JP3160030B2 - Method for forming fuel electrode of solid oxide fuel cell and solid electrolyte fuel cell using the fuel electrode - Google Patents

Method for forming fuel electrode of solid oxide fuel cell and solid electrolyte fuel cell using the fuel electrode

Info

Publication number
JP3160030B2
JP3160030B2 JP27327991A JP27327991A JP3160030B2 JP 3160030 B2 JP3160030 B2 JP 3160030B2 JP 27327991 A JP27327991 A JP 27327991A JP 27327991 A JP27327991 A JP 27327991A JP 3160030 B2 JP3160030 B2 JP 3160030B2
Authority
JP
Japan
Prior art keywords
fuel electrode
solid electrolyte
fuel
solid
electrolyte layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27327991A
Other languages
Japanese (ja)
Other versions
JPH0589882A (en
Inventor
良雄 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP27327991A priority Critical patent/JP3160030B2/en
Publication of JPH0589882A publication Critical patent/JPH0589882A/en
Application granted granted Critical
Publication of JP3160030B2 publication Critical patent/JP3160030B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は固体電解質型燃料電池の
燃料極、特にサーメット燃料極の形成方法、および該燃
料極を用いてなる固体電解質型燃料電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a fuel electrode, particularly a cermet fuel electrode, of a solid oxide fuel cell, and a solid oxide fuel cell using the fuel electrode.

【0002】[0002]

【従来の技術】最近、酸素と水素を燃料として、燃料が
本来持っている化学エネルギーを直接電気にする燃料電
池が、省資源、環境保護などの観点から注目されてお
り、特に固体電解質型燃料電池は、動作温度が800〜
1000℃と高いことから、リン酸型、溶融炭酸塩型の
燃料電池に比べて原理的に発電効率が高く、排熱を有効
にでき、構成材料が全て固体であり取扱が容易であるな
どの多くの利点を有するため、実用化が進んできてい
る。
2. Description of the Related Art Recently, fuel cells using oxygen and hydrogen as fuels and directly converting the chemical energy inherent in the fuels into electricity are attracting attention from the viewpoint of resource saving and environmental protection. The battery has an operating temperature of 800-
Since the temperature is as high as 1000 ° C, the power generation efficiency is higher in principle compared to the phosphoric acid type and molten carbonate type fuel cells, the waste heat can be made effective, and the constituent materials are all solid and easy to handle. Due to its many advantages, it has been put to practical use.

【0003】図3は固体電解質型燃料電池の構成を概略
的に示したもので、中心となる固体電解質層(以下、中
心固体電解質層という)1と、その両側に配置される2
つの電極、すなわち燃料極2と空気極3とにより構成さ
れている。そして、燃料極2側に水素(H2 )、メタン
(CH4 )などの燃料ガスを供給し、空気極3側に空
気、酸素(O2 )などの酸化剤を供給すると、中心固体
電解質層1と燃料極2との界面4、中心固体電解質層1
と空気極3との界面5では、それぞれ次のような反応が
起こり、 界面4: 2O2-+2H2 → 2H2 O+4e- 界面5: O2 +4e- →2O2- この反応により両極間に起電力が発生し、負荷6に電流
が流れるよう構成されている。
FIG. 3 schematically shows the structure of a solid oxide fuel cell, in which a solid electrolyte layer (hereinafter referred to as a central solid electrolyte layer) 1 serving as a center and two solid electrolyte layers 2 arranged on both sides thereof are provided.
It is composed of two electrodes, that is, a fuel electrode 2 and an air electrode 3. When a fuel gas such as hydrogen (H 2 ) or methane (CH 4 ) is supplied to the fuel electrode 2 and an oxidant such as air or oxygen (O 2 ) is supplied to the air electrode 3, the central solid electrolyte layer Interface 4 between fuel cell 1 and fuel electrode 2, central solid electrolyte layer 1
At the interface 5 between the air electrode 3 and the air electrode 3, the following reactions occur, respectively. Interface 4: 2O 2− + 2H 2 → 2H 2 O + 4e Interface 5: O 2 + 4e → 2O 2− Electric power is generated and a current flows through the load 6.

【0004】[0004]

【発明が解決しようとする課題】燃料電池の性能は、中
心固体電解質層1のバルク抵抗、燃料極2や空気極3で
の分極、上記界面4、5での接触抵抗などに影響される
が、特に燃料極2は金属と固体電解質(以下、この固体
電解質を燃料極内電解質という)とのサーメットが用い
られて複雑な構造となっており、その微細構造を制御す
るのが困難なため、いかにして燃料極の微細構造を制御
し、燃料極2での分極や燃料極2と中心固体電解質層1
との間の接触抵抗を低減するかが、固体電解質型燃料電
池全体の性能を向上させる上での重要な技術的課題とな
っている。燃料極2の性能を向上させる技術としては、
多孔質性を高めてガスの透過性を向上させる、金属と燃
料極内電解質との分散性を高めて分極を低減する、中心
固体電解質層1との界面近傍で燃料極内部に電池反応が
広がるようにするなどの方法がある。
The performance of the fuel cell is affected by the bulk resistance of the central solid electrolyte layer 1, the polarization at the fuel electrode 2 and the air electrode 3, the contact resistance at the interfaces 4 and 5, and the like. In particular, the fuel electrode 2 has a complicated structure using a cermet of a metal and a solid electrolyte (hereinafter, this solid electrolyte is referred to as a fuel electrode electrolyte), and it is difficult to control the fine structure. How to control the fine structure of the anode, the polarization at the anode 2 and the anode 2 and the central solid electrolyte layer 1
It is an important technical issue to improve the performance of the entire solid oxide fuel cell whether to reduce the contact resistance between the fuel cell and the fuel cell. Techniques for improving the performance of the fuel electrode 2 include:
Improves gas permeability by increasing porosity, reduces polarization by increasing dispersibility between metal and electrolyte in the fuel electrode, and spreads cell reaction inside the fuel electrode near the interface with the central solid electrolyte layer 1 There are methods such as doing so.

【0005】この電池反応を広げるには、燃料極内電解
質の酸素イオン導電性を高める必要があり、そのため、
従来は、燃料極内電解質の原料としては酸化イットリウ
ム(Y23 )、酸化カルシウム(CaO)などの2
価、または3価の金属酸化物が予め固溶された酸化ジル
コニウム(ZrO2 )、酸化セリウム(CeO2 )など
の4価の金属酸化物を用いるか、あるいはイットリウム
(Y)、カルシウム(Ca)などの2価、または3価の
金属の塩類とジルコニウム(Zr)、セリウム(Ce)
などの4価の金属の塩類との混合物を用い、このような
原料による燃料極内電解質とニッケル(Ni)、コバル
ト(Co)などの金属との混合物を中心固体電解質層1
に塗布し、これを焼成してサーメット電極を形成してい
た。
[0005] In order to extend the cell reaction, it is necessary to increase the oxygen ion conductivity of the electrolyte in the fuel electrode.
Conventionally, raw materials for the electrolyte in the fuel electrode include yttrium oxide (Y 2 O 3 ) and calcium oxide (CaO).
Use a tetravalent metal oxide such as zirconium oxide (ZrO 2 ) or cerium oxide (CeO 2 ) in which a trivalent or trivalent metal oxide is previously dissolved, or use yttrium (Y), calcium (Ca) Salts of divalent or trivalent metals such as zirconium (Zr), cerium (Ce)
A mixture of a salt of a fuel electrode and a metal, such as nickel (Ni) or cobalt (Co), made of such a raw material is used as the central solid electrolyte layer 1.
And baked to form a cermet electrode.

【0006】しかし、焼成温度は1300℃以上の高温
でなければならず、このような高温状態では、図4の電
子顕微鏡写真に示したように、2価、または3価の金属
が固溶された燃料極内電解質は粒成長し易く、ニッケル
などの金属との分散性が良好ではなかった。そのため、
ニッケルやコバルト、中心固体電解質層1、気相の3相
境界の長さが短くなる、ガス透過性が低下する、分極が
大きくなる等して、電池性能が低下するという問題があ
った。また、酸素イオン導電性を高めるための金属酸化
物は、燃料極2全体に均一に分散されている。
However, the sintering temperature must be a high temperature of 1300 ° C. or more. In such a high temperature state, as shown in the electron micrograph of FIG. 4, a divalent or trivalent metal is dissolved. In addition, the electrolyte in the fuel electrode was apt to grow grains, and did not have good dispersibility with metals such as nickel. for that reason,
There has been a problem that the battery performance is deteriorated by shortening the length of the three-phase boundary between nickel, cobalt, the central solid electrolyte layer 1 and the gas phase, decreasing gas permeability, increasing polarization, and the like. Further, the metal oxide for increasing the oxygen ion conductivity is uniformly dispersed throughout the fuel electrode 2.

【0007】本発明は、このような点にかんがみてなさ
れたもので、その目的は、高温で焼成しても燃料極内電
解質の粒成長を抑えるとともに、中心固体電解質層との
界面近傍での酸素イオン導電性を高めることである。
[0007] The present invention has been made in view of such a point, and an object thereof is to suppress the grain growth of the electrolyte in the fuel electrode even when fired at a high temperature, and to reduce the growth of the electrolyte near the interface with the central solid electrolyte layer. The purpose is to increase oxygen ion conductivity.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、導電性を高めるための所定の2価または
3価の金属酸化物(例えば、酸化イットリウム、酸化イ
ットリビウムなど)が固溶された固体電解質(例えば、
酸化ジルコニウム、酸化セリウムなど)と所定の金属
(例えば、ニッケル、コバルトなど)とのサーメットよ
りなる固体電解質型燃料電池の燃料極を、中心となる固
体電解質層(一般にイットリア添加ジルコニアで構成さ
れる)上に形成する際、前記燃料極中の固体電解質の原
料として所定の4価の金属酸化物(例えば、酸化ジルコ
ニウム、酸化セリウムなど)の粉体、または所定の4価
の金属(例えば、ジルコニウム、セリウムなど)を含む
塩類を用い、酸化イットリウム、酸化イットリビウムな
どの導電性を高めるための所定の2価または3価の金属
酸化物は、燃料極を1450℃、すくなくとも1200
度以上で焼成し、前記中心となる固体電解質層から拡散
させて固溶させるようにしている。すなわち、酸化イッ
トリウム、酸化イットリビウムなどの導電性を高めるた
めの金属酸化物は、燃料極の原材料中に最初から固溶さ
ておくのではなく、燃料極を1200度で焼成すること
により中心となる固体電解質層から拡散させて燃料極内
に固溶させるのである。
In order to achieve the above-mentioned object, the present invention relates to a method for forming a solid solution of a predetermined divalent or trivalent metal oxide (for example, yttrium oxide or yttrium oxide) for enhancing conductivity. Solid electrolyte (for example,
The fuel electrode of a solid oxide fuel cell composed of a cermet of zirconium oxide, cerium oxide, etc. and a predetermined metal (eg, nickel, cobalt, etc.) is connected to a central solid electrolyte layer (generally composed of yttria-doped zirconia). When formed on the surface, a powder of a predetermined tetravalent metal oxide (eg, zirconium oxide, cerium oxide, etc.) or a predetermined tetravalent metal (eg, zirconium, A predetermined divalent or trivalent metal oxide, such as yttrium oxide or yttrium oxide, for increasing conductivity using a salt containing cerium or the like, has a fuel electrode temperature of 1450 ° C., at least 1200 ° C.
The solid electrolyte layer is fired at a temperature of not less than the temperature and diffused from the central solid electrolyte layer to form a solid solution. In other words, metal oxides such as yttrium oxide and yttrium oxide for enhancing conductivity are not solid-solved in the raw material of the fuel electrode from the beginning, but are fired at 1200 degrees in the fuel electrode to form a central solid electrolyte. It is diffused from the layer to form a solid solution in the fuel electrode.

【0009】[0009]

【作用】例えば、イットリア添加ジルコニアで構成され
てなる中心となる固定電解質層の上に、ニッケルと酸化
ジルコニウムを原料として燃料極を形成すべくこれらを
1200度以上で焼成したとする。
For example, it is assumed that nickel and zirconium oxide are fired at a temperature of 1200 ° C. or more in order to form a fuel electrode on a central fixed electrolyte layer made of yttria-added zirconia.

【0010】すると、燃料極は耐火性があり、かつ機械
的強度も強いサーメットとなるが、この際、燃料極の原
料としての酸化ジルコニウムには、酸化イットリウムな
どの導電性を高めるための金属酸化物が固溶されていな
いため、酸化ジルコニウムの粒成長が抑制され、ニッケ
ルと酸化ジルコニウムとの分散性が良くなる。また、中
心となる固体電解質層内のイットリアは、中心となる固
体電解質層から燃料極に拡散されて固溶される。この場
合、イットリアは、中心となる固体電解質層との界面部
分で分布密度が高く界面部分から遠ざかるに従って分布
密度が低くなっているため、電池反応が燃料極の内部に
広がるとともに、分極が低減されることとなる。
Then, the fuel electrode becomes a cermet having fire resistance and high mechanical strength. At this time, zirconium oxide as a raw material of the fuel electrode includes metal oxide such as yttrium oxide for increasing conductivity. Since the substance is not dissolved, the grain growth of zirconium oxide is suppressed, and the dispersibility of nickel and zirconium oxide is improved. In addition, yttria in the central solid electrolyte layer is diffused from the central solid electrolyte layer to the fuel electrode to form a solid solution. In this case, since the distribution density of yttria is high at the interface with the central solid electrolyte layer and the distribution density decreases as the distance from the interface increases, the cell reaction spreads inside the fuel electrode and polarization is reduced. The Rukoto.

【0011】[0011]

【実施例】以下、本発明の一実施例を図面に基づいて説
明する。
An embodiment of the present invention will be described below with reference to the drawings.

【0012】本実施例では、燃料極2の原料として、 原料1: 平均粒径0.9μmのNiOの粉体 原料2: Zrの有機金属錯塩(オクチル酸塩)のトル
エン、またはアセチルアセトン溶液 を用いて、原料1と原料2とを、焼成後の重量比が、 NiO:YSZ=0.947:0.053 (ただし、YSZは、イットリアをドープした安定化ジ
ルコニアのこと)となるように混合し、適度な粘土とな
るまで溶剤を蒸発させた後、YSZで構成された中心固
体電解質層1の上にスクリーン印刷法で塗布し、500
℃で熱分解し、1450℃で後焼成(アニーリング)し
た。
In this embodiment, as a raw material of the fuel electrode 2, a raw material 1: a powder of NiO having an average particle diameter of 0.9 μm, a raw material 2: a toluene or acetylacetone solution of an organic metal complex salt (octylate) of Zr is used. Then, the raw material 1 and the raw material 2 are mixed so that the weight ratio after firing is NiO: YSZ = 0.947: 0.053 (however, YSZ is stabilized zirconia doped with yttria). After evaporating the solvent until a suitable clay is obtained, it is applied on the central solid electrolyte layer 1 made of YSZ by a screen printing method.
Decomposed at 1400C and post-baked (annealed) at 1450C.

【0013】その結果、図1の電子顕微鏡写真からも明
らかなように、図1の下半分の燃料極2中において、ジ
ルコニア粒子の粒が小さく、ニッケルとの分散性が良好
となった。また、ジルコニア粒子同士が粒成長して固ま
らず、多数の空隙が形成されて多孔質性が高まった。ま
た、イットリアは、中心固体電解質層1からサーメット
燃料極に拡散しており、界面近傍で密に分布し、界面か
ら遠ざかるに従って少なくなっている。
As a result, as is clear from the electron micrograph of FIG. 1, in the fuel electrode 2 in the lower half of FIG. 1, the zirconia particles were small and the dispersibility with nickel was good. In addition, the zirconia particles did not solidify due to grain growth, and a large number of voids were formed to increase the porosity. In addition, yttria diffuses from the central solid electrolyte layer 1 to the cermet fuel electrode, is densely distributed near the interface, and decreases as the distance from the interface increases.

【0014】次に、燃料極2を従来の方法で形成した
(燃料極2中のZrO2 が8モルのY22 をドープし
たZrO2となるように原料に酸化イットリウムのオク
チル酸塩を加えた)燃料電池E1と、燃料極2を上記実
施例の方法で形成した燃料電池E2との発電試験データ
を図2に示す。
[0014] Next, the fuel electrode 2 was formed by conventional methods (for raw materials of yttrium oxide so that the ZrO 2 to ZrO 2 in the fuel electrode 2 is doped with 8 mol of Y 2 O 2 octylate FIG. 2 shows power generation test data of the (added) fuel cell E1 and the fuel cell E2 in which the fuel electrode 2 is formed by the method of the above embodiment.

【0015】なお、両電池とも、中心固体電解質層1と
しては、8モル%のY22 をドープしたZrO2 を用
い、空気極3としては、LaSrMnO3 (ストロンチ
ウムをドープしたランタン・マンガナイト)を用いた。
また、発電試験の条件は、両電池とも以下の通りとし
た。
[0015] Incidentally, both the battery, as the central solid electrolyte layer 1, using a ZrO 2 doped with 8 mol% of Y 2 O 2, as the air electrode 3, LaSrMnO 3 (lanthanum manganite doped with strontium ) Was used.
The conditions of the power generation test were as follows for both batteries.

【0016】(1)燃料極側流量 水素流量: 1000SCCM 窒素流量: 500SCCM (2)空気極側流量 空気流量: 2000SCCM (3)温度 1000℃ (4)電極部有効面積 21cm2 図2の発電試験データは、本実施例の方法により形成さ
れた燃料極2を用いた燃料電池E2の方が、従来の方法
により形成された燃料極2を用いた燃料電池E1より、
大きな電力が得られることを示している。
(1) Fuel electrode side flow rate Hydrogen flow rate: 1000 SCCM Nitrogen flow rate: 500 SCCM (2) Air electrode side flow rate Air flow rate: 2000 SCCM (3) Temperature 1000 ° C. (4) Electrode effective area 21 cm 2 Power generation test data in FIG. Is that the fuel cell E2 using the fuel electrode 2 formed by the method of the present embodiment is better than the fuel cell E1 using the fuel electrode 2 formed by the conventional method.
This shows that large power can be obtained.

【0017】この効果は、上記のように、(1)燃料極
2中のジルコニア粒子を微粒子状に形成し、ニッケル粒
子との分散性が良くなっている、(2)燃料極2中のジ
ルコニア粒子の粒成長が抑制され、ジルコニア粒子同士
が固まらないため、多孔質性が高まりガスの透過性が良
くなっている、(3)イットリアの拡散(分布)密度が
中心固体電解質層1との界面付近で高くなっており、上
記界面付近のジルコニアが高イオン導電性を持ってい
る、ことにより得られる。
As described above, this effect is achieved by (1) forming the zirconia particles in the anode 2 into fine particles and improving the dispersibility with the nickel particles. (2) zirconia in the anode 2 Since the grain growth of the particles is suppressed and the zirconia particles do not solidify, the porosity is increased and the gas permeability is improved. (3) The diffusion (distribution) density of yttria is an interface with the central solid electrolyte layer 1. It is high in the vicinity, and is obtained by the fact that zirconia in the vicinity of the interface has high ionic conductivity.

【0018】すなわち、燃料極2側では、中心固体電解
質層1中を拡散してきた酸素イオンと、ニッケル粒子表
面に解離吸着した水素原子または気相中の水素分子がニ
ッケル,電解質,気相の3相境界で反応して電子を放出
して水蒸気となるという電池反応がおこるので、単位面
積あたりの3相境界が長いほど反応サイトが多く、燃料
極2の性能が良くなる。したがって、本実施例では、上
記のようにジルコニア粒子とニッケル粒子との分散性が
良くニッケル粒子が凝集していないため、3相境界が長
くなっており、反応サイトが増加しているため、燃料極
2の性能が良くなる。
That is, on the fuel electrode 2 side, oxygen ions diffused in the central solid electrolyte layer 1 and hydrogen atoms dissociated and adsorbed on the surface of the nickel particles or hydrogen molecules in the gas phase become nickel, electrolyte and gas phase. Since a cell reaction occurs in which a reaction occurs at the phase boundary to release electrons to form water vapor, the longer the three-phase boundary per unit area is, the more reaction sites are, and the performance of the fuel electrode 2 is improved. Therefore, in the present embodiment, since the dispersibility of the zirconia particles and the nickel particles is good and the nickel particles are not agglomerated as described above, the three-phase boundary is long, and the number of reaction sites is increased. The performance of pole 2 is improved.

【0019】また、上記のように、ガスの透過性が良く
なっているので、燃料極2での電池反応が活性化し電極
性能が向上する。さらに、ジルコニア粒子とニッケル粒
子との分散性が良い上に、中心固体電解質層1と燃料極
2との界面付近のみならず燃料極2の内部もイオン導電
性を持つため、燃料極2の内部にまで電池反応が広が
り、分極が低減されて燃料極2の性能が向上する。ま
た、中心固体電解質層1と燃料極2との界面付近で特に
イオン導電性が高くなっているので、その分、電池反応
が活発になり、燃料極2の電極性能が向上する。
Further, since the gas permeability is improved as described above, the cell reaction at the fuel electrode 2 is activated and the electrode performance is improved. Furthermore, the dispersibility of the zirconia particles and the nickel particles is good, and the inside of the fuel electrode 2 as well as the vicinity of the interface between the central solid electrolyte layer 1 and the fuel electrode 2 has ionic conductivity. , The polarization of the cell is reduced, and the performance of the fuel electrode 2 is improved. In addition, since the ionic conductivity is particularly high near the interface between the central solid electrolyte layer 1 and the fuel electrode 2, the battery reaction becomes active correspondingly, and the electrode performance of the fuel electrode 2 is improved.

【0020】なお、本発明は上記実施例に限定されるこ
となく、中心固体電解質層1、燃料極2、空気極3の原
材料としては各種の物質を用いることができるので、そ
れら物質を列挙しておく。
The present invention is not limited to the above embodiment, and various materials can be used as raw materials for the central solid electrolyte layer 1, the fuel electrode 2, and the air electrode 3, and these materials are listed. Keep it.

【0021】(1)中心固体電解質層1の材料 (a)固体電解質[固溶(ドープ)される前の物質] 酸化ジルコニウム(ZrO2 )、酸化セリウム(CeO
2 ) 酸化トリウム(TrO2 ) (b)固溶(ドープ)する物質 酸化イットリウム(Y23 )、酸化カルシウム(Ca
O) 酸化マグネシウム(MgO)、酸化イットリビウム(Y
23) 酸化スカンジウム(Sc23 )、酸化ネオジウム(N
23 ) 酸化ガドリウム(Gd23 ) (2)燃料極2の材料 (a)金属 ニッケル(Ni)、コバルト(Co)、鉄(Fe)、ル
テニウム(Ru) (b)燃料極内電解質 中心固体電解質層1の固体電解質と同じ (3)空気極3 (a)固体電解質[固溶(ドープ)される前の物質] LaMnO3 、LaCoO3 、LaCrO3 、LaFe
3 (b)固溶(ドープ)する物質 Sr(ストロンチウム)、Ca(カルシウム)、Mg
(マグネシウム)
(1) Material of central solid electrolyte layer 1 (a) Solid electrolyte [substance before solid solution (doping)] Zirconium oxide (ZrO 2 ), cerium oxide (CeO)
2 ) Thorium oxide (TrO 2 ) (b) Solid solution (doping) substance Yttrium oxide (Y 2 O 3 ), calcium oxide (Ca)
O) Magnesium oxide (MgO), ytterbium oxide (Y
b 2 O 3 ) scandium oxide (Sc 2 O 3 ), neodymium oxide (N
d 2 O 3 ) gadolinium oxide (Gd 2 O 3 ) (2) Material of fuel electrode 2 (a) Metal nickel (Ni), cobalt (Co), iron (Fe), ruthenium (Ru) (b) Inside fuel electrode Electrolyte Same as solid electrolyte of central solid electrolyte layer 1 (3) Air electrode 3 (a) Solid electrolyte [substance before solid solution (doping)] LaMnO 3 , LaCoO 3 , LaCrO 3 , LaFe
O 3 (b) Solid solution (doping) substance Sr (strontium), Ca (calcium), Mg
(magnesium)

【0022】[0022]

【発明の効果】以上説明したように、本発明による燃料
極の形成方法によれば、1200度以上の高温で焼成し
ても燃料極内電解質の粒成長を抑えることができ、これ
により燃料極において3相境界を長くし、分極を低減
し、ガス透過性を向上させることが可能となるので固体
電解質型燃料電池全体の電池性能が向上する。また、酸
素イオン導電性を高めるための金属酸化物の分散状態が
改善されて中心固体電解質層との界面近傍での酸素イオ
ン導電性が高められるので、電池反応が活発になり、こ
の点からも固体電解質型燃料電池全体の電池性能が向上
する。
As described above, according to the method for forming an anode according to the present invention, even when the anode is fired at a high temperature of 1200 ° C. or more, the grain growth of the electrolyte in the anode can be suppressed. In this case, the three-phase boundary can be lengthened, the polarization can be reduced, and the gas permeability can be improved, so that the overall cell performance of the solid oxide fuel cell can be improved. In addition, since the dispersion state of the metal oxide for improving the oxygen ion conductivity is improved and the oxygen ion conductivity near the interface with the central solid electrolyte layer is increased, the battery reaction becomes active, and from this point as well. The cell performance of the entire solid oxide fuel cell is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例により形成された燃料極部分
の粒子構造を示す電子顕微鏡写真である。
FIG. 1 is an electron micrograph showing a particle structure of a fuel electrode formed according to one embodiment of the present invention.

【図2】本発明の一実施例により形成された燃料極を用
いた燃料電池の単セルと、従来の方法により形成された
燃料極を用いた燃料電池の単セルとの電池性能実験結果
を比較して示す図である。
FIG. 2 shows the results of a cell performance experiment of a single cell of a fuel cell using an anode formed according to an embodiment of the present invention and a single cell of a fuel cell using an anode formed by a conventional method. It is a figure shown in comparison.

【図3】固体電解質型燃料電池の構成を示す概略図であ
る。
FIG. 3 is a schematic diagram showing a configuration of a solid oxide fuel cell.

【図4】従来の方法により形成された燃料極部分の粒子
構造を示す電子顕微鏡写真である。
FIG. 4 is an electron micrograph showing a particle structure of a fuel electrode portion formed by a conventional method.

【符号の説明】[Explanation of symbols]

1 中心固体電解質層 2 燃料極 3 空気極 1 Central solid electrolyte layer 2 Fuel electrode 3 Air electrode

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 中心となる固体電解質層上に、固体電解
質と所定の金属とのサーメットよりなる固体電解質型燃
料電池の燃料極を形成する形成方法において、前記固体電解質層を、イットリア安定化ジルコニアと
し、 前記燃料極中の固体電解質の原料に酸化ジルコニウムの
粉体、またはジルコニウムを含む塩類を用い、該固体電
解質と酸化ニッケルとを混合した後、該混合物を前記固
体電解質層上に塗布し、これを1200℃以上で焼成
し、イットリアを、前記中心となる固体電解質層から前
記燃料極内の固体電解質に拡散させ、立方晶のイットリ
ア安定化ジルコニア固溶体を前記燃料極内に形成させる
ことを特徴とした固体電解質型燃料電池の燃料極の形成
方法。
1. A solid electrolyte layer on a central solid electrolyte layer.
Solid electrolyte fuel consisting of a cermet of solid and predetermined metal
In a forming method for forming a fuel electrode of a fuel cell,The solid electrolyte layer, yttria-stabilized zirconia
And  Raw material of solid electrolyte in the fuel electrodeOf zirconium oxide
Using powder or salts containing zirconium, The solid-state
Resolving andWith nickel oxideAfter mixing, the mixture is
Apply on body electrolyte layer,thisFired at 1200 ° C or higher
AndThe yttria is positioned in front of the central solid electrolyte layer.
Diffusion into the solid electrolyte in the fuel electrode
A stabilized zirconia solid solution is formed in the fuel electrode.
thingOf Fuel Electrode for Solid Oxide Fuel Cell
Method.
【請求項2】 請求項1に記載の方法で形成され、前記
イットリアは、中心となる固体電解質層との界面部分で
分布密度が高く該界面部分から遠ざかるに従って分布密
度が低くなるよう固溶されてなる燃料極を用いた固体電
解質型燃料電池。
2. Formed by the method of claim 1, wherein
Yttria is a solid oxide fuel cell using a fuel electrode which is solid-dissolved such that the distribution density is high at the interface with the solid electrolyte layer at the center and the distribution density decreases as the distance from the interface increases.
JP27327991A 1991-09-25 1991-09-25 Method for forming fuel electrode of solid oxide fuel cell and solid electrolyte fuel cell using the fuel electrode Expired - Fee Related JP3160030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27327991A JP3160030B2 (en) 1991-09-25 1991-09-25 Method for forming fuel electrode of solid oxide fuel cell and solid electrolyte fuel cell using the fuel electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27327991A JP3160030B2 (en) 1991-09-25 1991-09-25 Method for forming fuel electrode of solid oxide fuel cell and solid electrolyte fuel cell using the fuel electrode

Publications (2)

Publication Number Publication Date
JPH0589882A JPH0589882A (en) 1993-04-09
JP3160030B2 true JP3160030B2 (en) 2001-04-23

Family

ID=17525636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27327991A Expired - Fee Related JP3160030B2 (en) 1991-09-25 1991-09-25 Method for forming fuel electrode of solid oxide fuel cell and solid electrolyte fuel cell using the fuel electrode

Country Status (1)

Country Link
JP (1) JP3160030B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5252362B2 (en) * 2005-12-28 2013-07-31 独立行政法人産業技術総合研究所 Ceramic electrode

Also Published As

Publication number Publication date
JPH0589882A (en) 1993-04-09

Similar Documents

Publication Publication Date Title
US7976686B2 (en) Efficient reversible electrodes for solid oxide electrolyzer cells
US20110062017A1 (en) Efficient reversible electrodes for solid oxide electrolyzer cells
JP5127126B2 (en) Electrode for fuel cell and solid oxide fuel cell using the same
KR101744159B1 (en) Method of manufacturing catalyst for cathode of metal air battery, and metal air battery
KR101796575B1 (en) Method of manufacturing an electrode material having exsoluted metal alloy catalyst, and solid oxide fuel cell, metal air battery, and solid oxide electrolyzer cell having the same
JP2006283103A (en) Steam electrolysis cell
TW200304709A (en) Solid oxide form fuel cell and its manufacturing method
KR20190131744A (en) Method of manufacturing an electrode material having exsoluted and exchanged transition metal catalyst, and solid oxide fuel cell, metal air battery, and solid oxide electrolyzer cell having the same
JP2001351646A (en) LaGaO3 SOLID ELECTROLYTE FUEL CELL
JP2000133280A (en) Anode for high performance solid oxide fuel cell
JP2009140693A (en) Solid oxide fuel cell
CN114628753A (en) Proton conductor solid oxide battery with negative electrode barrier layer
KR101611254B1 (en) Method of manufacturing anode materials for solid oxide fuel cell
Zeng et al. Enhancing the oxygen reduction reaction activity and durability of a solid oxide fuel cell cathode by surface modification of a hybrid coating
Yoon et al. Superior power density solid oxide fuel cells by enlarging the three-phase boundary region of a NiO–Ce 0.8 Gd 0.2 O 1.9 composite anode through optimized surface structure
JP3871903B2 (en) Method for introducing electrode active oxide into fuel electrode for solid oxide fuel cell
KR102159510B1 (en) Method of manufacturing an electrode material having exsoluted and exchanged transition metal catalyst, and metal air battery, solid oxide fuel cell, and solid oxide electrolyzer cell having the same
JP5481611B2 (en) High temperature steam electrolysis cell
KR101903652B1 (en) Method of manufacturing an electrode material using infiltration method
JP3160030B2 (en) Method for forming fuel electrode of solid oxide fuel cell and solid electrolyte fuel cell using the fuel electrode
KR102137988B1 (en) symmetrical solid oxide fuel cell having perovskite structure, method of manufacturing the same and symmetrical solid oxide electrolyzer cell having the perovskite structure
US20230067972A1 (en) Solid oxide fuel cells and methods of forming thereof
KR101691699B1 (en) Method for manufacturing powder for anode functional layer of solid oxide fuel cell
JP2771090B2 (en) Solid oxide fuel cell
KR102091454B1 (en) Cathode material for solid oxide fuel cell, and solid oxide fuel cell having the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010206

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees