JP3162594B2 - Electrolytic solution and method for producing nitrogen trifluoride gas using the same - Google Patents

Electrolytic solution and method for producing nitrogen trifluoride gas using the same

Info

Publication number
JP3162594B2
JP3162594B2 JP03232995A JP3232995A JP3162594B2 JP 3162594 B2 JP3162594 B2 JP 3162594B2 JP 03232995 A JP03232995 A JP 03232995A JP 3232995 A JP3232995 A JP 3232995A JP 3162594 B2 JP3162594 B2 JP 3162594B2
Authority
JP
Japan
Prior art keywords
gas
electrolytic solution
anode
fluoride
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03232995A
Other languages
Japanese (ja)
Other versions
JPH08225973A (en
Inventor
明政 田坂
眞 在塚
徳幸 岩永
敦久 三本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP03232995A priority Critical patent/JP3162594B2/en
Publication of JPH08225973A publication Critical patent/JPH08225973A/en
Application granted granted Critical
Publication of JP3162594B2 publication Critical patent/JP3162594B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は三弗化窒素(NF)ガ
スの電解液及び製造方法に関する。更に詳しくは、フッ
化アンモニウム(NHF)−フッ化水素(HF)系溶
融塩の電解によるNFガスの製造方法に関する。
The present invention relates to a nitrogen trifluoride (NF 3) regarding the electrolyte and a manufacturing method of the gas. More specifically, the present invention relates to a method for producing NF 3 gas by electrolysis of an ammonium fluoride (NH 4 F) -hydrogen fluoride (HF) -based molten salt.

【0002】[0002]

【従来の技術】最近のエレクトロニクス産業の飛躍的な
発展に伴い、半導体素子の高密度化、高性能化が進めら
れ、超大規模集積回路の生産が増加している。これに伴
い、該集積回路製造過程に使用されるドライエッチング
用のガスとして、また、CVD装置のクリーナー用のガ
スとして高純度のNFガスが要求されるようになっ
た。
2. Description of the Related Art With the recent rapid development of the electronics industry, the density and performance of semiconductor devices have been increased, and the production of ultra-large-scale integrated circuits has been increasing. Accordingly, high-purity NF 3 gas has been required as a gas for dry etching used in the integrated circuit manufacturing process and as a gas for a cleaner of a CVD apparatus.

【0003】NFガスの製造方法は大きく化学法と電
解法とに分けられる。化学法は、第一段階として電解に
よりフッ素ガス(F)を製造し、第二段階において得
られたFと窒素含有原料とを反応させることによりN
ガスを製造するものである。一方、電解法は、窒素
分およびフッ素分を含有する非水溶液系溶融塩を電解液
とし、これを電解することによりNFガスを製造する
ものである。
[0003] The method for producing NF 3 gas is roughly divided into a chemical method and an electrolytic method. In the chemical method, fluorine gas (F 2 ) is produced by electrolysis as a first step, and N 2 is produced by reacting the F 2 obtained in the second step with a nitrogen-containing raw material.
It is to produce F 3 gas. On the other hand, in the electrolysis method, an NF 3 gas is produced by using a non-aqueous molten salt containing a nitrogen component and a fluorine component as an electrolytic solution and electrolyzing the electrolytic solution.

【0004】電解法は化学法と比較した場合、一段階
で、かつ高収率でNFガスを製造できる利点を有して
いる。
[0004] The electrolysis method has an advantage that NF 3 gas can be produced in one step and in a high yield as compared with the chemical method.

【0005】化学法では、四弗化炭素(CF)ガスが
多量に含まれるFを原料とするため、必然的に多量の
CFがNFガス中へ混入する。ところが、このCF
はNFと物性が極めて似ており、高純度のNF
スを得るためには、工業的にコストの嵩む高度の精製技
法を適用せざるを得ない。これに対して、電解法では合
成の過程でCFが生成、あるいは混入することが殆ど
無いため、容易に高純度のNFを得られる利点を有し
ている。
In the chemical method, since F 2 containing a large amount of carbon tetrafluoride (CF 4 ) gas is used as a raw material, a large amount of CF 4 is necessarily mixed into NF 3 gas. However, this CF
No. 4 is very similar in physical properties to NF 3, and in order to obtain high-purity NF 3 gas, it is inevitable to apply an industrially expensive advanced purification technique. On the other hand, the electrolytic method has the advantage that NF 3 of high purity can be easily obtained because CF 4 is hardly generated or mixed in the synthesis process.

【0006】電解法NFの工業的合成の概要は次の通
りである。電解液は、アンモニアや酸性フッ化アンモニ
ウム(NHHF)と、無水フッ化水素(HF)より
なるNHF−HF系溶融塩を使用する。これをニッケ
ル製の陽極で電解する。NF は陽極より発生し、陽極
側から不純物を含むNFが得られる。精製操作後のN
純度は99.99容量%を超える。
[0006] Electrolytic NF3An overview of the industrial synthesis of
It is. The electrolytic solution is ammonia or ammonium fluoride acid.
Um (NH4HF2) And anhydrous hydrogen fluoride (HF)
NH4An F-HF-based molten salt is used. This is Nicke
Electrolyze with an anode made of metal. NF 3Is generated from the anode,
NF containing impurities from the side3Is obtained. N after purification operation
F3Purity is greater than 99.99% by volume.

【0007】[0007]

【発明が解決しようとする課題】陽極に最適な金属材料
はニッケルである。他の金属では、不働態化して電流が
流れないか、あるいは激しく溶解するもののいずれかで
ある。しかしニッケルの場合も幾分の溶解が起こり、電
極が消耗する。このため、工業的生産においては、頻繁
な電極交換を招くだけでなく、溶解で生成したニッケル
塩で汚染された電解液も頻繁に交換することが余儀なく
される。
The most suitable metal material for the anode is nickel. Other metals are either passivated and no current flows, or they melt violently. However, even in the case of nickel, some dissolution occurs and the electrodes are consumed. For this reason, in industrial production, not only frequent electrode replacement is caused, but also frequent replacement of the electrolytic solution contaminated with the nickel salt generated by dissolution is inevitable.

【0008】この課題に対して、電解温度を下げること
で溶解量を減らすことを目的に、融点の低いフッ化アン
モニウム(NHF)−フッ化セシウム(CsF)−フ
ッ化水素(HF)系溶融塩を電解液に使用した場合、ニ
ッケルの溶解量はNHF−HF系の約半分に減少し
た。しかしながら、高価なCsFを多量に必要とするこ
とや、NFの生成量が低下するなどの課題が新たに生
じ、実用には至っていない。
In order to reduce the amount of dissolution by lowering the electrolysis temperature, an ammonium fluoride (NH 4 F) -cesium fluoride (CsF) -hydrogen fluoride (HF) system having a low melting point is used. When a molten salt was used for the electrolyte, the amount of nickel dissolved was reduced to about half that of the NH 4 F-HF system. However, problems such as the necessity of a large amount of expensive CsF and a decrease in the amount of NF 3 are newly generated, and the method has not been put to practical use.

【0009】安価なフッ化カリウム(KF)をNH
−HF系溶融塩に加えた電解液で電解を行った例もある
が、この場合はニッケルの溶解量が著しく増加し、逆効
果であった。
Inexpensive potassium fluoride (KF) is replaced with NH 4 F
In some cases, electrolysis was performed using an electrolytic solution added to a HF-based molten salt. In this case, however, the amount of nickel dissolved significantly increased, which was an adverse effect.

【0010】[0010]

【課題を解決するための手段】本発明者らは、鋭意この
溶解に関する問題解決に向け検討を続けてきた。まず、
発明者らは、ニッケルとその他の金属との溶解挙動の相
違について検討した。その結果、ニッケルの場合は安定
な導電性オキシフルオライドが電極表面を覆い、その膜
を介して電極と電解液との間で電子の授受が行われてい
るため、他の金属に比べて低い溶解量で、かつ不働態状
態にならずに電解が行われることを見いだした。更に、
電極表面の導電性オキシフルオライドの電子伝導性を高
めるため、特定の溶融塩の組成モル比で、かつ特定量の
Liを含有させることにより、更に溶解量を低減できる
ことを見出し、本発明を完成したものである。
Means for Solving the Problems The present inventors have intensively studied to solve the problem relating to this dissolution. First,
The inventors have studied the difference in dissolution behavior between nickel and other metals. As a result, in the case of nickel, the stable conductive oxyfluoride covers the electrode surface, and electrons are exchanged between the electrode and the electrolyte through the film, so that it is lower than other metals. It has been found that electrolysis is carried out in a dissolved amount and without being in a passive state. Furthermore,
In order to increase the electron conductivity of the conductive oxyfluoride on the electrode surface, it has been found that the dissolution amount can be further reduced by adding a specific molar amount of Li and a specific molar ratio of the molten salt, and completed the present invention. It was done.

【0011】即ち、本発明はフッ化アンモニウム(NH
F)−フッ化水素(HF)系溶融塩であって、組成モ
ル比(HF/NHF)が1〜3であり、かつ該溶融塩
中にリチウム(Li)を0.01モル%以上含有するこ
とを特徴とする電解液、またはフッ化アンモニウム(N
F)−フッ化水素(HF)系溶融塩であって、組成
モル比(HF/NHF)が1〜3であり、かつ該溶融
塩中にリチウム(Li)を0.01モル%以上含有し、
100〜140℃に保持しながら、ニッケルを陽極とし
て電解することを特徴とする三フッ化窒素ガスの製造方
法に関する。
That is, the present invention relates to ammonium fluoride (NH)
4 F) -hydrogen fluoride (HF) -based molten salt having a composition molar ratio (HF / NH 4 F) of 1 to 3 and 0.01 mol% of lithium (Li) in the molten salt An electrolytic solution characterized by containing the above or ammonium fluoride (N
H 4 F) -hydrogen fluoride (HF) -based molten salt having a composition molar ratio (HF / NH 4 F) of 1 to 3 and 0.01 mol of lithium (Li) in the molten salt % Or more,
The present invention relates to a method for producing nitrogen trifluoride gas, characterized in that electrolysis is performed using nickel as an anode while maintaining the temperature at 100 to 140 ° C.

【0012】次に、更に本発明について詳しく開示す
る。本発明に用いる電解液は、フッ化アンモニウム(N
F)−フッ化水素(HF)系塩を使用する。調製方
法としては、例えば、アンモニアガスと無水フッ化水素
より調製、一水素二フッ化アンモニウムと無水フッ化水
素より調製、フッ化アンモニウムと無水フッ化水素より
調製する等の方法がある。
Next, the present invention will be further disclosed in detail. The electrolyte used in the present invention is ammonium fluoride (N
H 4 F) - using a hydrogen fluoride (HF) based salts. Examples of the preparation method include a method of preparing from ammonia gas and anhydrous hydrogen fluoride, a method of preparing from ammonium hydrogen difluoride and anhydrous hydrogen fluoride, a method of preparing from ammonium fluoride and anhydrous hydrogen fluoride.

【0013】これら電解液の調製方法には、たとえば、
次のような方法で行うことができる。一水素二フッ化ア
ンモニウム(NHHF)または/およびフッ化アン
モニウム(NHF)と無水HFより調整する方法は、
まず、容器もしくは電解槽にNHHFまたは/およ
びNHFを所定量投入し、これに所定量の無水HFガ
スを吹き込むものである。
The method for preparing these electrolytes includes, for example,
This can be done in the following manner. A method for preparing from ammonium hydrogen difluoride (NH 4 HF 2 ) or / and ammonium fluoride (NH 4 F) and anhydrous HF is as follows.
First, a predetermined amount of NH 4 HF 2 and / or NH 4 F is charged into a container or an electrolytic bath, and a predetermined amount of anhydrous HF gas is blown into this.

【0014】もうひとつの方法は、容器もしくは電解槽
中で、所定量のNHガスとHFガスを直接反応させて
電解液を調整する方法である。なかでも、NHガスお
よびHFガスの反応においては、5〜70vol%程度
の乾燥不活性ガス、例えば、窒素、アルゴン、ヘリウム
等を同伴させて供給すると、ガス供給管に電解液が逆流
することもなく安定に調整できる。いずれも該電解液を
容易に調製することが可能である。
Another method is a method in which a predetermined amount of NH 3 gas and HF gas are directly reacted in a container or an electrolytic bath to prepare an electrolytic solution. In particular, in the reaction of the NH 3 gas and the HF gas, when a dry inert gas of about 5 to 70 vol%, for example, nitrogen, argon, helium, etc. is supplied, the electrolyte flows back into the gas supply pipe. Can be adjusted without any problems. In any case, the electrolyte can be easily prepared.

【0015】電解液溶融塩の組成モル比(HF/NH
F)としては、1〜3が好適である。該モル比が1未満
での該電解液は熱分解性を帯びるために好ましくない。
また、モル比が3を超えるとHFの蒸気圧が高くなり、
HFの損失が多く、この損失により電解液組成の変動が
大きくなるため好ましくない。該モル比が1〜3である
のが好適であるが、より高い組成安定性を求めるなら
ば、1.5〜2.5の範囲が、更には1.8〜2.2の
範囲が最適である。
The composition molar ratio of the molten salt of the electrolytic solution (HF / NH 4
As F), 1 to 3 are preferable. The electrolytic solution having a molar ratio of less than 1 is not preferable because it has thermal decomposability.
When the molar ratio exceeds 3, the vapor pressure of HF increases,
The loss of HF is large, and this loss undesirably increases the fluctuation of the electrolyte composition. The molar ratio is preferably 1 to 3, but if higher composition stability is required, the range of 1.5 to 2.5 is more preferable, and the range of 1.8 to 2.2 is more preferable. It is.

【0016】本発明では上記電解液にリチウム(Li)
を用いる。Liは、電解液調製前後のどの段階で加えて
も差し支えない、電解液中にほぼ均一に存在すれば良
く、電解液調製中に添加すれば混合も容易である。添加
するLi分の形態としては各種の塩が使用できる。例え
ば、LiI、LiBr、LiCl、LiF、LiOH、
Li(CO)、LiNO、CHCOOLi等が
挙げられる。また、場合によっては水素化物や金属Li
も使用できる。要は添加後にLi分が溶解状態で電解液
中に存在している必要がある。
In the present invention, lithium (Li) is used as the electrolyte.
Is used. Li may be added at any stage before and after the preparation of the electrolytic solution, as long as it is almost uniformly present in the electrolytic solution, and if added during the preparation of the electrolytic solution, mixing is easy. Various salts can be used as the form of the Li component to be added. For example, LiI, LiBr, LiCl, LiF, LiOH,
Li 2 (CO) 3 , LiNO 3 , CH 3 COOLi, and the like. In some cases, hydride or metal Li
Can also be used. In short, it is necessary that Li is present in the electrolytic solution in a dissolved state after the addition.

【0017】Li分の添加量はごく少量でもその効果を
発現する。Li分が電解液に対して0.1モル%であっ
ても、Li分を添加しない場合に比して溶解量をおよそ
40%減らすことができる。添加量を上げるとその効果
は更に高まるが、概ね1モル%程度も添加すれば効果は
十分に発揮される。添加量は0.01モル%以上であれ
ば本発明の効果を得ることができる。
The effect is exhibited even if the amount of Li added is very small. Even when the Li content is 0.1 mol% with respect to the electrolytic solution, the amount of dissolution can be reduced by about 40% as compared with the case where the Li content is not added. The effect is further enhanced when the added amount is increased, but the effect is sufficiently exhibited when approximately 1 mol% is added. If the added amount is 0.01 mol% or more, the effects of the present invention can be obtained.

【0018】陽極にはニッケルを使用するが、モネル合
金(ニッケル分65重量%前後)では、不働態化するた
め好ましくない。概ねニッケル分90重量%を超えるニ
ッケルであれば問題ない。尚、工業的には汎用品の使用
が好都合であり、いわゆる純ニッケル(ニッケル含有量
は概ね99重量%以上)やDuranickel al
loy301(ニッケル含有量94%、INCO製)が
挙げられる。
Although nickel is used for the anode, a monel alloy (nickel content of about 65% by weight) is not preferable because it is passivated. There is no problem if the nickel content exceeds approximately 90% by weight of nickel. Industrially, it is convenient to use general-purpose products such as so-called pure nickel (nickel content is about 99% by weight or more) and Duronickel al.
loy301 (nickel content 94%, manufactured by INCO).

【0019】電解電流密度は好ましくは1〜30A・d
−2である。電流密度の下限界は、NFガスの生産
性に影響するものであり技術的な制約は殆ど無い。電極
近傍で発生する熱は電流密度にほぼ比例する。このた
め、電流密度が著しく高くなると、電解液の温度が局部
的に高くなる、組成が安定しない等の不都合が生じる。
本発明の効果に対して影響は無いものの、概ね電流密度
の範囲は1〜30A・dm−2、更に好ましくは5〜2
0A・dm−2の範囲が推奨される。なお、電解に用い
られる陰極としては、一般にNFガスの電解製造に用
いられている材料、たとえば鉄、スチール、ニッケル、
モネル等を使用することができる。
The electrolytic current density is preferably 1 to 30 A · d
m- 2 . The lower limit of the current density affects the productivity of NF 3 gas, and has almost no technical restrictions. The heat generated near the electrodes is almost proportional to the current density. For this reason, when the current density becomes extremely high, inconveniences such as a local increase in the temperature of the electrolytic solution and an unstable composition are caused.
Although there is no effect on the effects of the present invention, the range of the current density is generally 1 to 30 A · dm −2 , more preferably 5 to 2
A range of 0 A · dm −2 is recommended. In addition, as a cathode used for electrolysis, a material generally used for electrolytic production of NF 3 gas, for example, iron, steel, nickel,
Monel or the like can be used.

【0020】電解槽の構成として、図1に例示する。本
体1と槽蓋2は、電解液および発生したガスを系外と隔
離する構造となっている。本体1と槽蓋2の接続は気密
性を確保するためパッキンを介して固定密閉するのが一
般的である。尚、本体1および槽蓋2の内面はフッ素樹
脂等で被覆すると、その耐久性は一層向上する。
FIG. 1 shows an example of the structure of the electrolytic cell. The main body 1 and the tank lid 2 have a structure that isolates the electrolytic solution and the generated gas from the outside of the system. In general, the connection between the main body 1 and the tank lid 2 is fixed and sealed via packing in order to ensure airtightness. When the inner surfaces of the main body 1 and the tank lid 2 are covered with a fluororesin or the like, the durability is further improved.

【0021】陽極3および陰極4は槽蓋2に設けられた
隔壁5により隔てる。陽極3から発生したNFと陰極
4から発生したHが混合すると容易に発火爆発するた
め、これを防ぐために隔壁5が設けられる。なお、隔壁
5の下方向への長さは、本体1底部に極端に接近しない
こと、および電解液面より下であることを条件に適宜選
択できる。なお、本体1を陰極または陽極とすることも
可能である。
The anode 3 and the cathode 4 are separated by a partition wall 5 provided on the tank lid 2. When NF 3 generated from the anode 3 and H 2 generated from the cathode 4 are mixed, they easily ignite and explode. Therefore, a partition 5 is provided to prevent this. The length of the partition wall 5 in the downward direction can be appropriately selected on condition that the partition wall 5 does not extremely approach the bottom of the main body 1 and is below the electrolyte surface. Note that the main body 1 can be a cathode or an anode.

【0022】生成したガスは、槽蓋2に設けられた陽極
ガス排出口6および陰極ガス排出口7より電解槽外部へ
導き出される。また、電解にあたっては、陽極3側及び
陰極4側にそれぞれ窒素ガス等の不活性ガスをキャリヤ
ーガスとして送入する場合もある。本体1、槽蓋2、隔
壁5の材質は通常金属であるが、必要に応じてフッ素樹
脂なども使用可能である。
The generated gas is led out of the electrolytic cell through an anode gas outlet 6 and a cathode gas outlet 7 provided in the tank lid 2. In the electrolysis, an inert gas such as a nitrogen gas may be supplied as a carrier gas to the anode 3 side and the cathode 4 side, respectively. The material of the main body 1, the tank lid 2, and the partition 5 is usually a metal, but a fluororesin or the like can be used if necessary.

【0023】例示した電解槽は基本的な構成用件を示し
ただけであり、無論、形状、電極や隔壁の配置など様々
である。特殊な電解液を使用するが、そのために特殊な
構成の電解槽である必要はない。また、電解槽の構成に
より、本発明の効果が影響を受けるものでもない。
The illustrated electrolytic cells merely show basic structural requirements, and of course vary in shape, shape, arrangement of electrodes and partition walls, and the like. Although a special electrolytic solution is used, it is not necessary that the electrolytic cell has a special configuration. Further, the effects of the present invention are not affected by the configuration of the electrolytic cell.

【0024】[0024]

【実施例】以下、実施例により本発明を更に具体的に説
明する。 実施例1 乾燥した1110gの酸性フッ化アンモニウム(NH
HF)とフッ化リチウム(LiF)5gを良く混ぜた
後、容量3Lのフッ素樹脂製細口瓶に入れた。この細口
瓶の底部までフッ素樹脂チューブを挿入し、細口瓶を計
量しながら無水フッ化水素ガス390gを吹き込み、L
iを1モル%含有する組成比HF/NH F=2の電解
液(NHF・2HF+1mol%Li)を得た。次に
この電解液を電解液容量1Lのフッ素樹脂製電解槽に入
れ、電解を行った。電極には純度99.3%のニッケル
を使用した。温度120℃、電解電流10Aにて100
時間の電解を行った後、陽極の重量を測定したところ、
溶解により14gの減少が見られた。
The present invention will be described more specifically with reference to the following examples.
I will tell. Example 1 1110 g of dried ammonium acid fluoride (NH4
HF2) And 5 g of lithium fluoride (LiF) were mixed well.
Thereafter, the mixture was placed in a fluororesin narrow-mouthed bottle having a capacity of 3 L. This narrow mouth
Insert the fluororesin tube to the bottom of the bottle and measure the narrow-mouth bottle.
While blowing 390 g of anhydrous hydrogen fluoride gas while
composition ratio HF / NH containing 1 mol% of i 4F = 2 electrolysis
Liquid (NH4F.2HF + 1mol% Li) was obtained. next
This electrolytic solution was put into a 1 L electrolytic solution tank made of fluororesin.
Then, electrolysis was performed. 99.3% pure nickel for electrodes
It was used. 100 at a temperature of 120 ° C and an electrolytic current of 10A
After performing electrolysis for a time, when the weight of the anode was measured,
Dissolution showed a 14 g reduction.

【0025】実施例2、3 フッ化リチウムの仕込量を1.5g、0.5gとした他
は実施例1と同様の実験を行った(電解液組成NH
・2HF+0.3mol%LiおよびNHF・2HF
+0.1mol%Li)。その結果、陽極の重量減少
は、それぞれ15g、16gであった。
Examples 2 and 3 The same experiment as in Example 1 was carried out except that the charged amounts of lithium fluoride were 1.5 g and 0.5 g (electrolyte composition NH 4 F).
・ 2HF + 0.3mol% Li and NH 4 F ・ 2HF
+0.1 mol% Li). As a result, the weight loss of the anode was 15 g and 16 g, respectively.

【0026】実施例4、5 フッ化リチウムの代わりに、硝酸リチウム(LiN
)13g、または塩化リチウム(LiCl)8gを
使用した他は実施例1と同様の実験を行った。(電解液
組成はいずれもNHF・2HF+1mol%Li)そ
の結果、陽極の重量減少は、それぞれ14gであった。
Examples 4 and 5 Instead of lithium fluoride, lithium nitrate (LiN
The same experiment as in Example 1 was performed except that 13 g of O 3 ) or 8 g of lithium chloride (LiCl) was used. (Electrolyte composition was NH 4 F · 2HF + 1 mol% Li) As a result, the weight loss of the anode was 14 g each.

【0027】比較例1 フッ化リチウムを添加しなかった他は実施例1と同様の
実験を行った。(電解液組成NHF・2HF)その結
果、陽極の重量減少は30gであった。
Comparative Example 1 The same experiment as in Example 1 was performed except that lithium fluoride was not added. (Electrolyte composition NH 4 F · 2HF) As a result, the weight loss of the anode was 30 g.

【0028】比較例2 組成比(HF/NHF)を4に変更した以外は実施例
1と同様に行った。その結果、陽極の重量減少は25g
であった。
Comparative Example 2 The same procedure as in Example 1 was carried out except that the composition ratio (HF / NH 4 F) was changed to 4. As a result, the weight loss of the anode is 25 g.
Met.

【0029】比較例3 酸性フッ化カリウム(KHF)545gと酸性フッ化
アンモニウム400gを容量3Lのフッ素樹脂製細口瓶
に入れた。この細口瓶の底部までフッ素樹脂チューブを
挿入し、細口瓶を計量しながら無水フッ化水素ガス55
5gを吹き込み、組成比KF:NHF:HF=1:
1:4の電解液((KF)0.5・(NH F)0.5
・2HF)を得た。次にこの電解液を電解液容量1Lの
フッ素樹脂製電解槽に入れ、実施例1と同様に電解実験
を行った。その結果、陽極の重量を測定したところ、溶
解により56gの減少が見られた。
Comparative Example 3 Potassium Acid Fluoride (KHF2) 545g and acid fluoride
400 g of ammonium with a 3L capacity fluororesin bottle
Put in. Insert the fluororesin tube to the bottom of this small-mouth bottle
Insert and measure the anhydrous hydrogen fluoride gas 55
5 g, and the composition ratio KF: NH4F: HF = 1:
1: 4 electrolyte ((KF)0.5・ (NH 4F)0.5
2HF) was obtained. Next, this electrolytic solution was added to an electrolyte volume of 1 L.
Place in a fluororesin electrolytic cell and conduct an electrolysis experiment in the same manner as in Example 1.
Was done. As a result, when the weight of the anode was measured,
The solution resulted in a 56 g reduction.

【0030】比較例4 酸性フッ化カリウム(KHF)285gと酸性フッ化
アンモニウム630gを容量3Lのフッ素樹脂製細口瓶
に入れた。この細口瓶の底部までフッ素樹脂チューブを
挿入し、細口瓶を計量しながら無水フッ化水素ガス58
5gを吹き込み、組成比KF:NHF:HF=1:
3:8の電解液((KF)0.25・(NHF)
0.75・2HF)を得た。次にこの電解液を電解液容
量1Lのフッ素樹脂製電解槽に入れ、実施例1と同様に
電解実験を行った。その結果、陽極の重量を測定したと
ころ、溶解により43gの減少が見られた。
Comparative Example 4 285 g of potassium acid fluoride (KHF 2 ) and 630 g of ammonium acid fluoride were put into a 3 L fluororesin small-mouthed bottle. Insert the fluororesin tube up to the bottom of this small-mouthed bottle, and measure the anhydrous
5 g was blown, and the composition ratio KF: NH 4 F: HF = 1:
3: 8 electrolytic solution ((KF) 0.25 · (NH 4 F)
0.75 · 2HF) was obtained. Next, the electrolytic solution was placed in a 1 L electrolytic solution tank made of fluororesin, and an electrolytic experiment was performed in the same manner as in Example 1. As a result, when the weight of the anode was measured, a reduction of 43 g was observed due to dissolution.

【0031】[0031]

【発明の効果】電解法は高純度の三フッ化窒素ガスを容
易に得られる優れた方法であるが、これまで陽極の溶解
量が多いことが工業的な課題であった。本発明の方法に
よれば、これまでの電解プロセスに全く手を付けること
なく、少量のLi分を電解液に添加することで、ニッケ
ルの溶解量を大幅に抑えることができる画期的発明であ
る。このことは、電極や電解液の交換頻度を半分以下に
抑えることができるだけでなく、コスト低減も成しう
る。工業的生産における効果は極めて大きいものといえ
る。
The electrolysis method is an excellent method for easily obtaining a high-purity nitrogen trifluoride gas, but it has been an industrial problem that a large amount of anode has been dissolved so far. According to the method of the present invention, by adding a small amount of Li to the electrolytic solution without any modification to the conventional electrolytic process, it is an epoch-making invention that can significantly suppress the amount of nickel dissolved. is there. This not only can reduce the replacement frequency of the electrodes and the electrolyte to less than half, but can also reduce the cost. The effect in industrial production can be said to be extremely large.

【0032】[0032]

【図面の簡単な説明】[Brief description of the drawings]

【図1】 電解槽の一例Fig. 1 Example of electrolytic cell

【符号の説明】[Explanation of symbols]

1 本体 2 槽蓋 3 陽極 4 陰極 5 隔壁 6 陽極ガス排出口 7 陰極ガス排出口 8 電解液 DESCRIPTION OF SYMBOLS 1 Main body 2 Tank lid 3 Anode 4 Cathode 5 Partition wall 6 Anode gas outlet 7 Cathode gas outlet 8 Electrolyte

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−32592(JP,A) 特開 平4−56789(JP,A) 特開 平4−183884(JP,A) (58)調査した分野(Int.Cl.7,DB名) C25B 1/00 - 15/08 C01B 21/083 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-4-32592 (JP, A) JP-A-4-56789 (JP, A) JP-A-4-183,884 (JP, A) (58) Field (Int.Cl. 7 , DB name) C25B 1/00-15/08 C01B 21/083

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 フッ化アンモニウム(NHF)−フ
ッ化水素(HF)系溶融塩であって、組成モル比(HF
/NHF)が1〜3であり、かつ該溶融塩中にリチウ
ム(Li)を0.01モル%以上含有することを特徴と
する三フッ化窒素ガス製造用の電解液。
1. An ammonium fluoride (NH 4 F) -hydrogen fluoride (HF) -based molten salt having a composition molar ratio (HF
/ NH 4 F) is 1 to 3 and lithium (Li) is contained in the molten salt in an amount of 0.01 mol% or more.
【請求項2】 フッ化アンモニウム(NHF)−フ
ッ化水素(HF)系溶融塩であって、組成モル比(HF
/NHF)が1〜3であり、かつ該溶融塩中にリチウ
ム(Li)を0.01モル%以上含有し、100〜14
0℃に保持しながら、ニッケルを陽極として電解するこ
とを特徴とする三フッ化窒素ガスの製造方法。
2. An ammonium fluoride (NH 4 F) -hydrogen fluoride (HF) -based molten salt having a composition molar ratio (HF
/ NH 4 F) is 1 to 3, and the molten salt contains lithium (Li) in an amount of 0.01 mol% or more,
A method for producing nitrogen trifluoride gas, comprising electrolyzing nickel as an anode while maintaining the temperature at 0 ° C.
JP03232995A 1995-02-21 1995-02-21 Electrolytic solution and method for producing nitrogen trifluoride gas using the same Expired - Lifetime JP3162594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03232995A JP3162594B2 (en) 1995-02-21 1995-02-21 Electrolytic solution and method for producing nitrogen trifluoride gas using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03232995A JP3162594B2 (en) 1995-02-21 1995-02-21 Electrolytic solution and method for producing nitrogen trifluoride gas using the same

Publications (2)

Publication Number Publication Date
JPH08225973A JPH08225973A (en) 1996-09-03
JP3162594B2 true JP3162594B2 (en) 2001-05-08

Family

ID=12355910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03232995A Expired - Lifetime JP3162594B2 (en) 1995-02-21 1995-02-21 Electrolytic solution and method for producing nitrogen trifluoride gas using the same

Country Status (1)

Country Link
JP (1) JP3162594B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104947135B (en) * 2015-06-09 2017-10-13 中国船舶重工集团公司第七一八研究所 A kind of device for preparing gas of nitrogen trifluoride and application

Also Published As

Publication number Publication date
JPH08225973A (en) 1996-09-03

Similar Documents

Publication Publication Date Title
KR100641603B1 (en) Preparation of high purity fluorine gas
EP3708537B1 (en) Method for producing alkali metal hexafluorophosphate, method for producing electrolyte concentrate comprising alkali metal hexafluorophosphate, and method for producing secondary battery
JPH0755807B2 (en) Method for producing nitrogen trifluoride
US4804447A (en) Method of producing NF3
JP3162594B2 (en) Electrolytic solution and method for producing nitrogen trifluoride gas using the same
KR100447420B1 (en) Electrode for use in preparation of nitrogen trifluoride gas
JP3340273B2 (en) Composite electrode and method for producing nitrogen trifluoride gas using the same
JP2809811B2 (en) Method for producing nitrogen trifluoride gas
KR101411714B1 (en) Nickel based electrode and production of nitrogen trifluoride using same
JP3037464B2 (en) Method for producing nitrogen trifluoride gas
JPH11335105A (en) Production of nitrogen trifluoride gas
JP4326141B2 (en) Electrode used for producing nitrogen trifluoride gas, method for producing nitrogen trifluoride gas, and electrolytic cell for producing nitrogen trifluoride gas
JP2001064791A (en) Composite electrode and production of gaseous nitrogen trifluoride using the same
KR101411662B1 (en) Nickel based electrode and production of nitrogen trifluoride using same
JP2000104187A (en) Electrolytic cell (1)
JPH02263988A (en) Production of gaseous nitrogen trifluoride
JP2854934B2 (en) Method for producing nitrogen trifluoride gas
JP2000104188A (en) Electrolytic cell
JP2000169141A (en) Production of ammonium hexafluoroaluminate
JP2001181882A (en) Electrolytic cell
KR101462751B1 (en) Method for the production of nitrogen trifluoride
JPH03170307A (en) Production of nitrogen trifluoride
JPH0551779A (en) Production of gaseous nitrogen trifluoride
CN116365033A (en) Preparation method of low-water high-purity electrolyte imine lithium salt
JPH03236486A (en) Production of nitrogen trifluoride by electrolysis of molten salt

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090223

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 13

EXPY Cancellation because of completion of term