JP2000104187A - Electrolytic cell (1) - Google Patents

Electrolytic cell (1)

Info

Publication number
JP2000104187A
JP2000104187A JP10275310A JP27531098A JP2000104187A JP 2000104187 A JP2000104187 A JP 2000104187A JP 10275310 A JP10275310 A JP 10275310A JP 27531098 A JP27531098 A JP 27531098A JP 2000104187 A JP2000104187 A JP 2000104187A
Authority
JP
Japan
Prior art keywords
gas
electrolytic cell
electrolyte
electrolytic
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10275310A
Other languages
Japanese (ja)
Inventor
Takashi Shimaoka
隆 島岡
Tatsuma Morokuma
辰馬 諸隈
Isao Harada
功 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP10275310A priority Critical patent/JP2000104187A/en
Publication of JP2000104187A publication Critical patent/JP2000104187A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrolytic cell for safely and inexpensively producing NF3. SOLUTION: The electrolytic cell is used for the production of nitrogen trifluoride by an electrolysis using an ammonium fluoride (NH4F)-hydrogen fluoride(HF) based molten salt as an electrolyte, the material of the dipped part of a partition wall 1 equipped for preventing gases generated in an anode 3 and a cathode 4 from mixing is composed of a material having a porous or fibrous structure to enable to permeate the electrolyte, ions in the electrolyte and to pass current and free from the permeation of bubbles.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は三弗化窒素(N
)ガスの製造に用いる電解槽に関する。更に詳しく
は、フッ化アンモニウム(NHF)−フッ化水素(H
F)系溶融塩の電解による三弗化窒素(NF)ガスの
製造に用いる電解槽に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to nitrogen trifluoride (N
F 3 ) relates to an electrolytic cell used for producing gas. More specifically, ammonium fluoride (NH 4 F) -hydrogen fluoride (H
F) An electrolytic cell used for producing nitrogen trifluoride (NF 3 ) gas by electrolysis of a molten salt.

【0002】[0002]

【従来の技術】最近のエレクトロニクス産業の飛躍的な
発展に伴い、半導体素子の高密度化、高性能化が進めら
れ、超大規模集積回路の生産が増加している。これに伴
い、該集積回路製造過程に使用されるドライエッチング
用のガスとして、また、CVD装置のクリーナー用のガ
スとして高純度のNFガスが要求される。
2. Description of the Related Art With the recent rapid development of the electronics industry, the density and performance of semiconductor devices have been increased, and the production of ultra-large-scale integrated circuits has been increasing. Accordingly, high-purity NF 3 gas is required as a dry etching gas used in the integrated circuit manufacturing process and as a cleaner gas for a CVD apparatus.

【0003】NFガスの製造方法は大きく化学法と電
解法とに分けられる。化学法は、第一段階として電解に
よりフッ素ガス(F)を製造し、第二段階において得
られたFと窒素含有原料とを反応させることによりN
ガスを製造するものである。一方、電解法は、窒素
分およびフッ素分を含有する非水溶液系溶融塩を電解液
とし、これを電解することによりNFガスを製造する
ものである。
[0003] The method for producing NF 3 gas is roughly divided into a chemical method and an electrolytic method. In the chemical method, fluorine gas (F 2 ) is produced by electrolysis as a first step, and N 2 is produced by reacting the F 2 obtained in the second step with a nitrogen-containing raw material.
It is to produce F 3 gas. On the other hand, in the electrolysis method, an NF 3 gas is produced by using a non-aqueous molten salt containing a nitrogen component and a fluorine component as an electrolytic solution and electrolyzing the electrolytic solution.

【0004】電解法は化学法と比較した場合、一段階
で、かつ高収率でNFガスを製造できる利点を有して
いる。
[0004] The electrolysis method has an advantage that NF 3 gas can be produced in one step and in a high yield as compared with the chemical method.

【0005】化学法では、四弗化炭素(CF)ガスが
多量に含まれるFを原料とするため、必然的に多量の
CFがNFガス中へ混入する。ところが、このCF
はNFと物性が極めて似ており、高純度のNF
スを得るためには、工業的にコストの嵩む高度の精製技
法を適用せざるを得ない。これに対して、電解法では合
成の過程でCFが生成、あるいは混入することが殆ど
無いため、容易に高純度のNFを得られる利点を有し
ている。
In the chemical method, since F 2 containing a large amount of carbon tetrafluoride (CF 4 ) gas is used as a raw material, a large amount of CF 4 is necessarily mixed into NF 3 gas. However, this CF
No. 4 is very similar in physical properties to NF 3, and in order to obtain high-purity NF 3 gas, it is inevitable to apply an industrially expensive advanced purification technique. On the other hand, the electrolytic method has the advantage that NF 3 of high purity can be easily obtained because CF 4 is hardly generated or mixed in the synthesis process.

【0006】電解法NFの工業的合成の概要は次の通
りである。電解液は、アンモニアや酸性フッ化アンモニ
ウム(NHHF)と、無水フッ化水素(HF)より
なるNHF−HF系溶融塩を使用する。これをニッケ
ル製の陽極で電解する。溶融塩電解法によるNFの製
造においては、陽極からは主にNFと窒素(N)ガ
ス及びその他の不純物ガスが発生し、陰極からは水素
(H)ガスが発生する。精製操作後のNF純度は9
9.99容量%を超える。
The outline of the industrial synthesis of electrolytic NF 3 is as follows. As the electrolytic solution, an NH 4 F-HF-based molten salt composed of ammonia, ammonium acid fluoride (NH 4 HF 2 ), and anhydrous hydrogen fluoride (HF) is used. This is electrolyzed with a nickel anode. In the production of NF 3 by the molten salt electrolysis method, NF 3 and nitrogen (N 2 ) gas and other impurity gases are mainly generated from the anode, and hydrogen (H 2 ) gas is generated from the cathode. NF 3 purity after purification operation is 9
Exceeds 9.99% by volume.

【0007】陽極で発生するNFは支燃性ガス、陰極
で発生するHは可燃性ガスであるため、この両者が混
合すると爆発性の混合気を形成する。このため、NF
製造用の電解槽では、両極から発生するガスの混合を防
ぐ目的で、両極の気相部を隔離する隔板が設けられる。
Since NF 3 generated at the anode is a flammable gas and H 2 generated at the cathode is a flammable gas, when they are mixed, an explosive air-fuel mixture is formed. Therefore, NF 3
In the electrolytic cell for production, a partition plate for isolating the gas phase portions of both electrodes is provided in order to prevent mixing of gases generated from both electrodes.

【0008】特公平7−57915号公報にはこの隔板
の材質をフッ素系樹脂として複極化による陽極室内での
水素発生を防止する方法が述べられている。特許番号2
766845号には、陽極と陰極を隔離する隔板の下端
が電解液面より30〜100mm下に位置することを特
徴とする電解槽が記述されている。
Japanese Patent Publication No. 7-57915 discloses a method of preventing the generation of hydrogen in the anode chamber due to bipolarization by using a fluorine-based resin as the material of the partition plate. Patent number 2
No. 766845 describes an electrolytic cell characterized in that the lower end of the separator separating the anode and the cathode is located 30 to 100 mm below the electrolyte surface.

【0009】以上の方法を用いると、電極間距離を十分
に確保すれば、両極ガスの混合を生じさせる事無く、安
全に電解を継続することが出来る。しかしながら、先述
の発明で用いられているフッ素樹脂製の隔板は、電流及
び電解液の透過性を有さないため、陰陽の電解ガスの混
合を防ぎ、より安全性を向上させるためにその浸液部の
長さを延長しようとすると、局所的な電流集中による通
電抵抗の増大などを引き起こすために、実用には適さな
い。他方、過度の電流集中が起こらないような限られた
浸液部の長さとすると、ガス混合を防ぐために、一定以
上の電極間距離を確保しなければならず、電解槽一槽当
たりに設置可能な電極数が制限されてしまう。このた
め、電解液単位容積あたりの生産性が低下するという問
題が残る。
When the above method is used, if the distance between the electrodes is sufficiently ensured, electrolysis can be continued safely without causing mixing of the bipolar gases. However, since the fluororesin partition plate used in the above-mentioned invention does not have a current and electrolyte permeability, it is necessary to prevent the mixing of the electrolytic gas of the positive and negative electrodes and to improve the safety by further improving the safety. An attempt to extend the length of the liquid portion is not suitable for practical use because it causes an increase in conduction resistance due to local current concentration. On the other hand, if the length of the immersion part is limited so that excessive current concentration does not occur, a certain distance between the electrodes must be secured to prevent gas mixing, and it can be installed per electrolytic cell The number of electrodes is limited. For this reason, there remains a problem that productivity per unit volume of the electrolyte decreases.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は、安全
且つ安価にNFを製造するための電解槽を提供するこ
とにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an electrolytic cell for producing NF 3 safely and at low cost.

【0011】[0011]

【課題を解決するための手段】本発明者らは、鋭意この
課題解決に向け検討を続けてきた。その結果、両極から
発生するガスの混合を防ぐために設けられる隔板の浸液
部の材質を、多孔性または繊維状の構造を有し、電解液
の透過性は有するものの、ガス(気泡)の透過性を有さ
ない材質とすることで、電極間距離を最小限化し、且つ
安全に電解を継続できることが可能であることを見出し
た。
Means for Solving the Problems The present inventors have intensively studied to solve this problem. As a result, the material of the immersion portion of the partition plate provided to prevent mixing of gases generated from both electrodes has a porous or fibrous structure and has a permeability of the electrolyte, but has a gas (bubble) permeability. It has been found that by using a material having no permeability, it is possible to minimize the distance between the electrodes and continue electrolysis safely.

【0012】即ち、本発明はフッ化アンモニウム(NH
F)−フッ化水素(HF)系溶融塩を電解液として用
いる電解法による三弗化窒素の製造に用いられる電解槽
であって、陽極と陰極で発生するガスの混合を防ぐため
に設けられる隔板の浸液部の材質が、多孔性または繊維
状の構造を有することによって電解液、電解液中のイオ
ンおよび電流の通過を可能とし、且つ気泡の透過性を有
さない材料からなることを特徴とする三弗化窒素ガス製
造用に用いる電解槽に関する。
That is, the present invention relates to ammonium fluoride (NH
4 F) - A electrolytic cell for use hydrogen fluoride (HF) molten salts in the manufacture of nitrogen trifluoride by electrolysis using as an electrolytic solution, provided in order to prevent mixing of the gas generated at the anode and cathode The material of the immersion part of the partition plate is made of a material having a porous or fibrous structure, which allows the passage of the electrolytic solution, ions and current in the electrolytic solution, and has no air bubble permeability. And an electrolytic cell used for producing nitrogen trifluoride gas.

【0013】[0013]

【発明の実施の形態】更に、本発明について詳細に説明
する。本発明に用いる電解液は、フッ化アンモニウム
(NHF)−フッ化水素(HF)系溶融塩を使用す
る。調製方法としては、例えば、アンモニアガスと無水
フッ化水素より調製、一水素二フッ化アンモニウムと無
水フッ化水素より調製、フッ化アンモニウムと無水フッ
化水素より調製する等の方法がある。
BEST MODE FOR CARRYING OUT THE INVENTION Further, the present invention will be described in detail. The electrolytic solution used in the present invention uses an ammonium fluoride (NH 4 F) -hydrogen fluoride (HF) -based molten salt. Examples of the preparation method include a method of preparing from ammonia gas and anhydrous hydrogen fluoride, a method of preparing from ammonium hydrogen difluoride and anhydrous hydrogen fluoride, a method of preparing from ammonium fluoride and anhydrous hydrogen fluoride.

【0014】電解液溶融塩の組成モル比(HF/NH
F)としては、1〜3が好適である。モル比が1未満の
電解液は熱分解性を帯びるため好ましくない。融点が約
90℃程度となるために電解槽への供給時に温度低下に
よる流動性低下が生じ、かつまた、三フッ窒素生成反応
の電流効率が著しく低下するため、運転操作上好ましく
ない。
The composition molar ratio of the molten salt of the electrolytic solution (HF / NH 4
As F), 1 to 3 are preferable. An electrolytic solution having a molar ratio of less than 1 is not preferred because it has thermal decomposition properties. Since the melting point is about 90 ° C., a decrease in fluidity due to a decrease in temperature at the time of supply to the electrolytic cell is caused, and the current efficiency of the trifluorine nitrogen generation reaction is remarkably reduced.

【0015】また、モル比が3を超えるとHFの蒸気圧
が高くなり、HFの損失が増加することで電解液組成の
変動が大きくなるため好ましくない。工業的実施のため
により高い組成安定性を求めるならば、モル比は1.5
〜2.5の範囲が、更に好ましくは1.6〜1.8の範
囲が最適である。
On the other hand, if the molar ratio exceeds 3, the vapor pressure of HF becomes high, and the loss of HF increases, so that the fluctuation of the composition of the electrolyte becomes large, which is not preferable. If higher compositional stability is required for industrial practice, the molar ratio is 1.5
The optimum range is from 2.5 to 2.5, more preferably from 1.6 to 1.8.

【0016】陽極にはニッケルを使用するが、モネル合
金(ニッケル分65重量%前後)では、不働態化するた
め好ましくない。概ねニッケル分90重量%を超えるニ
ッケルであれば問題ない。尚、工業的には汎用品の使用
が好都合であり、いわゆる純ニッケル(ニッケル含有量
は概ね99重量%以上)やDuranickel al
loy301(ニッケル含有量94重量%、INCO
製)が挙げられる。
Although nickel is used for the anode, a monel alloy (with a nickel content of about 65% by weight) is not preferable because it is passivated. There is no problem if the nickel content exceeds approximately 90% by weight of nickel. Industrially, it is convenient to use general-purpose products such as so-called pure nickel (nickel content is about 99% by weight or more) and Duronickel al.
loy301 (nickel content 94% by weight, INCO
Manufactured).

【0017】電解電流密度は好ましくは3A・dm-2
上である。電流密度の上限について、電極近傍で発生す
る熱は電流密度にほぼ比例し、電流密度が著しく高くな
ると、電解液の温度が局部的に高くなる、組成が安定し
なくなる等の不都合が生じる。本発明の効果に対して影
響は無いものの、安定な運転を行うための電流密度の上
限として30A・dm-2程度が推奨される。なお、電解
に用いられる陰極としては、一般にNFガスの電解製
造に用いられている材料、たとえば鉄、スチール、ニッ
ケル、モネル等を使用することができる。
The electrolytic current density is preferably at least 3 A · dm −2 . Regarding the upper limit of the current density, the heat generated in the vicinity of the electrode is almost proportional to the current density, and when the current density is extremely high, inconveniences such as locally increasing the temperature of the electrolytic solution and instability of the composition arise. Although there is no influence on the effect of the present invention, about 30 A · dm −2 is recommended as the upper limit of the current density for performing stable operation. As the cathode used for the electrolysis, a material generally used for electrolytic production of NF 3 gas, for example, iron, steel, nickel, monel, or the like can be used.

【0018】本発明で最も重要な点は、陽極ガスと陰極
ガスの混合を防ぐ目的で設置される隔板の浸液部の材質
である。陽極及び陰極で発生するガスの気泡は大くは電
極板に沿って垂直方向に上昇するが、一部は電極から離
れる方向に拡散しながら上昇する。このためガスの混合
の生じる恐れがあるので、隔板は気相部のみならず液相
部にも設けなければならない。電極から離れる方向に拡
散する気泡混合を防ぐために電極間距離と、液相内にあ
る隔板の下端部の位置は慎重に定められなければならな
い。一般に隔板の浸液部の長さが短くなるほど、ガス混
合を生じさせないための電極間距離は長くなる。
The most important point in the present invention is the material of the immersion portion of the partition plate provided for preventing the mixture of the anode gas and the cathode gas. Gas bubbles generated at the anode and the cathode generally rise in the vertical direction along the electrode plate, but partly rise while diffusing in a direction away from the electrode. For this reason, gas mixing may occur, so that the partition must be provided not only in the gas phase but also in the liquid phase. The distance between the electrodes and the position of the lower end of the diaphragm in the liquid phase must be carefully determined in order to prevent air bubbles from diffusing away from the electrodes. In general, the shorter the length of the immersion portion of the partition, the longer the distance between the electrodes to prevent gas mixing.

【0019】液相内にある隔板の延長は安全性の面から
は好ましいが、延長により対面する電極の隔板によって
電流の透過を妨げられない部分の面積が減少すると、局
所的な電流集中が生じ電解槽電圧の上昇、ひいては局所
的な電流集中の結果、陽極効果の発生などが生じるので
電解操作上非常に好ましくない影響を与える。
The extension of the diaphragm in the liquid phase is preferable from the viewpoint of safety. However, if the extension reduces the area of the portion where the current barrier is not hindered by the facing electrode diaphragm, local current concentration occurs. Occurs, and as a result of an increase in the electrolytic cell voltage and, consequently, a local current concentration, an anodic effect occurs, which has a very unfavorable effect on the electrolytic operation.

【0020】このような影響無しに隔板の長さを延長す
るために、本発明では浸液部の隔板の材質を多孔性また
は繊維状の構造を有する事によって、電流、電解液の透
過性を有するが気泡の透過性を有さない材質を用いる。
このような材料を用いると、電解槽電圧の上昇無しに隔
板の長さを延長できる。このため、電極間の距離を最小
化することが出来る。
In order to extend the length of the diaphragm without such an influence, in the present invention, the material of the diaphragm of the immersion part is made to have a porous or fibrous structure, so that the current and the permeation of the electrolytic solution can be improved. Use a material that has air permeability but does not have air permeability.
When such a material is used, the length of the diaphragm can be extended without increasing the electrolytic cell voltage. Therefore, the distance between the electrodes can be minimized.

【0021】また、電極間距離が同じであっても、電
流、電解液が透過しない通常の隔板を使用する場合に比
べて電流の流れが遮断されないため電解槽電圧が低下
し、かつ電極の有効に利用できる部分が広くなる。この
ような効果を有する隔板の材料として、フッ素系樹脂の
繊維で作られた不織布、フッ素系樹脂製の多孔質膜等を
挙げることが出来る。隔板に用いる材料の性状が電解液
に対する耐食性を有し、電解温度で変形しなければ、先
述のもの以外の材料も問題なく使用することが出来る。
Further, even if the distance between the electrodes is the same, the flow of current is not interrupted as compared with the case of using a normal diaphragm through which current and electrolyte do not permeate, so that the voltage of the electrolytic cell decreases and the The area that can be used effectively becomes wider. Examples of the material of the partition plate having such an effect include a nonwoven fabric made of fibers of a fluororesin, a porous film made of a fluororesin, and the like. Materials other than those described above can be used without any problem as long as the material used for the diaphragm has corrosion resistance to the electrolytic solution and does not deform at the electrolytic temperature.

【0022】[0022]

【実施例】以下、実施例により本発明を更に具体的に説
明する。なお、%は特記しないかぎり重量基準で表す。 実施例1 予めアンモニアと無水フッ化水素を混合し、モル比(H
F/NHF)が1.7のフッ化アンモニウム(NH
F)−フッ化水素系溶融塩22kgを調製し、容量20
Lの内面をフッ素樹脂コーティングした電解槽に投入し
た。隔板の浸液部の材料には、厚さ8mmの板状の性状
を有するフッ素系樹脂の不織布(テフロンフェルト)を
用いた。浸液部の隔板の下端は電極の下端より下になる
位置とした。気相部の隔板の材質は孔を有さない厚さ2
mmのフッ素系樹脂の板とした。電極には、陽極・陰極
とも一辺が20cmで浸液部の長さが16cm(表面積
320cm2)の純度99.5%のニッケル製電極を使
用した。電極は陰極、陽極とも隔板を挟んで2cmの距
離に一枚ずつを設置した。電解温度は120℃、電解電
流25A(電流密度7.8A・dm-2)とした。電解槽
電圧は7.6〜7.8V程度であった。電解中、継続的
に陽極発生ガスをガスクロマトグラフにより分析した。
運転を行った360時間のあいだ陽極ガスへの水素ガス
の混入は全く認められなかった。
EXAMPLES The present invention will be described more specifically with reference to the following examples. The percentages are expressed on a weight basis unless otherwise specified. Example 1 Ammonia and anhydrous hydrogen fluoride were mixed in advance, and the molar ratio (H
F / NH 4 F) 1.7 ammonium fluoride (NH 4
F)-Prepare 22 kg of hydrogen fluoride-based molten salt and have a capacity of 20 kg.
The inner surface of L was put into an electrolytic cell coated with a fluororesin. As a material for the liquid immersion part of the partition plate, a nonwoven fabric (Teflon felt) of a fluororesin having a plate-like property having a thickness of 8 mm was used. The lower end of the partition plate in the immersion part was positioned below the lower end of the electrode. The material of the gas phase partition is thickness 2 without holes
mm fluororesin plate. As the electrode, a nickel electrode having a purity of 99.5% and a length of the immersion liquid of 16 cm (surface area: 320 cm 2 ) was used for both the anode and the cathode. The electrodes were placed one by one at a distance of 2 cm with both the cathode and anode sandwiching the partition. The electrolysis temperature was 120 ° C., and the electrolysis current was 25 A (current density: 7.8 A · dm −2 ). The electrolytic cell voltage was about 7.6 to 7.8V. During the electrolysis, the gas generated from the anode was continuously analyzed by gas chromatography.
No mixing of hydrogen gas into the anode gas was observed at all during the operation for 360 hours.

【0023】比較例1 隔板の浸液部の下端の位置を電解液液面から6cmと
し、材料を孔を有さない厚さ2mmのフッ素系樹脂とし
た他は実施例1と同様にして電解を行ったところ、電流
値が目標値の25Aに到達する前に陽極ガス中の水素濃
度が上昇し、爆発下限界である5容量%を越えそうにな
ったので電解を停止した。
Comparative Example 1 The same procedure as in Example 1 was carried out except that the lower end of the immersion portion of the partition plate was 6 cm from the surface of the electrolyte solution, and the material was a fluorine resin having a thickness of 2 mm without holes. When the electrolysis was performed, the hydrogen concentration in the anode gas increased before the current value reached the target value of 25 A, and the hydrogen concentration almost exceeded the lower explosion limit of 5% by volume, so the electrolysis was stopped.

【0024】比較例2 隔板を浸液部の下端まで孔を有さない厚さ2mmのフッ
素系樹脂とした他は実施例1と同様にして電解を行った
ところ、電流値が目標値の25Aに到達する前に電解槽
電圧が10Vを越え、電圧の激しい変動が見られたため
電解を停止した。
Comparative Example 2 Electrolysis was carried out in the same manner as in Example 1 except that the diaphragm was made of a fluorine-based resin having a thickness of 2 mm without a hole up to the lower end of the immersion part. Before reaching 25 A, the electrolysis cell voltage exceeded 10 V, and the electrolysis was stopped because a drastic fluctuation of the voltage was observed.

【0025】[0025]

【発明の効果】本発明は、両極から発生するガスの混合
を防ぐために設けられる隔板の浸液部の材質を、多孔性
または繊維状の構造を有するために、電解液の透過性は
有するがガス(気泡)の透過性を有さない材質とするこ
とで電極間距離を最小限化し、且つ安全な電解の継続を
可能にした。本発明を利用すれば、電極間距離の最小化
による電解液単位用容積当たりの生産性の向上や、装置
コストの低減などによって、三弗化窒素ガスの製造コス
トを低減させることが出来る。よって、三弗化窒素ガス
の工業的生産に対する効果は極めて大きいものといえ
る。
According to the present invention, since the material of the immersion portion of the partition plate provided to prevent mixing of gases generated from both electrodes has a porous or fibrous structure, the electrolyte has permeability. By using a material having no gas (bubble) permeability, the distance between electrodes was minimized, and safe electrolysis was enabled. By using the present invention, the production cost of nitrogen trifluoride gas can be reduced by improving the productivity per unit volume of the electrolyte by minimizing the distance between the electrodes and reducing the cost of the apparatus. Therefore, it can be said that the effect on industrial production of nitrogen trifluoride gas is extremely large.

【0026】[0026]

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に用いる電解槽の一例FIG. 1 is an example of an electrolytic cell used in the present invention.

【符号の説明】[Explanation of symbols]

1 隔板(フッ素系樹脂製不織布) 2 隔板(フッ素系樹脂板) 3 陽極電極 4 陰極電極 5 陽極ガス出口 6 陰極ガス出口 7 スチーム・工水入口 8 スチーム・工水出口 DESCRIPTION OF SYMBOLS 1 Separation board (fluororesin nonwoven fabric) 2 Separation board (fluorine-resin board) 3 Anode electrode 4 Cathode electrode 5 Anode gas outlet 6 Cathode gas outlet 7 Steam / works water inlet 8 Steam / works water outlet

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 フッ化アンモニウム(NHF)−フ
ッ化水素(HF)系溶融塩を電解液として用いる電解法
による三弗化窒素の製造に用いられる電解槽であって、
陽極と陰極で発生するガスの混合を防ぐために設けられ
る隔板の浸液部の材質が、多孔性または繊維状の構造を
有することによって電解液、電解液中のイオンおよび電
流の通過を可能とし、且つ気泡の透過性を有さない材料
からなることを特徴とする三弗化窒素ガス製造用に用い
る電解槽。
An electrolytic cell used for producing nitrogen trifluoride by an electrolytic method using an ammonium fluoride (NH 4 F) -hydrogen fluoride (HF) -based molten salt as an electrolytic solution,
The material of the immersion part of the partition plate provided to prevent mixing of the gas generated at the anode and the cathode has a porous or fibrous structure, which allows the passage of the electrolyte, ions in the electrolyte and current. An electrolytic cell used for producing nitrogen trifluoride gas, which is made of a material having no air permeability.
JP10275310A 1998-09-29 1998-09-29 Electrolytic cell (1) Pending JP2000104187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10275310A JP2000104187A (en) 1998-09-29 1998-09-29 Electrolytic cell (1)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10275310A JP2000104187A (en) 1998-09-29 1998-09-29 Electrolytic cell (1)

Publications (1)

Publication Number Publication Date
JP2000104187A true JP2000104187A (en) 2000-04-11

Family

ID=17553667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10275310A Pending JP2000104187A (en) 1998-09-29 1998-09-29 Electrolytic cell (1)

Country Status (1)

Country Link
JP (1) JP2000104187A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283158A (en) * 2005-04-01 2006-10-19 Mitsui Chemicals Inc Electrolytic cell for producing gaseous nitrogen trifluoride, and method for producing gaseous nitrogen trifluoride
JP2006336035A (en) * 2005-05-31 2006-12-14 Mitsui Chemicals Inc Electrolysis tank and method for producing nitrogen trifluoride by using the same
CN108977834A (en) * 2017-05-31 2018-12-11 中国石油化工股份有限公司 A kind of electrochemical preparation method of rhodium chloride

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283158A (en) * 2005-04-01 2006-10-19 Mitsui Chemicals Inc Electrolytic cell for producing gaseous nitrogen trifluoride, and method for producing gaseous nitrogen trifluoride
JP4695426B2 (en) * 2005-04-01 2011-06-08 三井化学株式会社 Electrolytic tank for producing nitrogen trifluoride gas and method for producing nitrogen trifluoride gas
JP2006336035A (en) * 2005-05-31 2006-12-14 Mitsui Chemicals Inc Electrolysis tank and method for producing nitrogen trifluoride by using the same
JP4718902B2 (en) * 2005-05-31 2011-07-06 三井化学株式会社 Electrolytic cell and method for producing nitrogen trifluoride using the same
CN108977834A (en) * 2017-05-31 2018-12-11 中国石油化工股份有限公司 A kind of electrochemical preparation method of rhodium chloride

Similar Documents

Publication Publication Date Title
JP5570627B2 (en) Method for producing peroxodisulfate
EP0424727B1 (en) Method for producing nitrogen trifluoride
KR100742484B1 (en) The electrolyzer for manufacturing nitrogen tri-fluoride to minimize the amount of a vaporized hydrogen flouride and the manufacturing method using the same
JP2000104187A (en) Electrolytic cell (1)
KR100447420B1 (en) Electrode for use in preparation of nitrogen trifluoride gas
KR101696397B1 (en) Electrolytic apparatus, system and method for the efficent production of nitrogen trifluoride
KR20010006624A (en) A process for producing high-purity nitrogen trifluoride gas
KR100541978B1 (en) Electrolyzer For High Purity Nitrogen Trifluoride Production And Manufacturing Method Of Nitrogen Trifluoride
JP4695426B2 (en) Electrolytic tank for producing nitrogen trifluoride gas and method for producing nitrogen trifluoride gas
KR101411714B1 (en) Nickel based electrode and production of nitrogen trifluoride using same
JP3162594B2 (en) Electrolytic solution and method for producing nitrogen trifluoride gas using the same
JP2000104188A (en) Electrolytic cell
KR101462751B1 (en) Method for the production of nitrogen trifluoride
JP2698457B2 (en) Electrolytic cell
JP3340273B2 (en) Composite electrode and method for producing nitrogen trifluoride gas using the same
JP2854934B2 (en) Method for producing nitrogen trifluoride gas
JPH02263988A (en) Production of gaseous nitrogen trifluoride
KR101411662B1 (en) Nickel based electrode and production of nitrogen trifluoride using same
JP2000104186A (en) Production of nitrogen trifluoride gas
KR20230174648A (en) Equipment and method for fabricating high purity PFTPA
JP2764623B2 (en) Electrolytic cell
WO2006104416A1 (en) Nitrogen trifluoride production method
JP2000064075A (en) Electrolytic cell
KR20220040750A (en) Apparatus for producing nitrogen trifluoride
JP2001240991A (en) Electrode, electrolyte and electrolytic cell used for manufacture of gaseous nitrogen trifluoride and method for manufacturing gaseous nitrogen trifluoride

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050405