粉末体、網目と焼結粉末の組み合わせ及び微小構造体のうちの何れか1つを選択する(4)又は(7)に記載の熱管放熱構造。
(15)前記第2毛細構造は、メッシュ、繊維体、焼結粉末体、網目と焼結粉末の組み合わせ及び微小構造溝のうちの何れか1つを選択する(12)に記載の熱管放熱構造。
(16)前記第1部分の径方向に延伸する体積は、該第2部分の径方向に延伸する体積より大きい(1)に記載の熱管放熱構造。
In order to achieve the above object, a heat pipe heat dissipating structure provided by the present invention includes a main body and at least one first capillary structure, and the main body includes a first inner side, a second inner side opposite to the first inner side, A third inner side, a fourth inner side opposite to the third inner side, and at least one chamber are provided, and the chamber is filled with a working fluid. The first capillary structure is provided in the chamber and has a first portion and a second portion, the first portion is formed on the first inner side, and the second portion is the first portion. It extends along the third and fourth inner sides that are adjacent from both sides of the part, and the thickness of the first part is larger than the thickness of the second part, and the first, third, and fourth inner sides of the main body Forming the first part and the second part respectively, sufficiently flowing the gas working fluid in the chamber, having a very good heat conduction efficiency, good anti-gravity capability, low pressure resistance, An effect such as being able to receive a relatively large heat output impact on a unit area is efficiently achieved.
The present invention has the following features.
(1) a first inner side, a second inner side opposite to the first inner side, a third inner side, a fourth inner side opposite to the third inner side, and at least one chamber; And a first portion and a second portion, wherein the first portion is formed on the first inner side, and the second portion is formed on the first inner side. A heat tube comprising: at least one first capillary structure extending along the third and fourth inner sides adjacent from both sides of the first portion, wherein the thickness of the first portion is greater than the thickness of the second portion. Heat dissipation structure.
(2) The heat tube heat dissipation structure according to (1), wherein the first, second, third, and fourth inner sides collectively define the chamber.
(3) A capillary formation region and at least one capillary non-formation region are divided on the second inner side, and the capillary non-formation regions are located on both sides of the capillary formation region and correspond to the third and fourth, respectively. The heat tube heat dissipation structure according to (1), which is adjacent to the inside.
(4) The heat tube according to (3), wherein at least one proliferating hair detail is provided in the main body, and the proliferating hair detail is disposed on the second inner capillary forming region and is opposed to the first portion. Heat dissipation structure.
(5) The heat-growing heat radiation structure according to (4), wherein the growth hair details have a free end, and the free end extends and connects a first portion facing the capillary forming region.
(6) The chamber, the capillary structure, and the growth hair details jointly define a first steam path and a second steam path, the first steam path including the first, second, third inner and the Enclosed from the first capillary structure and the growth strip, the second vapor passage is surrounded by the first, second, and fourth inner sides and the first capillary structure and growth hair details (5 ) Heat tube heat dissipation structure.
(7) The heat tube heat dissipating structure according to (3), wherein at least one growing hair detail is provided in the main body, and the growing hair detail is provided on the first portion and faces the second inner side.
(8) The thermal tube heat radiation structure according to (7), wherein the breeding hair details have a free end, and the free end is extended and connected to the opposing capillary forming region from above the first portion.
(9) The chamber, the capillary structure and the hair growth details collectively define a first vapor passage and a second vapor passage, the first vapor passage comprising the first, second, third inner and the Enclosed from the first capillary structure and the growth strip, the second vapor passage is surrounded from the first, second, and fourth inner sides and the first capillary structure and growth hair details (8 ) Heat tube heat dissipation structure.
(10) The first inner outside of the main body conducts heat in correspondence with at least one heat generating member, and the second inner outer side of the main body butt-joins and joins at least one heat radiating unit, The heat pipe heat radiation structure according to (1), wherein the unit is any one of a heat sink, a heat radiation fin assembly, and a water cooling device.
(11) The heat tube heat radiation structure according to (1), wherein the chamber wall surface is a smooth wall surface.
(12) The chamber wall surface is further provided with a second capillary structure, and the second capillary structure is formed on the first, second, third, and fourth inner sides, and is opposed to the opposing first capillary structure. The heat tube heat dissipating structure according to (1).
(13) The first capillary structure is any one of a mesh, a fiber body, a sintered powder body, a combination of a mesh and a sintered powder, and a microstructure. .
(14) The growth hair details may be any one selected from a metal mesh, a fiber body, a sintered powder body, a combination of a mesh and a sintered powder, and a microstructure (4) or (7). Heat pipe heat dissipation structure.
(15) The second capillary structure is any one of a mesh, a fiber body, a sintered powder body, a combination of a mesh and a sintered powder, and a microstructure groove, and the heat tube heat dissipation structure according to (12) .
(16) The heat pipe heat dissipation structure according to (1), wherein a volume extending in a radial direction of the first portion is larger than a volume extending in a radial direction of the second portion.

本考案は、従来技術に比較し、以下の利点を有する:
1.最大熱伝導効率を向上することができる;
2.抗重力能力が良好である;
3.インタフェース熱抵抗が小さい;
4.第1毛細構造の単位面積が比較的大きく、比較的大きな熱出力衝撃を受けることができ、相対して熱伝導量が大きい。
The present invention has the following advantages over the prior art:
1. The maximum heat transfer efficiency can be improved;
2. Good anti-gravity ability;
3. Low interface thermal resistance;
4. The unit area of the first capillary structure is relatively large, can receive a relatively large heat output impact, and has a relatively large amount of heat conduction.

本考案の熱管放熱構造の立体説明図である。It is a three-dimensional explanatory drawing of the heat tube heat dissipation structure of the present invention. 本考案の第1好適実施例の断面説明図である。1 is a cross-sectional explanatory view of a first preferred embodiment of the present invention. 本考案の第2好適実施例の実施の立体説明図である。It is a three-dimensional explanatory drawing of the implementation of the second preferred embodiment of the present invention. 本考案の第2好適実施例の実施の断面説明図である。It is sectional explanatory drawing of implementation of the 2nd preferred Example of this invention. 本考案の第2好適実施例のもう1つの実施の立体説明図である。It is a three-dimensional explanatory drawing of another implementation of the second preferred embodiment of the present invention. 本考案の第2好適実施例のもう1つの実施の断面説明図である。It is sectional explanatory drawing of another implementation of the 2nd Example of this invention. 本考案の第3好適実施例の断面説明図である。It is sectional explanatory drawing of the 3rd preferred Example of this invention. 本考案の第3好適実施例の実施の断面説明図である。It is sectional explanatory drawing of implementation of the 3rd preferred Example of this invention. 本考案の第4好適実施例の断面説明図である。It is sectional explanatory drawing of the 4th preferred Example of this invention. 本考案の第5好適実施例の断面説明図である。It is sectional explanatory drawing of the 5th preferred Example of this invention.

本考案の上記目的及びその構造及び機能上の特性について、図面に基づく好適実施例を与え、以下に説明する。 The above objects and the structural and functional characteristics of the present invention will be described below with reference to preferred embodiments based on the drawings.

本考案は、熱管放熱構造であり、図1、図2を参照し、それは、本考案の第1好適実施例の立体、断面説明図である。該熱管放熱構造は、本体1及び少なくとも1つの第1毛細構造16を含み、そのうち、該本体1は、第1内側11と、第2内側12と、第3内側13と、第4内側14と、少なくとも1つのチャンバ15と、を有し、該第1内側11は、第2内側12に相対し、該第3内側13は、第4内側14に相対し、前記第1、第2、第3、第4内側11,12,13,14は、共同で前記チャンバ15を定義し、該チャンバ15内に作動流体、例えば、純水、無機化合物、アルコール類、ケトン類、液体金属、冷媒及び有機化合物の何れか1つを充填する。そのうち、前記チャンバ15壁面(即ち、第1、第2、第3、第4内側11,12,13,14)は、平滑壁面に形成される。   The present invention is a heat pipe heat dissipation structure, and is referred to FIGS. 1 and 2, which are three-dimensional and cross-sectional explanatory views of a first preferred embodiment of the present invention. The heat pipe heat dissipation structure includes a main body 1 and at least one first capillary structure 16, of which the main body 1 includes a first inner side 11, a second inner side 12, a third inner side 13, and a fourth inner side 14. At least one chamber 15, wherein the first inner side 11 is opposite to the second inner side 12, the third inner side 13 is opposite to the fourth inner side 14, and the first, second, second 3, the fourth inner side 11, 12, 13, and 14 collectively define the chamber 15, in which a working fluid such as pure water, inorganic compounds, alcohols, ketones, liquid metals, refrigerants and Fill with any one of the organic compounds. Among them, the wall surface of the chamber 15 (that is, the first, second, third, and fourth inner sides 11, 12, 13, and 14) is formed on a smooth wall surface.

また、前記第1毛細構造16は、該好適実施例において、焼結粉末体により説明するが、これに限定するものではなく、具体的実施時、メッシュ、繊維体、メッシュ及び焼結粉末の組み合わせ及び微小構造の何れか1つを選択することができる。該第1毛細構造16は、前記チャンバ15内に設けられ、且つ第1部分161及び第2部分162を有し、該第1部分161は、該第1内側11上に形成され、前記第2部分162は、該第1部分161の両側から隣り合う該第3、第4内側13,14に沿って延伸構成され、該第1部分161の厚さが該第2部分162の厚さより大きく、広くは、前記第1部分161の径方向に延伸する体積が該第2部分162の径方向に延伸する体積より大きいことを指す。   In addition, the first capillary structure 16 is described as a sintered powder body in the preferred embodiment, but is not limited to this, and in a specific implementation, a combination of a mesh, a fibrous body, a mesh and a sintered powder. And any one of the microstructures can be selected. The first capillary structure 16 is provided in the chamber 15 and includes a first portion 161 and a second portion 162, and the first portion 161 is formed on the first inner side 11, and The portion 162 is configured to extend along the third and fourth inner sides 13 and 14 adjacent from both sides of the first portion 161, and the thickness of the first portion 161 is larger than the thickness of the second portion 162. In general, it means that the volume of the first portion 161 extending in the radial direction is larger than the volume of the second portion 162 extending in the radial direction.

従って、前記第1内側11の上の第1部分161の厚さが第3、第4内側13,14の上の第2部分162の厚さより大きいことにより、該第1内側11の外部に比較的大きなパワーに吸着対応する発熱部材が発生する熱量を受けさせることができ、言い換えれば、該第1毛細構造16の単位面積が比較的大きく、比較的大きな熱出力衝撃を受けることができ、相対して熱伝導量も比較的大きく、該第2内側12の上に第1毛細構造16を設けておらず、該チャンバ15内の気体作動流体2(図4参照)が第2内側12上に流動する圧力抵抗を減少し、気液循環効率を大幅に向上する。   Therefore, since the thickness of the first portion 161 on the first inner side 11 is larger than the thickness of the second portion 162 on the third and fourth inner sides 13 and 14, it is compared with the outside of the first inner side 11. The amount of heat generated by the heat generating member corresponding to adsorption can be received with a relatively large power, in other words, the unit area of the first capillary structure 16 is relatively large and can receive a relatively large heat output impact, Therefore, the heat conduction amount is relatively large, the first capillary structure 16 is not provided on the second inner side 12, and the gas working fluid 2 (see FIG. 4) in the chamber 15 is placed on the second inner side 12. Reduces flowing pressure resistance and greatly improves gas-liquid circulation efficiency.

本考案の第1毛細構造16の第1、第2部分161,162がそれぞれ該チャンバ15内の第1、第3、第4内側11,1,14上に設置され、一体に結合される設計により、良好な熱伝導効率及び圧力抵抗の減少、気液循環効率の向上を効率的に達成する。   A design in which the first and second portions 161 and 162 of the first capillary structure 16 of the present invention are installed on the first, third and fourth inner sides 11 and 1 and 14 in the chamber 15 and are joined together. As a result, good heat conduction efficiency, reduction of pressure resistance, and improvement of gas-liquid circulation efficiency are efficiently achieved.

図3、図4を参照し、それは、本考案の第2好適実施例の実施の立体、断面説明図であり、図2を補助的に参照する。該本好適実施例は、前記第1好適実施例の熱管放熱構造を相対する少なくとも1つの発熱部材4(例えば、CPU、グラフィックチップ、ノースサウスブリッジチップ又はその他の実行処理チップ)上に貼付し、即ち、該本体1の第1内側11の外部が少なくとも1つの発熱部材4と互い熱伝導量が対応する時、該第1、第3、第4内側11,13,14の第1、第2部分161,162の上の液体作動流体3が熱量を迅速に吸着して蒸発を発生し、気体作動流体2へ変換し、該気体作動流体2を第2内側12上に第1毛細構造16を有さないことにより、該気体作動流体2が相対する第2内側12上へ迅速に流動できるように促し、該気体作動流体2が第2内側12上に至り、冷却を受けて液体作動流体3に冷凝変換された後、該液体作動流体3が重力により第1内側11上の第1部分161及び第3、第4内側13,14上の第2部分162に回流し、気液循環を継続し、極めて良好な放熱効果を効率的に達成する。 3 and 4, which are three-dimensional and cross-sectional illustrations of the implementation of the second preferred embodiment of the present invention, and FIG. 2 is supplementarily referred to. The present preferred embodiment is affixed on at least one heat generating member 4 (for example, CPU, graphic chip, north south bridge chip or other execution processing chip) facing the heat tube heat dissipation structure of the first preferred embodiment, That is, when the outside of the first inner side 11 of the main body 1 corresponds to the at least one heat generating member 4 and the amount of heat conduction, the first and second of the first, third, and fourth inner sides 11, 13, and 14 will be described. The liquid working fluid 3 on the portions 161, 162 quickly absorbs the amount of heat to generate evaporation and converts it into the gas working fluid 2, and the gas working fluid 2 is placed on the second inner side 12 with the first capillary structure 16. By not having it, the gas working fluid 2 is urged to quickly flow onto the second inner side 12, and the gas working fluid 2 reaches the second inner side 12 and is cooled to receive the liquid working fluid 3 The liquid operation after cooling The body 3 circulates by gravity to the first part 161 on the first inner side 11 and the second part 162 on the third and fourth inner side 13, 14 to continue the gas-liquid circulation and to efficiently achieve a very good heat dissipation effect. To achieve.

続いて、図5、図6を参照し、それは、該本好適実施例の他の実施の立体、断面説明図である。前記本体1の第2内側12の外部を少なくとも1つの放熱ユニット5に突き合わせ接合し、そのうち、該放熱ユニット5は、ヒートシンク、放熱フィン組及び水冷装置の何れか1つであり、且つそれは、第2内側12上に流動する気体作動流体2の冷却を加速することに用い、気液循環効果を効率的に向上し、極めて良好な放熱効果を達成することができる。   Next, referring to FIG. 5 and FIG. 6, it is a three-dimensional, cross-sectional explanatory view of another embodiment of the present preferred embodiment. The outside of the second inner side 12 of the main body 1 is butted and joined to at least one heat radiating unit 5, of which the heat radiating unit 5 is any one of a heat sink, a heat radiating fin assembly, and a water cooling device, and 2 The acceleration of the cooling of the gas working fluid 2 flowing on the inner side 12 can effectively improve the gas-liquid circulation effect and achieve a very good heat dissipation effect.

図7を参照し、それは、本考案の第3好適実施例の断面説明図であり、図1を補助的に参照する。該好適実施例の構造、接続関係及びその効果は、略前記第1好適実施例と同一であるので、ここでは再度記載せず、その両者の異なる箇所は、以下にある:前記本体1の第2内側12上に毛細形成領域121及び少なくとも1つの毛細未形成領域122を区分し、該毛細未形成領域122は、第2内側12の領域上に毛細構造を形成していないものであり、且つ前記毛細未形成領域122は、該毛細形成領域121両側に位置し、且つそれはそれぞれ対応する第3、第4内側13,14に近隣する。 Reference is made to FIG. 7, which is a cross-sectional illustration of a third preferred embodiment of the present invention, with reference to FIG. Since the structure, connection relationship and effects of the preferred embodiment are substantially the same as those of the first preferred embodiment, they will not be described again here, and the differences between them are as follows: 2 divides the capillary forming region 121 and the at least one non-capillary region 122 on the inner side 12, the non-capillary region 122 does not form a capillary structure on the region of the second inner side 12, and The non-capillary region 122 is located on both sides of the capillary forming region 121 and is adjacent to the corresponding third and fourth inner sides 13 and 14 respectively.

また、前記本体1内に更に少なくとも1つの増殖毛細部17を設け、該増殖毛細部17は、金属メッシュ、繊維、焼結粉末、メッシュ及び焼結粉末の組み合わせ、及び微小構造のうちの何れか1つを選択したものである。前記増殖毛細部17は、該第2内側12の毛細形成領域121上に設置され、且つ該第1部分161に相対する。   Further, at least one growth hair detail 17 is provided in the main body 1, and the growth hair detail 17 is any one of a metal mesh, a fiber, a sintered powder, a combination of the mesh and the sintered powder, and a microstructure. One is selected. The proliferating hair details 17 are disposed on the capillary forming region 121 of the second inner side 12 and are opposed to the first portion 161.

また、該増殖毛細部17は、自由端171を有し、該自由端171は、該毛細形成領域121上から相対する第1毛細構造16に延接する第1部分161を延伸する。該好適実施例の増殖毛細部17は、略山丘状を呈するが、これに限定するものではなく、具体的な実施時、異なる形状態様、例えば、台形状、矩形状、錘状であることができる。   The proliferating hair detail 17 has a free end 171, and the free end 171 extends the first portion 161 extending from the capillary forming region 121 to the first capillary structure 16 facing the first capillary 161. The hair growth detail 17 of the preferred embodiment has a substantially mountainous shape, but is not limited to this, and has a different shape, for example, a trapezoidal shape, a rectangular shape, or a weight shape, when concretely implemented. Can do.

更に、前記第1毛細構造16は、増殖毛細部17及び蒸気チャンバ15と共同で第1蒸気通路151及び第2蒸気通路152を定義し、そのうち、該第1蒸気通路151は、該第1、第2、第3内側11,12,13と、毛細構造16及び増殖毛細部17と、により包囲形成され、該第2蒸気通路152は、該第1、第2、第4内側11,12,14と、第1毛細構造16及び増殖毛細部17と、により包囲形成される。 Further, the first capillary structure 16 defines a first steam passage 151 and a second steam passage 152 in cooperation with the growth hair detail 17 and the steam chamber 15, wherein the first steam passage 151 includes the first, The second and third inner sides 11, 12 and 13, the capillary structure 16 and the growth hair details 17 are surrounded by the second vapor passage 152, and the first, second and fourth inner sides 11, 12, 14, the first capillary structure 16 and the growing hair detail 17 are surrounded.

図7、図8に示すように、該本体の第1内側の外部は、少なくとも1つの発熱部材4上に貼付され、該発熱部材が熱量を発生する時、該第1、第3、第4内側11,13,14の第1、第2部分161,162上の液体作動流体3を介して、熱量を迅速に吸着して蒸発を発生し、気体作動流体2に変換し、第1蒸気通路151及び第2蒸気通路152内の気体作動流体2が対応する第2内側12の上の毛細未形成領域122により、前記第1、第2蒸気通路151,152内の気体作動流体2が相対する毛細未形成領域122へ迅速に流動できるよう促し、第1、第2蒸気通路151,152内の気体作動流体2がそれぞれ第2内側12の上の毛細未形成領域122に達し、冷却を受け、液体作動流体3に冷凝変換した後、第1、第2蒸気通路151,152内の液体作動流体3が重力又は増殖毛細部17の毛細力により第1内側11上の第1部分161及び第3、第4内側13,14上の第2部分162に買い粒子、気液循環を継続し、極めて良好な放熱効果を効率的に達成し、良好な熱伝導効率及び圧力抵抗の現象の効果を効率的に達成する。 As shown in FIGS. 7 and 8, the first inside exterior of the main body is affixed onto at least one heat generating member 4, and when the heat generating member generates heat, the first, third, and fourth Through the liquid working fluid 3 on the first and second portions 161 and 162 of the inner side 11, 13, and 14, heat is quickly adsorbed to generate evaporation, which is converted into the gas working fluid 2, and the first steam passage 151 and the non-capillary region 122 on the second inner side 12 to which the gas working fluid 2 in the second steam passage 152 corresponds, and the gas working fluid 2 in the first and second steam passages 151 and 152 are opposed to each other. Encourage rapid flow to the non-capillary region 122, the gas working fluid 2 in the first and second vapor passages 151, 152 reaches the non-capillary region 122 on the second inner side 12, respectively, receives cooling, After cooling to liquid working fluid 3, the first and second steam passages The liquid working fluid 3 in 151, 152 is bought into the first part 161 on the first inner side 11 and the second part 162 on the third and fourth inner side 13, 14 by gravity or the capillary force of the growing hair detail 17, Continues the gas-liquid circulation, efficiently achieves a very good heat dissipation effect, and efficiently achieves the effects of good heat conduction efficiency and pressure resistance phenomenon.

図9を参照し、それは、本項案の第4好適実施例の断面説明図である。該好適実施例の構造、接続関係、及びその効果は、略前記第3好適実施例と同一であり、該本好適実施例は、主に前記第3好適実施例の増殖毛細部17を第1毛細構造16の第1部分161上に延伸構成されるよう設計変更し、即ち、該好適実施例の増殖毛細部17は、該第1部分161上に設けられ、且つ該第2内側12に相対する。言い換えれば、前記増殖毛細部17の自由端171は、第1部分161上から相対する毛細形成領域121に延伸接続する。 Reference is made to FIG. 9, which is a cross-sectional illustration of a fourth preferred embodiment of the proposed section. The structure, connection relationship, and effect of the preferred embodiment are substantially the same as those of the third preferred embodiment. This preferred embodiment mainly uses the hair growth details 17 of the third preferred embodiment as the first. Redesigned to be stretched over the first portion 161 of the capillary structure 16, i.e. the proliferating hair detail 17 of the preferred embodiment is provided on the first portion 161 and relative to the second inner side 12. To do. In other words, the free end 171 of the proliferating hair detail 17 is stretched and connected to the opposing capillary forming region 121 from above the first portion 161.

図10を参照し、それは、本項案の第5好適実施例の断面説明図である。該好適実施例の構造、接続関係、及びその効果は、略前記第1好適実施例と同一であり、その両者の差異は、以下にある:前記チャンバ15壁面に更に第2毛細構造18を設け、該第2毛細構造18は、該本体1の第1、第2、第3、第4側11,12,13,14上に形成され、且つ相対する第1毛細構造16と互いに接する。該好適実施例の第2毛細構造18は、微小溝により説明するが、これに限定するものではなく、本考案の実際の実施時、メッシュ、繊維体、焼結粉末体、メッシュと焼結粉末の組み合わせのうちの何れか1つを選択することができる。 Reference is made to FIG. 10, which is a cross-sectional illustration of a fifth preferred embodiment of the present section. The structure, connection relationship, and effects of the preferred embodiment are substantially the same as those of the first preferred embodiment, and the difference between them is as follows: a second capillary structure 18 is further provided on the wall surface of the chamber 15. The second capillary structure 18 is formed on the first, second, third, and fourth sides 11, 12, 13, and 14 of the main body 1 and is in contact with the opposing first capillary structure 16. The second capillary structure 18 of the preferred embodiment will be described with a micro-groove, but is not limited to this. In actual implementation of the present invention, the mesh, the fiber body, the sintered powder body, the mesh and the sintered powder are used. Any one of the combinations can be selected.

上記のように、本考案は、従来技術に比較し、以下の利点を有する:
1.最大熱伝導効率を向上することができる;
2.抗重力能力が良好である;
3.インタフェース熱抵抗が小さい;
4.第1毛細構造の単位面積が比較的大きく、比較的大きな熱出力衝撃を受けることができ、相対して熱伝導量が大きい。
As described above, the present invention has the following advantages over the prior art:
1. The maximum heat transfer efficiency can be improved;
2. Good anti-gravity ability;
3. Low interface thermal resistance;
4. The unit area of the first capillary structure is relatively large, can receive a relatively large heat output impact, and has a relatively large amount of heat conduction.

なお、本考案では好ましい実施例を前述の通り開示したが、これらは決して本考案に限定するものではなく、当該技術を熟知する者なら誰でも、本考案の精神と領域を脱しない均等の範囲内で各種の変動や潤色を加えることができることは勿論である。 In the present invention, the preferred embodiments have been disclosed as described above. However, the present invention is not limited to the present invention, and anyone who is familiar with the technology can make an equivalent range without departing from the spirit and scope of the present invention. Of course, various fluctuations and hydration colors can be added.

1 本体
11 第1内側
12 第2内側
121 毛細形成領域
122 毛細未形成領域
13 第3内側
14 第4内側
15 チャンバ
151 第1蒸気通路
152 第2蒸気通路
16 第1毛細構造
161 第1部分
162 第2部分
17 増殖毛細部
171 自由端
18 第2毛細構造
2 気体作動流体
3 液体作動流体
4 発熱部材
5 放熱ユニット
DESCRIPTION OF SYMBOLS 1 Main body 11 1st inner side 12 2nd inner side 121 Capillary formation area 122 Capillary non-forming area | region 13 3rd inner side 14 4th inner side 15 Chamber 151 1st steam path 152 2nd steam path 16 1st capillary structure 161 1st part 162 1st 2 part 17 Growing hair detail 171 Free end 18 2nd capillary structure 2 Gas working fluid 3 Liquid working fluid 4 Heat generating member 5 Heat radiation unit

Claims (16)

第1内側と、該第1内側に相対する第2内側と、第3内側と、該第3内側に相対する第4内側と、少なくとも1つのチャンバと、を有し、該チャンバ内に作動流体を充填する本体と、該チャンバ内に設けられ、且つ第1部分及び第2部分を有し、該第1部分は、該第1内側上に形成され、該第2部分は、該第1部分の両側から隣り合う該第3、第4内側に沿って延伸構成され、該第1部分の厚さが該第2部分の厚さより大きい少なくとも1つの第1毛細構造と、を含む熱管放熱構造。 A first inner side; a second inner side opposite to the first inner side; a third inner side; a fourth inner side opposite to the third inner side; and at least one chamber; and a working fluid in the chamber And a first portion and a second portion, wherein the first portion is formed on the first inner side, and the second portion is formed on the first portion. A heat pipe heat dissipating structure including at least one first capillary structure extending along the third and fourth inner sides adjacent from both sides of the first portion and having a thickness of the first portion larger than that of the second portion. 前記第1、第2、第3、第4内側が共同で前記チャンバを定義する請求項1に記載の熱管放熱構造。 The heat tube heat dissipation structure according to claim 1, wherein the first, second, third, and fourth inner sides collectively define the chamber. 前記第2内側上に毛細形成領域及び少なくとも1つの毛細未形成領域を区分し、前記毛細未形成領域は、該毛細形成領域の両側に位置し、且つそれぞれ対応する第3、第4内側に近隣する請求項1に記載の熱管放熱構造。 A capillary forming region and at least one non-capillary region are partitioned on the second inner side, and the non-capillary region is located on both sides of the capillary forming region and is adjacent to the corresponding third and fourth inner sides. The heat tube heat radiation structure according to claim 1. 前記本体内に少なくとも1つの増殖毛細部を設け、該増殖毛細部は、該第2内側の毛細形成領域上に設置され、且つ該第1部分に相対する請求項3に記載の熱管放熱構造。   The heat tube heat dissipating structure according to claim 3, wherein at least one proliferating hair detail is provided in the main body, and the proliferating hair detail is disposed on the second inner capillary forming region and is opposed to the first portion. 前記増殖毛細部は、自由端を有し、該自由端は、該毛細形成領域上に相対する第1部分を延伸接続する請求項4に記載の熱管放熱構造。   The heat tube heat dissipating structure according to claim 4, wherein the breeding hair details have a free end, and the free end extends and connects a first portion opposed to the capillary forming region. 前記チャンバと、毛細構造及び増殖毛細部と、が共同で第1蒸気通路及び第2蒸気通路を定義し、該第1蒸気通路は、該第1、第2、第3内側及び該第1毛細構造及び増殖申しアブから包囲形成され、該第2蒸気通路は、該第1、第2、第4内側と、該第1毛細構造及び増殖毛細部と、から包囲形成される請求項5に記載の熱管放熱構造。   The chamber, the capillary structure and the growth hair details jointly define a first vapor passage and a second vapor passage, the first vapor passage comprising the first, second, third inner and the first capillary. 6. The structure and the growth-providing abutment are enclosed, and the second vapor passage is surrounded by the first, second, and fourth inner sides, and the first capillary structure and proliferation hair details. Heat pipe heat dissipation structure. 前記本体内に少なくとも1つの増殖毛細部を設け、該増殖毛細部は、該第1部分上に設けられ、且つ該第2内側に相対する請求項3に記載の熱管放熱構造。   The heat tube heat dissipating structure according to claim 3, wherein at least one growing hair detail is provided in the main body, and the growing hair detail is provided on the first portion and faces the second inner side. 前記増殖毛細部は、自由端を有し、該自由端は、該第1部分上から相対する毛細形成領域に延伸接続する請求項7に記載の熱管放熱構造。   The heat tube heat dissipating structure according to claim 7, wherein the proliferating hair details have a free end, and the free end is extended and connected from above the first portion to an opposing capillary forming region. 前記チャンバと、毛細構造及び増殖毛細部と、が共同で第1蒸気通路及び第2蒸気通路を定義し、該第1蒸気通路は、該第1、第2、第3内側及び該第1毛細構造及び増殖申しアブから包囲形成され、該第2蒸気通路は、該第1、第2、第4内側と、該第1毛細構造及び増殖毛細部と、から包囲形成される請求項8に記載の熱管放熱構造。   The chamber, the capillary structure and the growth hair details jointly define a first vapor passage and a second vapor passage, the first vapor passage comprising the first, second, third inner and the first capillary. 9. The structure and the growth-providing abs are surrounded, and the second vapor passage is surrounded by the first, second, and fourth inner sides, and the first capillary structure and the growth hair details. Heat pipe heat dissipation structure. 前記本体の第1内側の外部は、少なくとも1つの発熱部材と互いに対応して熱量を伝導し、該本体の第2内側の外部は、少なくとも1つの放熱ユニットに突き合わせ接合し、該放熱ユニットは、ヒートシンク、放熱フィン組及び水冷装置の何れか1つである請求項1に記載の熱管放熱構造。   The outside of the first inner side of the main body conducts heat corresponding to at least one heat generating member, and the second inner side of the main body butt-joins with at least one heat radiating unit, The heat pipe heat dissipation structure according to claim 1, which is any one of a heat sink, a heat dissipation fin assembly, and a water cooling device. 前記チャンバ壁面は、平滑壁面である請求項1に記載の熱管放熱構造。   The heat tube heat dissipation structure according to claim 1, wherein the chamber wall surface is a smooth wall surface. 前記チャンバ壁面は、更に第2毛細構造を設け、該第2毛細構造は、該第1、第2、第3、第4内側上に形成され、且つ相対する第1毛細構造と互いに接する請求項1に記載の熱管放熱構造。   The chamber wall surface further includes a second capillary structure, and the second capillary structure is formed on the first, second, third, and fourth inner sides, and is in contact with the opposing first capillary structure. 1. The heat tube heat dissipation structure according to 1. 前記第1毛細構造は、メッシュ、繊維体、焼結粉末体、網目と焼結粉末の組み合わせ及び微小構造体のうちの何れか1つを選択する請求項1に記載の熱管放熱構造。   2. The heat tube heat dissipation structure according to claim 1, wherein the first capillary structure is selected from any one of a mesh, a fiber body, a sintered powder body, a combination of a mesh and a sintered powder, and a microstructure. 前記増殖毛細部は、金属メッシュ、繊維体、焼結粉末体、網目と焼結粉末の組み合わせ及び微小構造体のうちの何れか1つを選択する請求項4又は請求項7に記載の熱管放熱構造。   The heat tube heat dissipation according to claim 4 or 7, wherein the breeding hair details are selected from any one of a metal mesh, a fiber body, a sintered powder body, a combination of a mesh and a sintered powder, and a microstructure. Construction. 前記第2毛細構造は、メッシュ、繊維体、焼結粉末体、網目と焼結粉末の組み合わせ及び微小構造溝のうちの何れか1つを選択する請求項12に記載の熱管放熱構造。   The heat tube heat dissipation structure according to claim 12, wherein the second capillary structure is selected from any one of a mesh, a fiber body, a sintered powder body, a combination of a mesh and a sintered powder, and a microstructure groove. 前記第1部分の径方向に延伸する体積は、該第2部分の径方向に延伸する体積より大きい請求項1に記載の熱管放熱構造。   2. The heat pipe heat dissipation structure according to claim 1, wherein a volume extending in a radial direction of the first portion is larger than a volume extending in a radial direction of the second portion.
JP2012000900U 2012-02-20 2012-02-20 Heat tube heat dissipation structure Expired - Fee Related JP3175383U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012000900U JP3175383U (en) 2012-02-20 2012-02-20 Heat tube heat dissipation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012000900U JP3175383U (en) 2012-02-20 2012-02-20 Heat tube heat dissipation structure

Publications (1)

Publication Number Publication Date
JP3175383U true JP3175383U (en) 2012-05-10

Family

ID=48002431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012000900U Expired - Fee Related JP3175383U (en) 2012-02-20 2012-02-20 Heat tube heat dissipation structure

Country Status (1)

Country Link
JP (1) JP3175383U (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5759600B1 (en) * 2014-07-16 2015-08-05 株式会社フジクラ Flat heat pipe
JP2017110891A (en) * 2015-12-18 2017-06-22 株式会社フジクラ Heat radiation module
CN115568160A (en) * 2022-04-02 2023-01-03 荣耀终端有限公司 Heat radiation structure and electronic equipment
TWI824419B (en) * 2021-03-05 2023-12-01 日商古河電氣工業股份有限公司 heat pipe

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5759600B1 (en) * 2014-07-16 2015-08-05 株式会社フジクラ Flat heat pipe
JP2016023821A (en) * 2014-07-16 2016-02-08 株式会社フジクラ Flat heat pipe
JP2017110891A (en) * 2015-12-18 2017-06-22 株式会社フジクラ Heat radiation module
TWI824419B (en) * 2021-03-05 2023-12-01 日商古河電氣工業股份有限公司 heat pipe
CN115568160A (en) * 2022-04-02 2023-01-03 荣耀终端有限公司 Heat radiation structure and electronic equipment
CN115568160B (en) * 2022-04-02 2023-08-18 荣耀终端有限公司 Heat radiation structure and electronic equipment

Similar Documents

Publication Publication Date Title
US10184729B2 (en) Heat pipe
CN101839660B (en) Flat heat tube with hole-groove combined mandrel and manufacturing method thereof
US9506699B2 (en) Heat pipe structure
US20130213612A1 (en) Heat pipe heat dissipation structure
CN103000595B (en) A kind of multidirectional turnover phase change heat-transfer device and preparation method thereof
TWI443944B (en) Thin hot plate structure
JP3175383U (en) Heat tube heat dissipation structure
TWI407070B (en) Method of manufacturing flat plate heat pipe
JP3175221U (en) Heat pipe structure
TW201403016A (en) Heat pipe
CN202254982U (en) Thin heat pipe structure
US20130213609A1 (en) Heat pipe structure
JP3175037U (en) Heat pipe structure
JP3173585U (en) Thin heat pipe structure
CN211400897U (en) Novel heat pipe structure
CN211527184U (en) Heat conduction and heat dissipation integrated flat heat pipe
TWI510751B (en) Heat pipe structure
US20120255716A1 (en) Heat dissipation device and manufacturing method thereof
CN103075905B (en) Heat pipe structure
TWI564530B (en) Heat pipe heat dissipation structure
CN202254998U (en) Heat pipe structure
TW201331533A (en) Heat pipe structure
JP3176377U (en) Heat tube heat radiation improvement structure
TWM429992U (en) Heat pipe heat-dissipating structure
TW201331534A (en) Heat pipe heat dissipation structure

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150411

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees