JP3173887B2 - Anodizing pretreatment method for Al alloy die casting material - Google Patents

Anodizing pretreatment method for Al alloy die casting material

Info

Publication number
JP3173887B2
JP3173887B2 JP27058792A JP27058792A JP3173887B2 JP 3173887 B2 JP3173887 B2 JP 3173887B2 JP 27058792 A JP27058792 A JP 27058792A JP 27058792 A JP27058792 A JP 27058792A JP 3173887 B2 JP3173887 B2 JP 3173887B2
Authority
JP
Japan
Prior art keywords
oxide film
anodic oxide
alloy die
treatment
cast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27058792A
Other languages
Japanese (ja)
Other versions
JPH06122995A (en
Inventor
正受 前嶋
光一 猿渡
規泰 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP27058792A priority Critical patent/JP3173887B2/en
Publication of JPH06122995A publication Critical patent/JPH06122995A/en
Application granted granted Critical
Publication of JP3173887B2 publication Critical patent/JP3173887B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はボイドによる凹凸部を表
面に生じることなく地金強度を向上すると同時に、生産
性の高い状態で陽極酸化被膜を形成できる前処理方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pretreatment method capable of improving an ingot strength without forming irregularities due to voids on the surface and forming an anodized film with high productivity.

【0002】[0002]

【従来の技術】従来、JIS規定のADCー10、12
などを中心とするAl合金ダイカスト材は、例えば、自
動車のバルブロッカアームや回転部の軸受け、その他に
使用されているが、耐摩耗性などの優れた機械特性が要
求される部分には、切削加工が施された後に陽極酸化処
理や潤滑処理が行なわれて実用に供されている。これら
のAl合金ダイカスト材を陽極酸化する場合、ダイカス
ト鋳肌面のチル層や湯流層が陽極酸化時の抵抗層となっ
て皮膜の生成を抑制しやすいために、得られた酸化皮膜
は薄くなる傾向がある。一方、Al合金ダイカスト材を
切削した面では、この面の表皮が削除されるために、陽
極酸化処理で形成される皮膜は割合成長し易く、耐摩耗
性を得るために十分な厚さと硬さの陽極酸化皮膜を工業
的に容易に作成可能である。
2. Description of the Related Art Conventionally, ADC-10, 12 defined by JIS has been adopted.
Aluminum alloy die-casting materials mainly used for, for example, valve rocker arms for automobiles, bearings for rotating parts, etc., are used for cutting parts where excellent mechanical properties such as wear resistance are required. , Anodizing treatment and lubrication treatment are carried out, and the product is put to practical use. When anodizing these Al alloy die-cast materials, the resulting oxidized film is thin because the chill layer or the molten metal layer on the die-cast surface becomes a resistance layer at the time of anodic oxidation and it is easy to suppress the formation of the film. Tend to be. On the other hand, on the surface obtained by cutting the Al alloy die-cast material, the skin formed on the surface is removed, so that the film formed by the anodic oxidation treatment tends to grow at a high rate, and has a sufficient thickness and hardness to obtain abrasion resistance. Can be easily produced industrially.

【0003】一方、最近は機械部品の軽量化が推し進め
られ、これらのAl合金ダイカスト材にもかなり苛酷な
強度を要求されるようになってきている。そのため、S
iを7.5〜12%程度含有させているADCー10、
12に代わるような更に高濃度のSiを含有させたAl
合金ダイカスト材や、粉末冶金法による高強度、耐摩耗
性材料の開発と実用化、あるいは、陽極酸化皮膜やメッ
キ処理などを行なわずに耐摩耗性に優れさせた材料を提
供することも進んでいるが、コストの問題や後加工時の
加工性の問題があることから、前記ADCー10、12
を使用する機会はまだまだ多いのが実情である。そのた
め、現状のADCー10、12などのダイカスト材の強
化を考える場合、通常の冶金学的な考え方によれば、焼
き入れ、焼き戻しによる手法(T6処理)が一般的であ
る。
On the other hand, recently, weight reduction of mechanical parts has been promoted, and these aluminum alloy die-cast materials have been required to have considerably severe strength. Therefore, S
ADC-10 containing about 7.5 to 12% of i
Al containing higher concentration of Si instead of 12
Development and commercialization of alloy die-casting materials and high-strength, wear-resistant materials by powder metallurgy, or providing materials with excellent wear resistance without performing anodic oxide coating or plating, etc. However, the ADC-10 and the ADC-12 have problems due to cost and workability during post-processing.
In fact, there are still many opportunities to use. Therefore, when considering the strengthening of die cast materials such as the current ADCs 10 and 12, according to an ordinary metallurgical concept, a method of quenching and tempering (T6 treatment) is generally used.

【0004】[0004]

【発明が解決しようとする課題】ところが、この方法に
よると、焼き入れのために450℃程度に加熱して急令
する溶体化処理を行うので、加熱によりダイカスト材の
内部にボイド(ブロ−ホ−ル)が生成し、これが表面に
突出して凹凸部を形成し、外観不良が生じるとともに、
切削した場合にはその部分に凹みができるという問題が
ある。
However, according to this method, since the solution treatment is carried out by heating to about 450 ° C. for quenching, and the heat treatment is carried out rapidly, the voids (blowing) are formed inside the die casting material by heating. −) Is generated, which protrudes from the surface to form an uneven portion, resulting in poor appearance and
When cut, there is a problem that a dent is formed in that portion.

【0005】さらにまた、溶体化処理を行なうT6処理
では、ダイカスト材の鋳肌層近傍でも切削面と同様に十
分に溶体化がなされ、再度、微細にSi粒子が緻密に析
出してくるので、陽極酸化処理における皮膜の成長具合
は鋳肌面でも切削面でもあまり変わりのない程度にな
り、陽極酸化の感受性は鋳肌面でも切削面でも良好とな
る。従って、耐摩耗性を必要とする切削面に陽極酸化皮
膜を厚く形成しようとする場合に、あまり耐摩耗性を必
要としない鋳肌面にも陽極酸化皮膜が厚く形成されるこ
とになり、その分処理時間が長くなり、生産性が悪くな
るとともに、余分な電力を消費することになり、生産コ
ストが高くなるという問題がある。これに対し、ダイカ
スト後切削加工しただけのものでは、前述したような理
由から、不要な鋳肌面には皮膜が薄くしか形成されず、
耐摩耗性を必要とする切削面には十分な厚さの皮膜を短
時間で効率良く形成できるという利点がある。しかしな
がら、このダイカストしたままのものでは、素地の硬度
がT6処理したものに比べ、10%以上も低いために、
より苛酷な使用状態においては問題となる場合がある。
Further, in the T6 treatment for performing the solution treatment, the solution is sufficiently dissolved even in the vicinity of the casting surface layer of the die-casting material as in the case of the cut surface, and fine Si particles are deposited again finely and densely. The degree of growth of the film in the anodizing treatment does not change much on the cast surface and the cut surface, and the sensitivity of the anodization is good on both the cast surface and the cut surface. Therefore, when trying to form a thick anodic oxide film on a cutting surface that requires wear resistance, a thick anodic oxide film is also formed on the casting surface that does not require much wear resistance. However, there is a problem in that the processing time becomes longer, the productivity becomes worse, and extra power is consumed, thereby increasing the production cost. On the other hand, in the case of only cutting after die casting, only a thin film is formed on the unnecessary casting surface, for the reasons described above,
There is an advantage that a film having a sufficient thickness can be efficiently formed in a short time on a cut surface requiring wear resistance. However, in the case of this die-casted material, the hardness of the substrate is 10% or less lower than that of the T6-treated material.
This can be problematic in more severe use conditions.

【0006】以上の問題点を理解しやすいように図式化
すると図3(a)、(b)のようになる。まず、図3
(a)はダイカストしたままのAl合金ダイカスト材に
対してその上面を切削加工した後に陽極酸化被膜を形成
した状態を示す。この図3(a)から明らかなように、
このダイカスト材1では、切削面には厚い陽極酸化被膜
2が生成し、他の部分には薄い陽極酸化被膜3が生成す
る。また、図3(b)はAl合金ダイカスト材に対して
上面を切削加工した後にT6処理を行い、その後に陽極
酸化被膜を形成した状態を示す。このダイカスト材5で
は、全面に均一な厚さの陽極酸化被膜6が生成するとと
もに、ボイドによる凹凸部7が表面部に多数形成され
る。
FIG. 3A and FIG. 3B show the above problems in a schematic form for easy understanding. First, FIG.
(A) shows a state in which an anodized film is formed after cutting the upper surface of the die-cast Al alloy material as it is. As is apparent from FIG.
In this die casting material 1, a thick anodic oxide film 2 is formed on the cutting surface, and a thin anodic oxide film 3 is formed on other portions. FIG. 3 (b) shows a state in which the upper surface of the Al alloy die-cast material is cut, T6 treatment is performed, and then an anodic oxide film is formed. In the die casting material 5, an anodic oxide film 6 having a uniform thickness is formed on the entire surface, and a number of irregularities 7 due to voids are formed on the surface.

【0007】従って以上のことから、結局、従来は、ダ
イカストのままで、必要な面(切削面)の陽極酸化処理
時間を短縮するのが良いか、あるいは、陽極酸化処理時
間を延長し、Al合金ダイカスト材の素地に若干のボイ
ドや突起を生成させてもその強度を若干でも向上させる
ためのT6処理を行なうことが良いか、どちらか一方を
選択せざるを得ない状況であった。このような2者択一
の状況下において本発明者らは、更に実用性があり、工
業的なAl合金の素地強化と、従来通りの切削面の陽極
酸化皮膜形成能力の大きさの両方を発揮できるような優
れた方法を鋭意研究中であった。
[0007] Therefore, from the above, in the end, conventionally, it is better to shorten the anodizing time of the necessary surface (cut surface) while maintaining the die casting, or to extend the anodizing time of Al Even if some voids and projections are formed on the base material of the alloy die-casting material, it is necessary to select one of the two methods. Under such an alternative situation, the present inventors have further practicality, and have considered both the industrial strength strengthening of the Al alloy base and the conventional ability to form an anodized film on the cut surface. We have been studying excellent methods that can be used.

【0008】本発明は前記事情に鑑みてなされたもので
あり、切削面には所用厚さの陽極酸化被膜を容易に形成
することができるとともに耐摩耗性を余り必要としない
鋳肌面には必要最低限程度の薄い陽極酸化被膜しか形成
されず、Al合金ダイカスト材の素地の強度も従来のT
6熱処理品と同程度に高くすることができる陽極酸化前
処理方法を提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and an anodic oxide film having a required thickness can be easily formed on a cut surface, and a cast surface which does not require much wear resistance can be formed. Only the necessary minimum anodic oxide coating is formed, and the strength of the Al alloy die-cast material
6 An object of the present invention is to provide an anodizing pretreatment method that can be made as high as a heat-treated product.

【0009】[0009]

【課題を解決するための手段】請求項1記載の発明は前
記課題を解決するために、Al合金ダイカスト材を切削
加工した後に陽極酸化処理するに際し、陽極酸化処理の
前に、溶体化処理を行なわずにAl合金の溶体化温度よ
りも低い180〜200℃の温度に加熱した後に冷却
し、その後に陽極酸化処理するものである。
According to a first aspect of the present invention, in order to solve the above-mentioned problems, when anodizing is performed after cutting an Al alloy die-cast material, a solution treatment is performed before the anodizing. Without heating, it is heated to a temperature of 180 to 200 [deg.] C. lower than the solution temperature of the Al alloy, cooled, and then anodized.

【0010】[0010]

【作用】本発明らは、前記問題の解決策として、ADC
ー10、12などの場合、450℃までの高温加熱によ
る溶体化処理を行なうことを省略し、即ち、焼き入れと
焼き戻しを行なうT6処理から溶体化処理を省略し、1
90℃程度の焼き戻し処理のみを行なったところ、Al
合金ダイカスト材の表面にボイドや突起の発生が全くな
く、素地の硬度もT6処理の場合と同等のレベルを得る
ことができることを知見した。この場合、更に驚くこと
には、陽極酸化処理において、その鋳肌面と切削面とで
は、ダイカスト状態のままの時と殆ど変わりなく、鋳肌
面では陽極酸化皮膜の成長が少なく、切削面では陽極酸
化皮膜が良好に生成することを多数の実験試料観察の結
果確認できた。
The present invention provides ADC as a solution to the above problem.
In the case of -10, 12, etc., the solution treatment by heating at a high temperature up to 450 ° C. is omitted, that is, the solution treatment is omitted from the T6 treatment of quenching and tempering, and 1
When only tempering at about 90 ° C. was performed, Al
It was found that no voids or protrusions were generated on the surface of the alloy die-cast material, and that the hardness of the substrate could be at the same level as in the case of T6 treatment. In this case, more surprisingly, in the anodic oxidation treatment, the cast surface and the cut surface are almost the same as in the die-cast state, the growth of the anodic oxide film on the cast surface is small, and the cut surface Observation of many experimental samples confirmed that the anodic oxide film was formed favorably.

【0011】これは、金属組織学的に見て、特に過飽和
してAlα相中に固溶されたSiが溶体化処理まで行な
わなくとも、低い焼き戻し温度域、即ち、180〜20
0℃の温度で実用上必要十分なSi量の微細析出がα相
中に発生するためであると思われる。これにより、Al
合金ダイカスト材の素地強度(硬度)は、焼き入れ焼き
戻しを伴うT6処理の場合と同様に向上するが、前記の
低い焼き戻し温度域では、鋳肌面近傍のチル層や湯流れ
層、初析層までは熱処理の影響(軟化や析出)が及ばな
いために、陽極酸化被膜生成に大きな影響を生じること
がなく、この部分での陽極酸化被膜生成は遅くなり、ま
た、切削面側でも切削量があまり深くない範囲では、過
飽和固溶相からのSiの析出も少なく、この面でも陽極
酸化特性はダイカスト材のみの切削面の時と何等変わる
ことはなく、良好な酸化皮膜の成長ができるものと思わ
れる。
From the viewpoint of metallography, this is because even if supersaturated Si solid-dissolved in the Alα phase is not subjected to solution treatment, the tempering temperature is low, that is, 180 to 20%.
This is presumably because fine precipitation of a practically necessary and sufficient Si amount occurs in the α phase at a temperature of 0 ° C. Thereby, Al
The base strength (hardness) of the alloy die-cast material is improved in the same manner as in the case of T6 treatment involving quenching and tempering. However, in the low tempering temperature range, the chill layer, the molten metal flow layer, Since the influence of heat treatment (softening and precipitation) does not reach the deposited layer, there is no significant effect on the formation of the anodic oxide film, the formation of the anodic oxide film in this part is slow, and the cutting surface is also cut. In the range where the amount is not too deep, the precipitation of Si from the supersaturated solid solution phase is also small, and even on this surface, the anodic oxidation characteristics do not change at all and do not change from the case of the cutting surface using only the die cast material, and a good oxide film can be grown. It seems to be.

【0012】以下に本発明方法を更に詳細に説明する。
本発明方法においては、切削加工がなされて更に陽極酸
化処理が施されるAl合金ダイカスト材において、切削
加工後にAl合金ダイカスト材を陽極酸化処理する前
に、450℃程度に加熱してから急冷する溶体化処理を
行なわずに、代わりに、溶体化処理温度よりも低い18
0〜200℃の範囲の温度に、2〜8時間程度加熱した
後で冷却する処理を施すものである。前記切削加工にお
いては、少なくとも0.1mm以上で1mm程度までの
深さの切削を行なってダイカスト材の精度や寸法を出す
ことが好ましい。この処理の後で通常の陽極酸化処理を
施す。ここでの陽極酸化処理は、硫酸浴などの公知の電
界浴を用いて良く、定電流電解などの方法を実施してA
l合金ダイカスト材の表面に陽極酸化皮膜を形成する。
この場合、切削加工された部分では、鋳造のままの鋳肌
の部分よりも陽極酸化被膜が成長しやすいので、厚い陽
極酸化被膜が短時間で生成する。即ち、切削加工した部
分の陽極酸化被膜が厚くなって、その他の部分の陽極酸
化被膜が薄くなる。これにより、耐摩耗性が必要な切削
加工部分には厚い陽極酸化被膜を確実に生成させること
ができる。また、溶体化処理を行わないようにしてAl
合金ダイカスト材にボイドを生じさせることなく素地の
強化ができる。
Hereinafter, the method of the present invention will be described in more detail.
In the method of the present invention, in the Al alloy die-casting material which is subjected to the cutting process and further subjected to the anodic oxidation treatment, before the anodizing treatment of the Al alloy die-casting material after the cutting process, it is heated to about 450 ° C. and then rapidly cooled. No solution treatment is performed, but instead a solution treatment temperature 18
The heating is performed at a temperature in a range of 0 to 200 ° C. for about 2 to 8 hours, and then a cooling process is performed. In the cutting process, it is preferable to obtain a precision and a dimension of the die-cast material by performing a cutting of at least 0.1 mm or more and a depth of about 1 mm. After this treatment, a normal anodic oxidation treatment is performed. The anodic oxidation treatment here may be performed using a known electric field bath such as a sulfuric acid bath.
An anodic oxide film is formed on the surface of the 1-alloy die-cast material.
In this case, since the anodic oxide film grows more easily in the cut portion than in the cast surface as it is, a thick anodic oxide film is generated in a short time. That is, the anodic oxide film in the cut portion becomes thick, and the anodic oxide film in the other portions becomes thin. As a result, a thick anodic oxide film can be reliably formed on the cut portion requiring wear resistance. Also, the solution treatment is not performed so that Al
The substrate can be reinforced without causing voids in the alloy die-cast material.

【0013】これらのことは、金属組織学的に見て、特
に過飽和してAlα相中に固溶されたSiが溶体化処理
まで行なわなくとも、低い焼き戻し温度域、即ち、18
0〜200℃の温度で実用上必要十分なSi量の微細析
出がα相中に発生するためであると思われる。これによ
り、Al合金ダイカスト材の素地強度(硬度)は、焼き
入れ焼き戻しを伴うT6処理の場合と同様に向上する
が、前記の低い焼き戻し温度域では、鋳肌面近傍のチル
層や湯流れ層、初析層までは熱処理の影響(軟化や析
出)が及ばないために、陽極酸化被膜生成に大きな影響
を生じることがなく、また、切削面側でも切削量があま
り深くない範囲では、過飽和固溶相からのSiの析出も
少なく、この面でも陽極酸化特性はダイカスト材のみの
切削面の時と何等変わることはなく、良好な酸化皮膜の
成長ができるものによると思われる。
From the viewpoint of metallography, these facts indicate that even if Si which is supersaturated and solid-dissolved in the Alα phase is not subjected to solution treatment, the tempering temperature is low, that is, 18 ° C.
This is presumably because fine precipitation of a practically necessary and sufficient Si amount occurs in the α phase at a temperature of 0 to 200 ° C. As a result, the base strength (hardness) of the Al alloy die-casting material is improved in the same manner as in the case of the T6 treatment involving quenching and tempering, but in the low tempering temperature range, the chill layer or hot water near the casting surface is hardened. Since the influence of heat treatment (softening and precipitation) does not reach the flow layer and the proeutectoid layer, there is no significant effect on the formation of the anodic oxide film, and in the range where the cutting amount is not too deep on the cutting surface side, The precipitation of Si from the supersaturated solid solution phase is also small, and the anodic oxidation characteristics are not changed at all on this surface as well as on the cut surface of the die-cast material alone, and it is considered that the oxide film can be favorably grown.

【0014】以上のことから、前記の方法を実施するこ
とで、図1に示すように、素地11の強度が高く、上面
の切削面12には厚い陽極酸化被膜13を有し、その他
の鋳肌面では薄い陽極酸化被膜14を有するAl合金ダ
イカスト材10を得ることができる。また、前記のよう
に構成するならば、余計な厚さの陽極酸化被膜を形成し
ていないので、陽極酸化処理の時間を短縮することがで
き、生産効率も高いのでAl合金ダイカスト材を従来よ
りも安価に製造することができる。また、前記方法によ
れば、450℃程度に加熱する溶体化処理は不用になる
ので、高温加熱炉や水冷装置は必要なくなり、代わりに
200℃程度に加熱できる一般的な安価な加熱炉があれ
ば処理できるので、設備コストと製造コストも安くな
る。
From the above, by performing the above method, as shown in FIG. 1, the strength of the base material 11 is high, the cut surface 12 on the upper surface has a thick anodic oxide film 13, On the skin surface, an Al alloy die-cast material 10 having a thin anodic oxide film 14 can be obtained. In addition, if configured as described above, since an unnecessary anodic oxide film is not formed, the time of anodic oxidation treatment can be reduced, and the production efficiency is high. Can also be manufactured at low cost. Further, according to the above method, a solution heat treatment of heating to about 450 ° C. becomes unnecessary, so that a high-temperature heating furnace or a water-cooling device is not required, and instead, there is a general inexpensive heating furnace that can heat to about 200 ° C. If it can be processed, equipment costs and manufacturing costs are also reduced.

【0015】[0015]

【実施例】日本アルミニウムダイカスト協会製のADC
12からなる3×70×150mmの複数の標準試料に
対してそれぞれの片面を0. 3mm、0. 3S面になる
ように研削した。次に、以下の試料1〜4を作成した。 試料1:ダイカストのまま(as cast 材)の試料。 試料2:前記試料1を450℃で2時間加熱後、水中急
冷した試料。 試料3:前記試料2を190℃で4時間加熱後徐冷した
もの。 試料4:前記試料1を190℃で4時間加熱後徐冷した
もの。 次いで前記各試料について、計算上15μm厚の陽極酸
化皮膜を生成させるべく、25%硫酸浴中にて10℃で
25分間、定電流電解を行ない、その後切断して埋め込
み試料としてから顕微鏡観察により皮膜厚さを測定し
た。なお、陽極酸化開始後25分の時の電解電圧を求め
るとともに、前記埋め込み試料を用いて素地のマイクロ
ビッカース硬度 (Hv) を測定した。この際、鋳肌面の陽
極酸化皮膜厚さに対する切削面の陽極酸化皮膜厚さの比
を求めた。以上の結果を下記の表1に示す。 (以下、余白)
[Example] ADC manufactured by Japan Aluminum Die Casting Association
A plurality of 12 × 3 × 70 × 150 mm standard samples were ground so that each side had a 0.3 mm, 0.3S plane. Next, the following samples 1 to 4 were prepared. Sample 1: A sample as-cast (as cast material). Sample 2: A sample which was heated at 450 ° C. for 2 hours and then quenched in water. Sample 3: Sample 2 was heated at 190 ° C. for 4 hours and then gradually cooled. Sample 4: Sample 1 was heated at 190 ° C. for 4 hours and then gradually cooled. Next, in order to form a 15 μm thick anodic oxide film on each of the samples, constant current electrolysis was performed at 25 ° C. in a 25% sulfuric acid bath at 10 ° C. for 25 minutes. The thickness was measured. The electrolytic voltage at 25 minutes after the start of the anodization was determined, and the micro Vickers hardness (Hv) of the substrate was measured using the embedded sample. At this time, the ratio of the thickness of the anodic oxide film on the cut surface to the thickness of the anodic oxide film on the casting surface was determined. The above results are shown in Table 1 below. (Hereinafter, margin)

【0016】[0016]

【表1】 (表1)
┌─────────┬────┬─────┬──────┬──────┐ │ 特性 │ 試料1 │ 試料2 │ 試料3 │ 試料4 │ ├─┬───────┼────┼─────┼──────┼──────┤ │硬│鋳肌面 (Hv) │ 91 │ 75 │ 100 │ 104 │ │度│切削面 (Hv) │ 82 │ 68 │ 95 │ 93 │ ├─┼───────┼────┼─────┼──────┼──────┤ │膜│鋳肌面( μm) │ 7 │ 10 │ 12 │ 8 │ │厚│切削面( μm) │ 15 │ 11 │ 13 │ 16 │ ├─┴───────┼────┼─────┼──────┼──────┤ │ 膜厚比 │ │ │ │ │ │( 切削面/鋳肌面) │ 2. 1 │ 1. 1 │ 1. 1 │ 2. 0 │ ├─────────┼────┼─────┼──────┼──────┤ │ 電解電圧(V) │ 51 │ 39 │ 38 │ 50 │ ├─────────┼────┼─────┼──────┼──────┤ │ 外 観 │異常なし│ボイドの突│ボイドの突 │ 異常なし │ │ │ 良好 │起多数発生│起多数発生 │ 良好 │ └─────────┴────┴─────┴──────┴──────┘
[Table 1]
│ │ Properties │ Sample 1 │ Sample 2 │ Sample 3 │ Sample 4 │ ├─┬───────┼────┼─────┼──────┼──────┤ │ Hard │ Cast surface (Hv) │ 91 │ 75 │ 100 │ 104 │ │ degree │ cutting surface (Hv) │ 82 │ 68 │ 95 │ 93 │ ├─┼───────┼────┼─────┼──────膜 │ membrane │ casting surface (μm) │ 7 │ 10 │ 12 │ 8 │ │ thickness │ cutting surface (μm) │ 15 │ 11 │ 13 │ 16 │ ├─┴────膜厚 │ Film thickness ratio │ │ │ │ │ │ │ (cut surface / cast surface) │ 2. 1 │ 1.1 │ 1.1 │ │ 2.0 │ ├─────────┼────┼─────┼───── ─┼──────┤ │ Electrolysis voltage (V) │ 51 │ 39 │ 38 │ 50 │ ├─────────┼────┼─────┼──── │ │ Appearance │ No abnormality │ Void protrusion │ Void protrusion │ No abnormality │ │ │ Good │ Many occurrences │ Many occurrences │ Good │ └─────── ──┴────┴─────┴──────┴──────┘

【0017】表1において、試料4が本発明方法に係る
試料であるが、この試料の強度は容体化処理している試
料3の強度と同等に優れ、その他の試料よりも高くなっ
ている。また、試料4の陽極酸化被膜の厚さは、試料1
のものと同等の傾向を示し、切削面の方が鋳肌面よりも
厚くなっているとともに、ボイドなどによる表面の凹凸
も見られない。以上のことから、前記方法を実施するこ
とで、切削面に優先的に厚い陽極酸化被膜を形成でき、
鋳肌面に薄い陽極酸化被膜を形成でき、素地の強度も高
いAl合金ダイカスト材を製造できることが明らかにな
った。
In Table 1, Sample 4 is a sample according to the method of the present invention, and the strength of this sample is as good as that of Sample 3 which has been subjected to the embedding treatment, and is higher than the other samples. The thickness of the anodic oxide coating of Sample 4 was
It shows the same tendency as that of No. 1, and the cut surface is thicker than the casting surface, and no surface irregularities due to voids or the like are observed. From the above, by performing the above method, it is possible to preferentially form a thick anodic oxide coating on the cut surface,
It has been clarified that a thin anodic oxide film can be formed on the casting surface and that an Al alloy die-cast material having a high substrate strength can be manufactured.

【0018】図2は本発明方法を実施して得られたロッ
カア−ムの一例を示すもので、このロッカア−ム20
は、Al合金ダイカストから切削加工により製造された
もので、端部21側の受座22の部分が切削加工され、
中央部の軸受部23が切削加工され、その他の部分は鋳
肌面となっているが、耐摩耗性に優れる必要がある受座
22の部分と軸受部23に厚い陽極酸化被膜24が形成
され、その他の部分に薄い陽極酸化被膜が形成されてい
る。このように、必要な部分に厚い陽極酸化被膜24を
形成でき、不要な部分に薄い陽極酸化被膜を形成できる
ので、陽極酸化処理時間を短縮できて耐摩耗性にも優れ
させることができる。
FIG. 2 shows an example of a rocker arm obtained by carrying out the method of the present invention.
Is manufactured by cutting from an Al alloy die casting, and a portion of the receiving seat 22 on the end 21 side is cut,
The central bearing portion 23 is cut and the other portions are cast surfaces, but a thick anodic oxide film 24 is formed on the bearing portion 23 and the bearing portion 23 which need to have excellent wear resistance. And a thin anodic oxide film is formed on other portions. As described above, a thick anodic oxide film 24 can be formed on a necessary portion, and a thin anodic oxide film can be formed on an unnecessary portion. Therefore, the anodic oxidation treatment time can be shortened and the wear resistance can be improved.

【0019】[0019]

【発明の効果】以上説明したように本発明方法において
は、切削加工を施してから陽極酸化処理を施すAl合金
ダイカスト材の前処理方法において、切削加工後にAl
合金ダイカスト材を陽極酸化処理する前に、従来450
℃程度に加熱してから急冷していた溶体化処理を行なわ
ずに、代わりに、溶体化処理温度よりも低い180〜2
00℃の範囲の温度に加熱した後で冷却する処理を施
し、この処理の後で通常の陽極酸化処理を施す。この場
合、切削加工された部分では、鋳造のままの鋳肌の部分
よりも陽極酸化被膜が成長しやすいので、厚い陽極酸化
被膜が生成する。即ち、切削加工した部分の陽極酸化被
膜が厚くなって、その他の部分の陽極酸化被膜が薄くな
る。これにより、耐摩耗性が必要な切削加工部分には厚
い陽極酸化被膜を確実に生成させることができる。ま
た、溶体化処理を行わないようにしてAl合金ダイカス
ト材にボイドを生じさせることなく素地の強化ができ
る。従って、必要な部分に必要な厚さの陽極酸化被膜を
生成させるとともに不要な部分は薄い陽極酸化被膜を形
成でき、しかも強度の高いAl合金ダイカスト材の前処
理方法を提供することができる。
As described above, according to the method of the present invention, in the pretreatment method of the Al alloy die-cast material, which is subjected to the cutting process and then subjected to the anodic oxidation treatment,
Before anodizing the alloy die-cast material, the conventional 450
Instead of performing the solution treatment which was rapidly cooled after heating to about ℃, instead of 180 to 2 which is lower than the solution treatment temperature.
After heating to a temperature in the range of 00 ° C., a cooling process is performed, and after this process, a normal anodizing process is performed. In this case, a thick anodic oxide film is generated in the cut portion because the anodic oxide film grows more easily than in the cast surface portion as cast. That is, the anodic oxide film in the cut portion becomes thicker, and the anodic oxide film in the other portions becomes thinner. As a result, a thick anodic oxide film can be reliably formed on the cut portion requiring wear resistance. In addition, the base material can be reinforced without causing a void in the Al alloy die casting material by not performing the solution treatment. Therefore, an anodic oxide film having a required thickness can be formed at a necessary portion, and a thin anodic oxide film can be formed at an unnecessary portion. In addition, a high-strength pretreatment method for an Al alloy die-cast material can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明に係る方法によって処理した後に
陽極酸化処理を施したAl合金ダイカスト材の断面図で
ある。
FIG. 1 is a cross-sectional view of an Al alloy die-cast material that has been subjected to anodization after being processed by the method according to the present invention.

【図2】図2は本発明方法を適用して製造されたロッカ
ア−ムの側面図である。
FIG. 2 is a side view of a rocker arm manufactured by applying the method of the present invention.

【図3】図3(a)は鋳造後に特別な処理を施さずに陽
極酸化処理を施したAl合金ダイカスト材の断面図、図
3(b)は鋳造後にT6処理を施した後に陽極酸化処理
を施したAl合金ダイカスト材の断面図である。
FIG. 3 (a) is a cross-sectional view of an Al alloy die-cast material which has been subjected to anodizing without performing any special treatment after casting, and FIG. 3 (b) is an anodizing treatment after performing T6 treatment after casting. FIG. 3 is a cross-sectional view of an Al alloy die-casting material subjected to the following.

【符号の説明】[Explanation of symbols]

10 Al合金ダイカスト材、 11 素地、 13、14 陽極酸化皮膜、 10 Al alloy die casting material, 11 Base, 13, 14 Anodized film,

フロントページの続き (56)参考文献 特開 昭60−56094(JP,A) (58)調査した分野(Int.Cl.7,DB名) C25D 11/00 - 11/24 Continuation of the front page (56) References JP-A-60-56094 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C25D 11/00-11/24

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Al合金ダイカスト材を切削加工した後
に陽極酸化処理するに際し、陽極酸化処理の前に、溶体
化処理を行なわずにAl合金の溶体化温度よりも低い1
80〜200℃の温度に加熱した後に冷却し、その後に
陽極酸化処理することを特徴とするAl合金ダイカスト
材の陽極酸化前処理方法。
When anodizing is performed after cutting an Al alloy die-casting material, the temperature is lower than the solution temperature of the Al alloy without performing a solution treatment before the anodizing process.
An anodizing pretreatment method for an aluminum alloy die-casting material, which comprises heating to a temperature of 80 to 200 ° C., cooling, and then performing anodizing.
JP27058792A 1992-10-08 1992-10-08 Anodizing pretreatment method for Al alloy die casting material Expired - Fee Related JP3173887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27058792A JP3173887B2 (en) 1992-10-08 1992-10-08 Anodizing pretreatment method for Al alloy die casting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27058792A JP3173887B2 (en) 1992-10-08 1992-10-08 Anodizing pretreatment method for Al alloy die casting material

Publications (2)

Publication Number Publication Date
JPH06122995A JPH06122995A (en) 1994-05-06
JP3173887B2 true JP3173887B2 (en) 2001-06-04

Family

ID=17488202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27058792A Expired - Fee Related JP3173887B2 (en) 1992-10-08 1992-10-08 Anodizing pretreatment method for Al alloy die casting material

Country Status (1)

Country Link
JP (1) JP3173887B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014005718A (en) * 2012-05-31 2014-01-16 Sanwa Shutter Corp Self-weight drop control system of fireproof and smokeproof shutter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021113505A (en) * 2020-01-16 2021-08-05 トヨタ自動車株式会社 Piston of internal combustion engine and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014005718A (en) * 2012-05-31 2014-01-16 Sanwa Shutter Corp Self-weight drop control system of fireproof and smokeproof shutter

Also Published As

Publication number Publication date
JPH06122995A (en) 1994-05-06

Similar Documents

Publication Publication Date Title
EP1584706A1 (en) Copper alloy sputtering target and semiconductor element wiring
EP0205893B1 (en) Bearing materials
KR100498002B1 (en) Foundry alloy and method of manufacturing foundry alloy article
JP3173887B2 (en) Anodizing pretreatment method for Al alloy die casting material
US4806211A (en) Aluminum alloy product with uniformly grey, light-fast surface and process for its manufacture
CN1037699C (en) Stainless corrosion-resistant conductive rolle rsleeve and making method thereof
JP4898087B2 (en) Production of fine-grained electroplating anode
US4715901A (en) Architectural product
CN116676500A (en) High-performance aluminum alloy thick plate and preparation process thereof
JP2004035930A (en) Aluminum alloy material and anodization treatment method therefor
JP2827890B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
JPH10263793A (en) Manufacture of al-based composite body
EP0643149B1 (en) Method of producing support for planographic printing plate
JP4040787B2 (en) Aluminum alloy rolled plate with stable gray color after anodization and method for producing the same
TW201814088A (en) Aluminum alloy sheet and anodized aluminum alloy sheet capable of suppressing a decrease in glossiness after performing an anodizing treatment, and exerting an excellent workability
JPH10306336A (en) Aluminum alloy extruded material excellent in surface gloss after anodic oxidation treatment and its production
JP2000054054A (en) Aluminum-magnesium-silicon forged part excellent in brightness and its production
JPH07224338A (en) Formation of hard anodically oxidized film and aluminum alloy for forming hard anodically oxidized film
JP4651837B2 (en) Tableware and manufacturing method thereof
JP2010506040A (en) Electroforming method and parts or layers obtained by this method
JPH0873974A (en) Aluminum alloy substrate for lithographic plate
JPH06330386A (en) Formation of hard anodic oxide film and aluminum alloy for forming the film
JPH11140609A (en) Production of aluminum alloy for building material excellent in surface treatment property and workability by using continuously cast coil
JPH05132731A (en) Aluminum alloy having a gold color tone after anodic oxidation treatment and its production
JP3032893B2 (en) High strength aluminum alloy for casting

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees