JP3163825B2 - Method for manufacturing solid electrolytic capacitor - Google Patents

Method for manufacturing solid electrolytic capacitor

Info

Publication number
JP3163825B2
JP3163825B2 JP03917593A JP3917593A JP3163825B2 JP 3163825 B2 JP3163825 B2 JP 3163825B2 JP 03917593 A JP03917593 A JP 03917593A JP 3917593 A JP3917593 A JP 3917593A JP 3163825 B2 JP3163825 B2 JP 3163825B2
Authority
JP
Japan
Prior art keywords
aqueous solution
solid electrolytic
repair
oxide film
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03917593A
Other languages
Japanese (ja)
Other versions
JPH06252004A (en
Inventor
隆 伊田
澄夫 西山
喜久男 ▲吉▼本
公二 露木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP03917593A priority Critical patent/JP3163825B2/en
Publication of JPH06252004A publication Critical patent/JPH06252004A/en
Application granted granted Critical
Publication of JP3163825B2 publication Critical patent/JP3163825B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は固体電解コンデンサの製
造方法に関し、特に、半導体層の形成時の修復化成方法
の改善に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a solid electrolytic capacitor and, more particularly, to an improvement in a method for repairing and forming a semiconductor layer.

【0002】[0002]

【従来の技術】従来においては、固体電解コンデンサを
製造する場合、弁作用を有する金属焼結体の表面に陽極
酸化により酸化皮膜を形成し、そしてこの金属焼結体の
酸化皮膜上に半導体層としての二酸化マンガン層を形成
していたが、この二酸化マンガン層を形成する場合、従
来は、陽極酸化を行った金属焼結体にある比重の硝酸マ
ンガン水溶液を含浸させ、その後200〜300℃で熱
分解するということを数回繰り返していた。
2. Description of the Related Art Conventionally, when a solid electrolytic capacitor is manufactured, an oxide film is formed by anodic oxidation on the surface of a metal sintered body having a valve action, and a semiconductor layer is formed on the oxide film of the metal sintered body. When forming this manganese dioxide layer, conventionally, a manganese nitrate aqueous solution having a specific gravity is impregnated in an anodized metal sintered body, and then at 200 to 300 ° C. The process of pyrolysis was repeated several times.

【0003】ところが、この熱分解を行うと、熱分解時
に発生するガスのストレスにより酸化皮膜が劣化するた
め、これを防ぐため、従来においては、熱分解する度
に、一定の電導度を有する修復化成液に浸漬し、そして
金属焼結体を陽極とし、かつ修復化成液を陰極として直
流電圧を印加することにより、修復化成を行っていた。
However, when this thermal decomposition is performed, the oxide film is deteriorated by the stress of the gas generated at the time of the thermal decomposition. To prevent this, conventionally, each time the thermal decomposition is performed, a repaired material having a constant conductivity is used. Restoration formation was performed by immersing in a chemical conversion solution and applying a DC voltage using the metal sintered body as an anode and the restoration formation solution as a cathode.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の方法では、修復化成液の電導度が低いと、電
流が流れ難くて修復能力が低いため、酸化皮膜を熱分解
前の状態に完全に修復するのは難しく、耐圧も低くな
る。一方、修復化成液の電導度を高くすると、二酸化マ
ンガン層が厚くなるに従い、修復化成中に過電流が流れ
易くなり、酸化皮膜が破壊してしまうという問題点があ
った。
However, in such a conventional method, when the electrical conductivity of the repairing chemical solution is low, it is difficult for current to flow and the repairing ability is low, so that the oxide film is completely restored to the state before thermal decomposition. Is difficult to repair, and the breakdown voltage is low. On the other hand, when the electrical conductivity of the repair formation solution is increased, there is a problem that as the manganese dioxide layer becomes thicker, an overcurrent easily flows during the repair formation and the oxide film is destroyed.

【0005】本発明は上記従来の問題点を解決するもの
で、熱分解によって劣化した酸化皮膜を熱分解前の状態
に完全に修復させることができる固体電解コンデンサの
製造方法を提供することを目的とするものである。
An object of the present invention is to solve the above-mentioned conventional problems and to provide a method of manufacturing a solid electrolytic capacitor capable of completely restoring an oxide film deteriorated by thermal decomposition to a state before thermal decomposition. It is assumed that.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明の固体電解コンデンサの製造方法は、金属焼結
体の酸化皮膜上に硝酸マンガン水溶液を含浸させ、これ
を熱分解して半導体層としての二酸化マンガン層を形成
する際、含浸させる硝酸マンガン水溶液の比重が1.3
5未満である熱分解工程の初期段階では1.0〜10m
S/cmの電導度を有する修復化成液を用いて修復化成を
行い、かつ含浸させる硝酸マンガン水溶液の比重が1.
35以上である熱分解工程の後半部分では0.10〜6
0μS/cmの電導度を有する修復化成液を用いて修復化
成を行うことにより、半導体層としての二酸化マンガン
層を形成するようにしたものである。
In order to achieve the above object, a method of manufacturing a solid electrolytic capacitor according to the present invention comprises: impregnating an oxide film of a metal sintered body with an aqueous solution of manganese nitrate; When forming a manganese dioxide layer as a layer, the specific gravity of the manganese nitrate aqueous solution to be impregnated is 1.3.
1.0 to 10 m in the initial stage of the pyrolysis process, which is less than 5.
The repair formation is performed using a repair formation solution having a conductivity of S / cm, and the specific gravity of the manganese nitrate aqueous solution to be impregnated is 1.
In the latter half of the pyrolysis step of 35 or more, 0.10-6
A manganese dioxide layer as a semiconductor layer is formed by performing a repair formation using a repair formation solution having a conductivity of 0 μS / cm.

【0007】[0007]

【作用】上記した製造方法によれば、熱分解工程の初期
段階で1.0〜10mS/cmの電導度を有する修復化成
液を用い、かつ熱分解工程の後半部分では0.10〜6
0μS/cmの電導度を有する修復化成液を用いて修復化
成を行うようにしているため、熱分解での酸化皮膜の劣
化度合いに応じた修復化成を行うことができ、これによ
り、熱分解によって劣化した酸化皮膜を熱分解前の状態
に完全に修復することができるため、固体電解コンデン
サとしての漏れ電流特性と耐圧特性を向上させることが
できるものである。
According to the above-mentioned production method, a repairing chemical solution having an electric conductivity of 1.0 to 10 mS / cm is used in the initial stage of the thermal decomposition process, and 0.10 to 6 is used in the latter half of the thermal decomposition process.
Since the repair formation is performed using a repair formation solution having a conductivity of 0 μS / cm, the repair formation can be performed in accordance with the degree of deterioration of the oxide film due to thermal decomposition. Since the deteriorated oxide film can be completely restored to the state before the thermal decomposition, the leakage current characteristics and the withstand voltage characteristics of the solid electrolytic capacitor can be improved.

【0008】[0008]

【実施例】以下、本発明の実施例と、比較のための従来
例について説明する。
EXAMPLES Examples of the present invention and conventional examples for comparison will now be described.

【0009】(従来例1)タンタル粉末を周知の方法で
成形、焼結してφ2.3mm×3.0mmの金属焼結体を作
り、そしてこれを、0.1モル/lのリン酸水溶液中で
120mA/gの一定電流で50Vまで昇圧し、それを
2時間保持して陽極酸化する。次いで比重が1.30の
硝酸マンガン溶液を常温で酸化皮膜上に浸漬して付着さ
せた後、温度250℃で熱分解することによって二酸化
マンガン層を形成し、さらに、この金属焼結体を電導度
が50μS/cmである硝酸水溶液に浸漬し、そして金属
焼結体を陽極とし、かつ硝酸水溶液を陰極として50V
の直流電圧を10分間印加することにより、修復化成を
行った。
(Conventional Example 1) Tantalum powder is molded and sintered by a well-known method to produce a metal sintered body of φ2.3 mm × 3.0 mm, and this is mixed with a 0.1 mol / l phosphoric acid aqueous solution. The pressure is raised to 50 V at a constant current of 120 mA / g in the inside, and it is maintained for 2 hours to perform anodization. Next, a manganese nitrate solution having a specific gravity of 1.30 is immersed on the oxide film at room temperature to adhere thereto, and then thermally decomposed at a temperature of 250 ° C. to form a manganese dioxide layer. Immersed in a nitric acid aqueous solution having a degree of 50 μS / cm, and a 50 V
Was applied for 10 minutes to perform repair formation.

【0010】その後、この熱分解と修復化成の操作を6
回繰り返した後、さらに、比重が1.80の硝酸マンガ
ン溶液を酸化皮膜上に浸漬して付着させた後、温度21
0℃で熱分解することによって二酸化マンガン層を形成
し、その後、比重が1.30の場合と同様に、電導度が
50μS/cmである硝酸水溶液中で直流電圧を10分間
印加することにより、修復化成を行うという操作を4回
繰り返した。さらにその後、グラファイト層、銀ペース
ト層および半田層の陰極導体部を形成し、かつ樹脂外装
を施して固体電解コンデンサを得た。
[0010] Thereafter, the operation of this thermal decomposition and repair formation is carried out in 6
After repeating the process twice, a manganese nitrate solution having a specific gravity of 1.80 was further immersed in the oxide film and allowed to adhere thereto.
A manganese dioxide layer is formed by pyrolysis at 0 ° C., and then a DC voltage is applied for 10 minutes in a nitric acid aqueous solution having an electric conductivity of 50 μS / cm, as in the case where the specific gravity is 1.30. The operation of performing repair formation was repeated four times. Thereafter, a cathode conductor portion of a graphite layer, a silver paste layer and a solder layer was formed, and a resin sheath was applied to obtain a solid electrolytic capacitor.

【0011】(従来例2)従来例1では、熱分解毎に電
導度が50μS/cmである硝酸水溶液中で直流電圧を1
0分間印加することにより、修復化成を行っていたが、
従来例2では、電導度が5.0mS/cmである硝酸水溶
液中で修復化成を行うようにしたもので、その他は従来
例1と同じである。
(Conventional Example 2) In Conventional Example 1, a DC voltage was set to 1 in an aqueous nitric acid solution having an electric conductivity of 50 μS / cm for each thermal decomposition.
Repair application was performed by applying for 0 minutes,
In the second conventional example, the repair formation is performed in a nitric acid aqueous solution having an electric conductivity of 5.0 mS / cm, and the rest is the same as the first conventional example.

【0012】(実施例1)従来例1および従来例2で
は、熱分解後、毎回一定の電導度を有する硝酸水溶液中
で修復化成を行っていたが、実施例1では、比重が1.
30である硝酸マンガン水溶液を含浸させた後、熱分解
を行う熱分解工程の初期段階を含む前半部分では5.0
mS/cmの電導度を有する硝酸水溶液中で直流電圧を1
0分間印加することにより、修復化成を行うようにし、
そして比重が1.80である硝酸マンガン水溶液を含浸
させた後、熱分解を行う熱分解工程の後半部分では50
μS/cmの電導度を有する硝酸水溶液中で直流電圧を1
0分間印加することにより、修復化成を行うようにした
ものである。
(Embodiment 1) In Conventional Examples 1 and 2, after thermal decomposition, repair formation was carried out in a nitric acid aqueous solution having a constant electric conductivity every time, but in Example 1, the specific gravity was 1.
In the first half of the first half including the initial stage of the pyrolysis step of impregnating with an aqueous solution of manganese nitrate of 30 and then performing pyrolysis, 5.0
DC voltage of 1 in aqueous nitric acid solution with conductivity of mS / cm
By applying for 0 minutes, the repair formation is performed,
Then, after impregnating with an aqueous solution of manganese nitrate having a specific gravity of 1.80, 50% is used in the latter half of the pyrolysis step of performing pyrolysis.
DC voltage of 1 in nitric acid aqueous solution with μS / cm conductivity
By applying for 0 minutes, repair formation is performed.

【0013】(実施例2)実施例1では硝酸水溶液中で
修復化成を行っていたが、実施例2では、リン酸水溶液
中で修復化成を行うようにしたもので、その他は、実施
例1と同じである。
(Embodiment 2) In the first embodiment, the repair formation was carried out in an aqueous nitric acid solution. In the second embodiment, the repair formation was carried out in a phosphoric acid aqueous solution. Is the same as

【0014】以上説明した本発明の実施例1,2による
固体電解コンデンサの特性(漏れ電流,耐圧)と、従来
例1,2による固体電解コンデンサの特性(漏れ電流,
耐圧)とを比較した結果を図1(a)(b)に示す。
The characteristics (leakage current, breakdown voltage) of the solid electrolytic capacitors according to the first and second embodiments of the present invention and the characteristics (leakage current,
1 (a) and 1 (b) show the results of comparison with the breakdown voltage.

【0015】図1(a)(b)の結果から明らかなよう
に、本発明の実施例1,2による固体電解コンデンサ
は、一定の電導度を有する硝酸水溶液中で修復化成を行
っていた従来例1,2による固体電解コンデンサに比べ
て、漏れ電流特性と耐圧特性を改善することができるも
のである。
As is apparent from the results shown in FIGS. 1A and 1B, the solid electrolytic capacitors according to the first and second embodiments of the present invention have been repaired in a nitric acid aqueous solution having a constant conductivity. In comparison with the solid electrolytic capacitors according to Examples 1 and 2, leakage current characteristics and withstand voltage characteristics can be improved.

【0016】[0016]

【発明の効果】以上のように本発明の固体電解コンデン
サの製造方法によれば、金属焼結体の酸化皮膜上に硝酸
マンガン水溶液を含浸させ、これを熱分解して半導体層
としての二酸化マンガン層を形成する際、含浸させる硝
酸マンガン水溶液の比重が1.35未満である熱分解工
程の初期段階では1.0〜10mS/cmの電導度を有す
る修復化成液を用いて修復化成を行い、かつ含浸させる
硝酸マンガン水溶液の比重が1.35以上である熱分解
工程の後半部分では0.10〜60μS/cmの電導度を
有する修復化成液を用いて修復化成を行うことにより、
半導体層としての二酸化マンガン層を形成するようにし
ているため、熱分解での酸化皮膜の劣化度合いに応じた
修復化成を行うことができ、これにより、熱分解で劣化
した酸化皮膜を熱分解前の状態に完全に修復することが
できるため、固体電解コンデンサとしての漏れ電流特性
と耐圧特性を向上させることができるものである。
As described above, according to the method for manufacturing a solid electrolytic capacitor of the present invention, a manganese nitrate aqueous solution is impregnated on an oxide film of a metal sintered body, and this is thermally decomposed to form manganese dioxide as a semiconductor layer. In forming the layer, in the initial stage of the thermal decomposition step in which the specific gravity of the aqueous solution of manganese nitrate to be impregnated is less than 1.35, repair formation is performed using a repair formation solution having a conductivity of 1.0 to 10 mS / cm, In the latter half of the thermal decomposition step in which the specific gravity of the aqueous solution of manganese nitrate to be impregnated is 1.35 or more, by performing a repair formation using a repair formation solution having a conductivity of 0.10 to 60 μS / cm,
Since the manganese dioxide layer is formed as a semiconductor layer, it is possible to carry out repair formation in accordance with the degree of deterioration of the oxide film due to thermal decomposition. Therefore, the leakage current characteristic and the withstand voltage characteristic of the solid electrolytic capacitor can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)本発明の実施例1,2による固体電解コ
ンデンサの漏れ電流特性と、従来例1,2による固体電
解コンデンサの漏れ電流特性とを比較した結果を示す特
性図 (b)本発明の実施例1,2による固体電解コンデンサ
の耐圧特性と、従来例1,2による固体電解コンデンサ
の耐圧特性とを比較した結果を示す特性図
FIG. 1A is a characteristic diagram showing the result of comparing the leakage current characteristics of the solid electrolytic capacitors according to Examples 1 and 2 of the present invention and the solid electrolytic capacitors according to Conventional Examples 1 and 2; FIG. 6 is a characteristic diagram showing a result of comparing the withstand voltage characteristics of the solid electrolytic capacitors according to the first and second embodiments of the present invention and the solid electrolytic capacitors according to the first and second conventional examples.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 露木 公二 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平2−162711(JP,A) 特開 昭59−104115(JP,A) 特開 昭64−7607(JP,A) 特開 平3−102812(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01G 9/04 307 H01G 9/032 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koji Tsukiki 1006 Kazuma Kadoma, Kadoma City, Osaka Inside Matsushita Electric Industrial Co., Ltd. (56) References JP-A-2-162711 (JP, A) JP-A-59 -104115 (JP, A) JP-A-64-7607 (JP, A) JP-A-3-102812 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01G 9/04 307 H01G 9/032

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 弁作用を有する金属焼結体の表面に陽極
酸化により酸化皮膜を形成し、この金属焼結体の酸化皮
膜上に硝酸マンガン水溶液を含浸させ、これを熱分解し
て半導体層としての二酸化マンガン層を形成する際、含
浸させる硝酸マンガン水溶液の比重が1.35未満であ
る熱分解工程の初期段階では1.0〜10mS/cmの電
導度を有する修復化成液を用いて修復化成を行い、かつ
含浸させる硝酸マンガン水溶液の比重が1.35以上で
ある熱分解工程の後半部分では0.10〜60μS/cm
の電導度を有する修復化成液を用いて修復化成を行うこ
とにより、半導体層としての二酸化マンガン層を形成
し、その後、カーボン層、金属層および外装樹脂を順次
形成することを特徴とする固体電解コンデンサの製造方
法。
An oxide film is formed on the surface of a metal sintered body having a valve action by anodic oxidation, and an manganese nitrate aqueous solution is impregnated on the oxide film of the metal sintered body, and the resultant is thermally decomposed to form a semiconductor layer. When the manganese dioxide layer is formed as an aqueous solution, the manganese nitrate aqueous solution to be impregnated is repaired using a repair chemical having an electrical conductivity of 1.0 to 10 mS / cm in the initial stage of the thermal decomposition process in which the specific gravity is less than 1.35. In the latter half of the pyrolysis step where the specific gravity of the aqueous solution of manganese nitrate to be formed and impregnated is 1.35 or more, 0.10 to 60 μS / cm
A solid electrolyte characterized by forming a manganese dioxide layer as a semiconductor layer by performing a repair formation using a repair formation solution having an electric conductivity of 1, and then sequentially forming a carbon layer, a metal layer and an exterior resin. Manufacturing method of capacitor.
JP03917593A 1993-03-01 1993-03-01 Method for manufacturing solid electrolytic capacitor Expired - Fee Related JP3163825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03917593A JP3163825B2 (en) 1993-03-01 1993-03-01 Method for manufacturing solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03917593A JP3163825B2 (en) 1993-03-01 1993-03-01 Method for manufacturing solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH06252004A JPH06252004A (en) 1994-09-09
JP3163825B2 true JP3163825B2 (en) 2001-05-08

Family

ID=12545787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03917593A Expired - Fee Related JP3163825B2 (en) 1993-03-01 1993-03-01 Method for manufacturing solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP3163825B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4589187B2 (en) * 2005-07-14 2010-12-01 ニチコン株式会社 Manufacturing method of solid electrolytic capacitor

Also Published As

Publication number Publication date
JPH06252004A (en) 1994-09-09

Similar Documents

Publication Publication Date Title
JPH07135126A (en) Solid electrolytic capacitor and its manufacture
JPH04112519A (en) Manufacture of solid electrolytic capacitor
JP3163825B2 (en) Method for manufacturing solid electrolytic capacitor
JP4555157B2 (en) Manufacturing method of solid electrolytic capacitor
JPH09306791A (en) Manufacture of solid electrolytic capacitor
JP2811648B2 (en) Method for manufacturing solid electrolytic capacitor
JP4543580B2 (en) Manufacturing method of multilayer aluminum solid electrolytic capacitor
JP2819628B2 (en) Method for manufacturing solid electrolytic capacitor
US4079503A (en) Process for the production of a solid electrolytic capacitor
JPH09306793A (en) Manufacture of capacitor
JPH09246113A (en) Manufacture of solid electrolytic capacitor
JP2853438B2 (en) Method for manufacturing solid electrolytic capacitor
JP3157720B2 (en) Method for manufacturing solid electrolytic capacitor
JPH04103117A (en) Manufacture of solid electrolytic capacitor
JPH02277212A (en) Tantalum electrolytic capacitor and its manufacture
JPH07220982A (en) Manufacture of solid electrolytic capacitor
JPH09306796A (en) Manufacture of solid-state electrolytic capacitor
KR100280291B1 (en) Dielectric crack recovery method of aluminum thin film for aluminum electrolytic capacitor
JPH07153650A (en) Manufacture of solid electrolytic capacitor
JPH04119618A (en) Manufacture of solid electrolytic capacitor
JP2000012396A (en) Manufacture of solid electrolytic capacitor
JPH0261039A (en) Production of electrode foil for electrolytic capacitor
JPH09306795A (en) Manufacture of solid-state electrolytic capacitor
JP3150464B2 (en) Manufacturing method of solid electrolytic capacitor
JPS63268240A (en) Manufacture of solid electrolytic capacitor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080302

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090302

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees