JP3158416B2 - Cathode plate for paste-type nickel cadmium storage battery - Google Patents

Cathode plate for paste-type nickel cadmium storage battery

Info

Publication number
JP3158416B2
JP3158416B2 JP20224990A JP20224990A JP3158416B2 JP 3158416 B2 JP3158416 B2 JP 3158416B2 JP 20224990 A JP20224990 A JP 20224990A JP 20224990 A JP20224990 A JP 20224990A JP 3158416 B2 JP3158416 B2 JP 3158416B2
Authority
JP
Japan
Prior art keywords
cathode
paste
plating
active material
dispersed particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20224990A
Other languages
Japanese (ja)
Other versions
JPH0487259A (en
Inventor
真 小西
幹夫 小熊
満 小関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Kobe Electric Machinery Co Ltd
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP20224990A priority Critical patent/JP3158416B2/en
Publication of JPH0487259A publication Critical patent/JPH0487259A/en
Application granted granted Critical
Publication of JP3158416B2 publication Critical patent/JP3158416B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ペースト式ニッケルカドミウム蓄電池用陰
極板に関するものである。
Description: TECHNICAL FIELD The present invention relates to a cathode plate for a paste-type nickel cadmium storage battery.

[従来の技術] 従来のニッケルカドミウム蓄電池用極板は、カーボニ
ルニッケル粉末を焼結して得られたニッケル焼結基板の
細孔中に活物質を含浸保持させた、いわゆる焼結式極板
が一般的であった。しかしながら、この焼結式極板は、
ニッケル焼結基板を作製する工程及び該焼結基板に活物
質を含浸保持させる工程が煩雑であり、製造に長い時間
を要する問題点があった。
[Prior art] A conventional electrode for a nickel cadmium storage battery is a so-called sintered electrode in which active materials are impregnated and held in pores of a nickel sintered substrate obtained by sintering carbonyl nickel powder. Was common. However, this sintered electrode plate
The process of manufacturing a nickel sintered substrate and the process of impregnating and holding an active material in the sintered substrate are complicated, and there is a problem that a long time is required for production.

このため工程が簡略化でき、低コスト化が可能な方法
として、導電性を有する多孔体やネットからなる極板形
成用の基板に酸化カドミウム、金属カドミウム等のカド
ミウム化合物を主成分とするペースト状活物質を直接塗
着し、これを乾燥固着して極板を形成した、いわゆるペ
ースト状極板が提案され、最近ではこのペースト式極板
が次第に採用されるようになってきている。
Therefore, as a method that can simplify the process and reduce the cost, a paste containing a cadmium compound such as cadmium oxide or metal cadmium as a main component is formed on a substrate for forming an electrode plate made of a conductive porous body or net. A so-called paste-like electrode plate in which an active material is directly applied and dried and fixed to form an electrode plate has been proposed. In recent years, this paste-type electrode plate has been gradually adopted.

しかしながらこのペースト式極板は、焼結式極板に比
べて、強度及び導電性の面で劣るという問題点を有して
いる。強度については、ニッケル焼結体を極板骨格とす
る焼結式極板に比べて、ペースト式極板では活物質ペー
スト自体が極板形状を維持するために、機械的強度が低
い。そのために高密度化のためのロールプレス工程、円
筒形電池を形成するための極板の巻回工程において、活
物質の剥離、脱落が生じ易く、これが歩留りの低下や容
器に充填した後のショートなどの問題を生じさせてい
る。また導電性については、焼結により3次元的につな
がったニッケル粒子が形成する微細孔中に活物質を充填
する焼結式極板に比べて、ペースト式極板では活物質の
占める割合が大きくなるので、抵抗が大きくなって導電
性に劣る傾向がある。これらの問題を解決するために、
従来のペースト式極板では活物質中にニッケル微粉末な
どの導電材を添加している。しかしながら同一添加量の
場合、ペースト式極板では導電マトリックスを形成した
ニッケル粒子が陰極芯材と接続されている焼結式極板に
比べて、活物質層と陰極基体との電気的結合が不十分で
あり、急速充放電時の電圧特性利用率の低下を招いてい
た。
However, this paste type electrode plate has a problem that it is inferior in strength and conductivity as compared with a sintered type electrode plate. Regarding the strength, the mechanical strength of the paste-type electrode plate is lower than that of the sintered electrode plate having the electrode frame of the nickel sintered body because the active material paste itself maintains the electrode plate shape. For this reason, in the roll pressing process for high density and the winding process of the electrode plate for forming the cylindrical battery, the active material is easily peeled and dropped, which lowers the yield and short-circuits after filling the container. And so on. As for the conductivity, the paste-type electrode plate has a larger proportion of the active material than the sintered electrode plate in which the active material is filled in the fine pores formed by three-dimensionally connected nickel particles by sintering. Therefore, the resistance tends to increase and the conductivity tends to be poor. To solve these problems,
In a conventional paste type electrode plate, a conductive material such as nickel fine powder is added to an active material. However, in the case of the same addition amount, the electrical connection between the active material layer and the cathode substrate is lower in the paste-type electrode plate than in the sintered electrode plate in which the nickel particles forming the conductive matrix are connected to the cathode core material. This is sufficient, causing a drop in the voltage characteristic utilization rate during rapid charge and discharge.

上記活物質層と陰極基体との電気的結合を十分なもの
とするための一つの対策としては、両者の接触面積を増
やす方法がある。例えば、特開昭50−78840号公報に
は、穿孔された陰極基体をプレス成型することにより集
電体である該陰極基体の表面に突起を設ける方法が提案
されている。第5図は、この方法で形成されたペースト
式陰極板11の構成を示したものである。同図において、
12はプレス加工により複数のプレス突起12aが形成され
ているニッケル,鉄等よりなる陰極基体であり、13は陰
極基体12上に設けられているペースト式活物質層であ
る。
As one measure for making the electrical connection between the active material layer and the cathode substrate sufficient, there is a method of increasing the contact area between them. For example, Japanese Patent Application Laid-Open No. 50-78840 proposes a method in which projections are provided on the surface of a cathode base, which is a current collector, by pressing a perforated cathode base. FIG. 5 shows the structure of the paste type cathode plate 11 formed by this method. In the figure,
Reference numeral 12 denotes a cathode base made of nickel, iron, or the like, on which a plurality of press projections 12a are formed by pressing, and reference numeral 13 denotes a paste-type active material layer provided on the cathode base 12.

また別の対策として活物質層の導電性を上げる方法が
ある。例えば、特開昭63−170851号公報や特開昭63−26
6769号公報に示されるように、ペーストを塗着、乾燥し
て極板とした後に、極板表面をメッキにより導電化する
方法が提案されている。
Another measure is to increase the conductivity of the active material layer. For example, JP-A-63-170851 and JP-A-63-26
As disclosed in Japanese Patent No. 6769, there has been proposed a method in which a paste is applied, dried to form an electrode plate, and then the surface of the electrode plate is made conductive by plating.

[発明が解決しようとする課題] しかしながら、前者の特開昭50−78840号公報に示さ
れた陰極基体のように、陰極基体12にプレス突起12aを
設けることにより、活物質層13と陰極基体12との接触面
積を増加させる方法では、活物質の塗着強度の向上には
若干の効果があるものの、プレス突起12aを形成する場
合には、プレス突起12aの数や形状には限界があり、導
電性の確保の面からは、十分とは言えない問題点があっ
た。
[Problems to be Solved by the Invention] However, as in the former cathode base disclosed in Japanese Patent Application Laid-Open No. 50-78840, by providing a press projection 12a on the cathode base 12, the active material layer 13 and the cathode base are provided. The method of increasing the contact area with 12 has a slight effect on improving the coating strength of the active material, but when forming the press projections 12a, there is a limit to the number and shape of the press projections 12a. However, there has been a problem that it cannot be said that the conductivity is sufficient.

一方、後者の極板表面にメッキ層を形成することによ
りにより、活物質の導電化処理を行う方法では、メッキ
層を両面に設けた場合、活物質層表面に形成される活物
質に比べて緻密なメッキ層が充放電時のイオン伝導を阻
害するため、特に急速放電時の電圧低下が大きい。これ
に対して特開昭63−266769号公報に示される方法のよう
に、カドミウム極の一方の面の全面と他方の面の周辺部
のみにメッキ層を設ける方法では、上記の電圧低下を両
面メッキ品に比べて小さくすることはできるが、電圧低
下の影響を完全に除去することは困難である。またメッ
キ層の存在により陰極基体から離れた活物質層の表面か
ら充電が進行するため、集電体である陰極基体と充電部
分の活物質との接続が十分とは言えない問題点があっ
た。これに対して、特開昭63−170851号公報に示された
方法のように、カドミウム極をアクキベータ処理及び還
元処理した後に、メッキを施す場合には、活物質が一度
金属カドミウムに還元されるため、陰極基体と活物質間
の電気的接続は可能となる。しかしながら、製造工程が
かなり複雑になる上、廃水処理の面を含めてコストアッ
プにつながるばかりか、還元処理剤が電池に混入して自
己放電の増大を招くおそれがある等の問題点があった。
On the other hand, in the latter method, in which a plating layer is formed on the surface of the electrode plate to conduct the conductive treatment of the active material, when the plating layers are provided on both surfaces, compared with the active material formed on the surface of the active material layer, Since the dense plating layer inhibits ion conduction during charge and discharge, the voltage drop is particularly large during rapid discharge. On the other hand, in a method of providing a plating layer only on the entire surface of one surface of the cadmium electrode and the peripheral portion of the other surface as in the method disclosed in Japanese Patent Application Laid-Open No. 63-266769, the above-described voltage drop is reduced on both sides Although it can be made smaller than a plated product, it is difficult to completely remove the effect of the voltage drop. In addition, since the charge progresses from the surface of the active material layer away from the cathode substrate due to the presence of the plating layer, there is a problem that the connection between the cathode substrate as a current collector and the active material in the charged portion is not sufficient. . On the other hand, when the plating is performed after the cadmium electrode is subjected to the activator treatment and the reduction treatment as in the method disclosed in JP-A-63-170851, the active material is once reduced to metal cadmium. Therefore, electrical connection between the cathode substrate and the active material becomes possible. However, there are problems that the manufacturing process becomes considerably complicated, the cost is increased not only in terms of wastewater treatment, but also a reduction treatment agent may be mixed into the battery to cause an increase in self-discharge. .

本発明の目的は、上記従来のペースト式陰極板におけ
る問題を解決したペースト式ニッケルカドミウム蓄電池
用陰極板を提供することにある。
An object of the present invention is to provide a paste-type cathode plate for a nickel-cadmium storage battery that solves the above-mentioned problems of the conventional paste-type cathode plate.

[課題を解決するための手段] 請求項1の発明のペースト式ニッケルカドミウム蓄電
池用陰極板では、微粉末を分散粒子とした分散メッキに
より分散粒子間を結合して導電化した三次元マトリック
スを備えた陰極基体を用いられており、三次元マトリッ
クスは分散粒子間がメッキ層によって完全に満たされて
おらず、内部に空隙又は細孔を有する多孔性の構造であ
ることを特徴とする。
Means for Solving the Problems The cathode plate for a paste-type nickel cadmium storage battery according to the first aspect of the present invention includes a three-dimensional matrix in which dispersed particles are electrically connected by dispersion plating using fine powder as dispersed particles. The three-dimensional matrix is characterized in that the space between dispersed particles is not completely filled with the plating layer and has a porous structure having voids or pores therein.

請求項2の発明のペースト式ニッケルカドミウム蓄電
池用陰極板では、請求項1において、三次元マトリック
スは分散粒子間がメッキ層によって連結された複数個の
突起状部を備えて形成されている。
In a paste type nickel cadmium storage battery cathode plate according to a second aspect of the present invention, in the first aspect, the three-dimensional matrix is formed with a plurality of projecting portions in which dispersed particles are connected by a plating layer.

請求項3の発明のペースト式ニッケルカドミウム蓄電
池用陰極板では、請求項2において、微粉末が金属カド
ミウムあるいはカドミウム化合物を主成分とする組成か
らなることを特徴とする。
According to a third aspect of the present invention, in the cathode plate for a paste-type nickel cadmium storage battery, the fine powder according to the second aspect is made of a composition containing metal cadmium or a cadmium compound as a main component.

本発明で分散粒子間の結合及び導電化に用いる分散メ
ッキは、難溶性微粒子を含むメッキ溶のサスペンション
から、メッキ金属とともに微粒子を共析させることによ
って、分散粒子間がメッキ層によって完全に満たされて
おらず、内部に空隙又は細孔を有する多孔性の構造の複
合被膜をつくる機能メッキである。分散粒子の大きさと
しては、例えば1μm前後が用いられることが多いが、
メッキ溶の撹拌条件あるいは通電条件を選ぶことにより
20〜30μmの分散粒子なども用いることができる。分散
粒子の形状については特に条件はない。また分散メッキ
により形成される複合被膜の導電性を決定する粒子表面
のメッキ層の厚さは、撹拌条件のコントロール、メッキ
溶の組成等による分散粒子の沈殿速度のコントロール、
あるいは通電条件などによって調節できる。複合被膜の
多孔度、厚さも、分散粒子の形状、大きさ等と合わせて
選定することによって可能であり、焼結式基板に近い形
状の多孔性基板を作ることも可能である。また分散粒子
としては金属等の導電性を有するものでも、酸化物等の
導電性を有さないものでも使用できる。
In the present invention, the dispersion plating used for bonding between the dispersed particles and making the particles conductive is performed by eutecting the fine particles together with the plating metal from the plating solution suspension containing the hardly soluble fine particles, whereby the space between the dispersed particles is completely filled with the plating layer. This is a functional plating for producing a composite coating having a porous structure having voids or pores inside. As the size of the dispersed particles, for example, around 1 μm is often used,
By selecting the plating solution stirring conditions or energizing conditions
Dispersed particles of 20 to 30 μm can also be used. There is no particular condition for the shape of the dispersed particles. Also, the thickness of the plating layer on the particle surface, which determines the conductivity of the composite coating formed by dispersion plating, controls the stirring conditions, controls the precipitation rate of the dispersed particles by the plating solution composition, etc.,
Alternatively, it can be adjusted according to the energization conditions. The porosity and thickness of the composite coating can also be selected in accordance with the shape and size of the dispersed particles, and a porous substrate having a shape close to a sintered substrate can be produced. Further, as the dispersed particles, those having conductivity such as metal and those having no conductivity such as oxide can be used.

[作 用] 請求項1の発明のように、分散メッキによって多孔性
の三次元マトリックスを形成した場合、分散粒子はメッ
キを施されるために導電性を有し、特に粒子間がメッキ
金属によって接続されるため、分散粒子を単に粉末とし
てペースト中に加えた場合と比較して、飛躍的に極板の
導電性及び強度が向上し、急速充放電性能が向上する。
[Operation] In the case where a porous three-dimensional matrix is formed by dispersion plating as in the invention of claim 1, the dispersed particles have conductivity because they are plated, and in particular, the gap between the particles is formed by plating metal. Since the connection is made, the conductivity and strength of the electrode plate are dramatically improved and the rapid charge / discharge performance is improved as compared with the case where the dispersed particles are simply added as a powder into the paste.

請求項2の発明のように、多孔性の三次元マトリック
スが複数の突起状部を有すると、活物質と陰極基体との
接触面積が増える。これら突起状部は、分散メッキ時に
同時に形成することができる。
When the porous three-dimensional matrix has a plurality of protrusions as in the invention of claim 2, the contact area between the active material and the cathode base increases. These protrusions can be formed simultaneously with the dispersion plating.

請求項3の発明のように、微粉末として金属カドミウ
ムあるいはカドミウム化合物を主成分とするものを用い
ると、放電リザーブが改善される。
When the fine powder mainly composed of metal cadmium or a cadmium compound is used, the discharge reserve is improved.

[実施例] 以下本発明の実施例を詳細に説明する。Examples Examples of the present invention will be described below in detail.

第1図は、特に構造が特異である請求項2の発明のペ
ースト式陰極板の一実施例の概略構成を示すための図で
あり、第2図は第1図に符号Aで示した部分の拡大概略
断面図である。図において、1はペースト式極板、2は
集電体、3は分散メッキによって形成された突起状部4
を表面に有する多孔性の三次元マトリックス、5は活物
質層である。集電体2は、例えばニッケルメッキ穿孔鋼
板であり、集電体2に複数の孔が開いているために多孔
性の三次元マトリックス3は、孔の部分を除いた部分に
形成されて、該三次元マトリックス3は凹凸を有する形
状となる。第1図に示した、突起状部4…が該三次元マ
トリックス3の凸部に相当しており、図においては誇張
して概略的に描いてある。集電体2として孔の開いてい
ない板状のものを用いれば、通常該三次元マトリックス
3は連続した層となる。
FIG. 1 is a view showing a schematic configuration of an embodiment of the paste-type cathode plate of the invention of claim 2 which has a unique structure, and FIG. 3 is an enlarged schematic cross-sectional view of FIG. In the drawing, 1 is a paste-type electrode plate, 2 is a current collector, 3 is a protrusion 4 formed by dispersion plating.
Is a porous three-dimensional matrix having on the surface, 5 is an active material layer. The current collector 2 is, for example, a nickel-plated perforated steel sheet. Since the current collector 2 has a plurality of holes, the porous three-dimensional matrix 3 is formed in a portion excluding the hole portion. The three-dimensional matrix 3 has a shape having irregularities. The protruding portions 4 shown in FIG. 1 correspond to the protruding portions of the three-dimensional matrix 3, and are schematically exaggerated in the drawing. If the current collector 2 is a plate having no holes, the three-dimensional matrix 3 is usually a continuous layer.

第2図に示した概略拡大図に示すように、分散粒子4a
がメッキ層4bによって相互に連結されて、分散粒子間は
相互に導電化されている。しかしながら、各分散粒子間
はメッキ層によって完全に満たされているわけではな
く、三次元マトリックス3は内部に複数の空隙又は細孔
を有する多孔性の構造となっている。分散メッキの方法
については、複合メッキの一つとして周知であるため、
詳細については説明を省略する。また活物質層5の充填
も公知のペーストの充填方法を用いるため詳細について
は説明を省略する。
As shown in the schematic enlarged view shown in FIG.
Are interconnected by the plating layer 4b, and the dispersed particles are mutually conductive. However, the space between the dispersed particles is not completely filled with the plating layer, and the three-dimensional matrix 3 has a porous structure having a plurality of voids or pores inside. Because the method of dispersion plating is known as one of composite plating,
A detailed description is omitted. Also, the filling of the active material layer 5 uses a well-known paste filling method, and thus the detailed description is omitted.

[実施例1] メッキ溶として、一般のワット溶に、カーボニルニッ
ケル粉末(Inco社製)400g/lを入れて撹拌により分散し
た電気ニッケルメッキ浴中に、既存のニッケルメッキ穿
孔鋼板を入れ、電流密度1A/dm2で分散メッキを施した。
その後水洗、乾燥して陰極基体を製造した。比較のため
に下記第1表に示す条件で、4種類の陰極基体No.1〜4
を製造した。
[Example 1] As a plating solution, 400 g / l of carbonyl nickel powder (manufactured by Inco) was put into a general watt solution, and an existing nickel-plated perforated steel plate was placed in an electric nickel plating bath dispersed by stirring. Dispersion plating was performed at a density of 1 A / dm 2 .
Thereafter, the substrate was washed with water and dried to produce a cathode substrate. For comparison, the four types of cathode substrates Nos.
Was manufactured.

上記表から判るように、撹拌スピードが遅くなるにつ
れ、陰極基体上の分散粒子の沈殿が速くなるために、所
望の基体厚さに達する時間が短くなり、目付量が減少す
る傾向を示した。また平均細孔径は40〜70μmと焼結式
基体の平均細孔径の7〜10μmから見ると大きく、μm
オーダの粒子径をもつ活物質粒子を塗布するのに適して
いる。
As can be seen from the above table, as the stirring speed becomes slower, the precipitation of the dispersed particles on the cathode substrate becomes faster, so that the time required to reach the desired substrate thickness becomes shorter and the weight per unit area tends to decrease. In addition, the average pore diameter is 40 to 70 μm, which is large when viewed from the average pore diameter of the sintered substrate of 7 to 10 μm.
It is suitable for applying active material particles having a particle diameter of the order.

[実施例2] 平均粒径5μmの金属カドミウムを分散粒子として用
いた以外、実施例1と同様の方法で分散メッキ層を形成
した。この金属カドミウムは突起状部を積極的に形成す
るために加えられる。作製した陰極基体(以下No5陰極
基体と呼ぶ)の物性値を第2表に示した。なお比較のた
めに、第1表に示した陰極基体No.3についての物性値を
示す。
Example 2 A dispersion plating layer was formed in the same manner as in Example 1 except that metal cadmium having an average particle size of 5 μm was used as dispersion particles. The metal cadmium is added to positively form the protrusion. Table 2 shows the physical property values of the produced cathode base (hereinafter referred to as No5 cathode base). For comparison, the physical properties of the cathode substrate No. 3 shown in Table 1 are shown.

表中Cd利用率は分散粒子として添加したCdが如何ほど
放電できるかを示したもので、陰極基体No.3の場合に比
べ、放電リザーブが改善されることを示している。
The Cd utilization in the table shows how much Cd added as dispersed particles can be discharged, and shows that the discharge reserve is improved as compared with the case of the cathode substrate No. 3.

[実施例3] 実施例1の陰極基体No.3のサンプルを還元性雰囲気下
800℃で5分間焼成することにより粒子同志の結合部を
焼結した。焼成後のサンプルを陰極基板No.6とし、第3
表に物性値の変化を記した。分散メッキを焼成すると、
メッキ粒子の剥離強度が上昇することが判る。
Example 3 A sample of the cathode substrate No. 3 of Example 1 was placed in a reducing atmosphere.
By sintering at 800 ° C. for 5 minutes, the joints between the particles were sintered. The fired sample was designated as cathode substrate No. 6,
Changes in physical properties are shown in the table. When baking dispersion plating,
It can be seen that the peel strength of the plating particles increases.

[実施例4] 実施例1の陰極基体No.3,実施例2の陰極基体No.5,実
施例3の陰極基体No.6及びプレス突起を有するニッケル
メッキ穿孔鋼板(以下従来の陰極基体Aと言う)に、酸
化カドミウム100g,金属カドミウム10g,ファーネスブラ
ック1.5g,補強材(短繊維1g,ポリテトラフルオロエチレ
ン5g,エチレングリコール20g)からなるペーストを塗着
し、乾燥後、塗着量150mg/cm2のペースト式陰極板を得
た。
[Example 4] Cathode substrate No. 3 of Example 1, Cathode substrate No. 5 of Example 2, Cathode substrate No. 6 of Example 3, and a nickel-plated perforated steel plate having press projections (hereinafter referred to as conventional cathode substrate A ), Paste a paste consisting of cadmium oxide 100g, metal cadmium 10g, furnace black 1.5g, reinforcing material (short fiber 1g, polytetrafluoroethylene 5g, ethylene glycol 20g), and after drying, apply 150mg / cm 2 was obtained.

これら極板を用いて組立てたNR−AA電池のショート率
は第4表の通りであり、分散メッキによる凹凸処理によ
り、明らかに陰極強度が上昇し、ショート率が低減され
た。また陰極基体No.3に焼成処理を施した陰極基体No.6
は陰極基体No.3比べてショート率が低減された。
The short-circuit rate of the NR-AA batteries assembled using these electrode plates is as shown in Table 4. The unevenness treatment by dispersion plating clearly increased the cathode strength and reduced the short-circuit rate. In addition, cathode substrate No. 6 obtained by subjecting cathode substrate No. 3 to a baking treatment
The short-circuit rate was reduced as compared with the cathode substrate No. 3.

またこれら陰極基体No.3及びNo.5並びに従来の陰極基
体Aを用いて構成した電池の急速放電性能を第3図に示
した。第3図から明らかなように、本発明の陰極基体N
o.3及びNo.5を用いた陰極板を用いた電池No.3,No.5で
は、従来例の陰極基体Aを用いた電池Aの放電特性より
も放電特性が向上した。また陰極基体No.5を用いた電池
No.5では、突起形成用に加えた金属カドミウムが放電リ
ザーブとして作用するため、電池No.3よりさらに良好な
特性を示した。第3図においてBは、特開昭63−266769
号公報などに示されている活物質表面層にメッキ層を設
ける方法で製造した陰極板を用いて構成した電池の特性
であり、この結果を見るかぎり陰極基体Aを用いて構成
した電池Aより放電特性が改善されることはなく、むし
ろ電圧特性が低下する傾向にある。この結果から、従来
の陰極板を用いた電池と比べて、本発明の実施例に陰極
板を用いた電池では、放電特性が向上することが判る。
FIG. 3 shows the rapid discharge performance of a battery constituted by using these cathode substrates No. 3 and No. 5 and the conventional cathode substrate A. As is clear from FIG. 3, the cathode substrate N of the present invention
In the batteries No. 3 and No. 5 using the cathode plates using No. 3 and No. 5, the discharge characteristics were improved as compared with the discharge characteristics of the battery A using the conventional cathode base A. Battery using cathode base No.5
In No. 5, the metal cadmium added for forming the projections served as a discharge reserve, and thus exhibited better characteristics than Battery No. 3. B in FIG.
The characteristics of a battery formed using a cathode plate manufactured by a method of providing a plating layer on an active material surface layer shown in Japanese Patent Application Publication No. The discharge characteristics are not improved, but rather the voltage characteristics tend to decrease. From these results, it can be seen that the battery using the cathode plate in the embodiment of the present invention has improved discharge characteristics as compared with the battery using the conventional cathode plate.

これら電池の寿命特性を第4図に示した。 The life characteristics of these batteries are shown in FIG.

本発明の各実施例によれば、微粉末を分散粒子した分
散メッキにより、分散粒子間を導電化した多孔性のマト
リックスを有する基体を使用することにより、陰極板の
巻回時及び充放電中の活物質の剥離、脱落が減少した。
このことは、陰極板の歩留り向上及び電池組立後の内部
ショートによる不良低減ひいては寿命等信頼性の向上に
つながる。また陰極基体と活物質との接触面積の増大及
び充放電時の活物質と陰極基体の間の通電パスの短縮に
よって、通電時の抵抗が減少し、低温あるいは高率放電
時の陰極利用率が向上できる等工業的価値大なるもので
ある。
According to each embodiment of the present invention, by using a substrate having a porous matrix in which the dispersed particles are made conductive by dispersion plating in which fine particles are dispersed and dispersed, during winding of the cathode plate and during charging and discharging Of the active material was reduced.
This leads to an improvement in the yield of the cathode plate, a reduction in defects due to an internal short circuit after battery assembly, and an improvement in reliability such as life. In addition, by increasing the contact area between the cathode substrate and the active material and shortening the current path between the active material and the cathode substrate during charging and discharging, the resistance during energization decreases, and the utilization rate of the cathode during low temperature or high-rate discharge is reduced. It is of great industrial value, for example, it can be improved.

[発明の効果] 請求項1の発明によれば、分散メッキによって形成し
た多孔性の三次元マトリックスを用いるため、分散粒子
を単に粉末としてペースト中に加えた場合と比較して、
飛躍的に極板の導電性及び強度が向上し、急速充放電性
能が向上する。そのため陰極板の巻回時及び充放電中の
活物質の剥離及び脱落を大幅に減少させることができ
る。
[Effect of the Invention] According to the invention of claim 1, since a porous three-dimensional matrix formed by dispersion plating is used, compared with a case where dispersed particles are simply added as a powder in a paste,
The conductivity and strength of the electrode plate are dramatically improved, and the rapid charge / discharge performance is improved. Therefore, peeling and falling off of the active material during winding of the cathode plate and during charging and discharging can be significantly reduced.

請求項2の発明によれば、多孔性の三次元マトリック
スが複数の突起状部を有しているので、活物質と陰極基
体との接触面積が増える利点がある。特に、これら突起
状部は、分散メッキ時に同時に形成することができる。
According to the second aspect of the present invention, since the porous three-dimensional matrix has a plurality of protrusions, there is an advantage that the contact area between the active material and the cathode base increases. In particular, these projections can be formed simultaneously with the dispersion plating.

請求項3の発明によれば、微粉末として金属カドミウ
ムあるいはカドミウム化合物を主成分とするものを用い
るため、放電リザーブを改善することができる。
According to the third aspect of the present invention, since the fine powder mainly containing metal cadmium or a cadmium compound is used, the discharge reserve can be improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は分散メッキにより形成した突起状部を有する陰
極基体の一例の断面図、第2図は第1図のA部の拡大
図、第3図は実施例4における電池の6A放電特性図、第
4図は実施例4における電池の寿命特性図、第5図は従
来のプレス突起を有する陰極基体を備えたペースト式陰
極板の断面図である。 1,11……ペースト式陰極板、2……集電体、3……三次
元マトリックス、4……分散メッキによって作られた突
起状部、4a……分散粒子、4b……メッキ層、5……活物
質層、12……陰極基体、12a……プレス突起、13……活
物質層。
FIG. 1 is a cross-sectional view of an example of a cathode base having projections formed by dispersion plating, FIG. 2 is an enlarged view of a portion A in FIG. 1, and FIG. 3 is a 6A discharge characteristic diagram of the battery in Example 4. FIG. 4 is a view showing the life characteristics of the battery in Example 4, and FIG. 5 is a cross-sectional view of a conventional paste-type cathode plate provided with a cathode base having press projections. 1,11: Paste type cathode plate, 2: Current collector, 3: Three-dimensional matrix, 4: Projection formed by dispersion plating, 4a: Dispersed particles, 4b: Plating layer, 5 ... active material layer, 12 ... cathode base, 12a ... press protrusion, 13 ... active material layer.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−10855(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/80 H01M 4/24 - 4/26 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-61-10855 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/80 H01M 4/24-4 / 26

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】微粉末を分散粒子とした分散メッキにより
分散粒子間を結合して導電化した三次元マトリックスを
備えた陰極基体が用いられており、前記三次元マトリッ
クスは前記分散粒子間がメッキ層によって完全に満たさ
れておらず、内部に空隙又は細孔を有する多孔性の構造
であることを特徴とするペースト状ニッケルカドミウム
蓄電池用陰極板。
1. A cathode substrate having a three-dimensional matrix in which dispersed particles are connected to each other by dispersion plating using fine powder as dispersed particles and made conductive, and the three-dimensional matrix is formed by plating between the dispersed particles. A paste plate for a nickel-cadmium storage battery, wherein the cathode plate is not completely filled with a layer and has a porous structure having voids or pores therein.
【請求項2】前記三次元マトリックスは、前記分散粒子
間がメッキ層によって連結された複数個の突起状部を備
えて形成されている請求項1に記載のペースト式ニッケ
ルカドミウム蓄電池用陰極板。
2. The cathode plate according to claim 1, wherein the three-dimensional matrix is formed with a plurality of protrusions connected between the dispersed particles by a plating layer.
【請求項3】前記微粉末が金属カドミウムあるいはカド
ミウム化合物を主成分とする組成からなることを特徴と
する請求項2に記載のペースト式ニッケルカドミウム蓄
電池用陰極板。
3. The cathode plate for a paste-type nickel cadmium storage battery according to claim 2, wherein said fine powder has a composition containing metal cadmium or a cadmium compound as a main component.
JP20224990A 1990-07-30 1990-07-30 Cathode plate for paste-type nickel cadmium storage battery Expired - Fee Related JP3158416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20224990A JP3158416B2 (en) 1990-07-30 1990-07-30 Cathode plate for paste-type nickel cadmium storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20224990A JP3158416B2 (en) 1990-07-30 1990-07-30 Cathode plate for paste-type nickel cadmium storage battery

Publications (2)

Publication Number Publication Date
JPH0487259A JPH0487259A (en) 1992-03-19
JP3158416B2 true JP3158416B2 (en) 2001-04-23

Family

ID=16454421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20224990A Expired - Fee Related JP3158416B2 (en) 1990-07-30 1990-07-30 Cathode plate for paste-type nickel cadmium storage battery

Country Status (1)

Country Link
JP (1) JP3158416B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101745335B1 (en) * 2016-10-21 2017-06-13 한국에너지기술연구원 Electrode for Electrolysis and the Fabrication Method Thereof

Also Published As

Publication number Publication date
JPH0487259A (en) 1992-03-19

Similar Documents

Publication Publication Date Title
JP2673078B2 (en) Paste type electrode for alkaline secondary battery
JP3158416B2 (en) Cathode plate for paste-type nickel cadmium storage battery
JP3972417B2 (en) Sealed metal oxide-zinc storage battery and manufacturing method thereof
JP3460509B2 (en) Manufacturing method of alkaline storage battery and its electrode
JP3116681B2 (en) Non-sintered nickel electrode and its manufacturing method
JP3269123B2 (en) Electrode substrate for alkaline storage battery, method for producing the same, and electrode for alkaline storage battery using the substrate
JP3438538B2 (en) Manufacturing method of alkaline storage battery and its electrode
JP2000285922A (en) Alkaline storage battery, and manufacture of its electrode
JP3781058B2 (en) Battery electrode substrate and manufacturing method thereof
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JP3941341B2 (en) Alkaline battery and nickel plate
JPH01302668A (en) Electrode for alkaline storage battery
JP3173775B2 (en) Paste nickel positive electrode and alkaline storage battery
JPH0582027B2 (en)
JPS60211770A (en) Positive electrode plate for alkaline battery
JP3446539B2 (en) Manufacturing method of alkaline storage battery and its electrode
JPH10162835A (en) Electrode for alkaline storage battery and manufacture thereof
JP2529308B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JPH04349355A (en) Electrode base for alkali storage battery
JPH0251874A (en) Alkaline zinc lead-acid battery
JPH08329936A (en) Secondary battery and electrode preparation that is used forthis
JP3191830B2 (en) Method for producing nickel electrode for alkaline storage battery
JPH10334898A (en) Alkaline storage battery, its electrode and manufacture thereof
JPH034448A (en) Alkaline battery
JPH0568067B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees